Skip to main content

In Vitro Conservation and Cryopreservation of Clonally Propagated Horticultural Species

  • Chapter
  • First Online:
Conservation and Utilization of Horticultural Genetic Resources

Abstract

Rapid strides have been made in plant biotechnology, including plant tissue culture and conservation techniques. The newly acquired knowledge is now being commonly applied in collection, exchange, multiplication and short- to long-term conservation of genetic resources of crops, especially horticultural crops. Several protocols for in vitro conservation and/or cryopreservation are reported in both temperate and tropical species of fruits, spices, tubers and ornamental and medicinal species. Techniques for rapid multiplication and production of plant material using tissue culture methods are important prerequisites for a successful programme on in vitro conservation and cryopreservation. In case of clones to be maintained under conservation, monitoring genetic stability becomes an integral activity to ensure avoidance of somaclonal variation. In vitro conservation of horticultural germplasm has been successfully applied by means of in vitro slow growth storage in several national and international gene banks/laboratories. Cryopreservation of germplasm (normally using liquid nitrogen, −196 °C) is currently advocated as the safest and cost-effective long-term strategy for conservation of horticultural genetic resources. Although large-scale, routine application of cryopreservation is still limited to a few laboratories, there are an ever-increasing number of publications reporting successful protocols in many horticultural species. This has been possible due to advances in development of more ‘generic’ new-age cryopreservation protocols like droplet-vitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, A. (2003). Role of in vitro techniques in exchange of germplasm. In B. B. Mandal, R. Chaudhury, F. Engelmann, Bhagmal, K. L. Tao, & B. S. Dhillon (Eds.), Conservation biotechnology of plant germplasm (pp. 105–113). New Delhi: National Bureau of Plant Genetic Resources.

    Google Scholar 

  • Agrawal, A., & Tyagi, R. K. (2014). In vitro conservation and cryopreservation of genetic resources of Musa spp. – A review of the recent developments with special reference to India. International Journal of Innovative Horticulture, 3(2), 115–133.

    Google Scholar 

  • Agrawal, A., Swennen, R., & Panis, B. (2004). A comparison of four methods for cryopreservation of meristems in banana (Musa spp.). CryoLetters, 25, 101–110.

    Google Scholar 

  • Agrawal, A., Mahalakshmi, C., & Tyagi, R. K. (2008a). Use of commercial sugar, isabgol and ordinary water in culture medium for conservation of Curcuma longa L. Journal of Plant Biochemistry and Biotechnology, 17(1), 85–89.

    Article  Google Scholar 

  • Agrawal, A., Tyagi, R. K., & Goswami, R. (2008b). Cryopreservation of subgroup Monthan (ABB) of Indian cooking bananas (Musa spp.). Current Science, 94, 1125–1128.

    Google Scholar 

  • Agrawal, A., Sanayaima, R., Tandon, R., & Tyagi, R. K. (2010). Cost-effective in vitro conservation of banana using alternatives of gelling agent (isabgol) and carbon source (market sugar). Acta Physiologiae Plantarum, 32, 703–711.

    Article  Google Scholar 

  • Agrawal, A., Sanayaima, R., Singh, R., Tandon, R., Verma, S., & Tyagi, R. K. (2014a). Phenotypic and molecular studies for genetic stability assessment of cryopreserved banana meristems derived from field and in vitro explant sources. In Vitro Cellular & Developmental Biology – Plant, 50, 345–356.

    Article  CAS  Google Scholar 

  • Agrawal, A., Verma, S., Sharma, N., Vijay, P., Meena, D. P. S., & Tyagi, R. K. (2014b). Cryoconservation of some wild species of Musa L. Indian Journal of Genetics and Plant Breeding., 74(4), 665–669.

    Article  Google Scholar 

  • Al-Baba, H., Shibli, R. A., Akash, M., Al-Qudah, T. S., Tahtamouni, R. W., & Al-Ruwaiei, H. (2015). Cryopreservation and genetic stability assessment of threatened medicinal plant (Ziziphora tenuior L.) grown wild in Jordan. Jordan Journal of Biological Sciences, 8(4), 247–256.

    Article  Google Scholar 

  • Arizaga, M. V., Navarro OF, Martinez, C. R., Gutiérrez, E. J., Delgado, H. A., Yamamoto, S. I., Watanabe, K., & Niino, T. (2017). Improvement to the D Cryo-plate protocol applied to practical cryopreservation of in vitro grown potato shoot tips. Horticultural Journal, 86(2), 222–228.

    Article  CAS  Google Scholar 

  • Arvin, M. J., & Rahimi, M. (2002). Effects of abscisic acid, mannitol and temperature on in vitro storage of germplasm. Iran Agricultural Research, 21(2), 187–196.

    CAS  Google Scholar 

  • Ashmore, S. E. (1997). Status report on the development and application of in vitro techniques for the conservation and use of plant genetic resources. Rome: International Plant Genetic Resources Institute.

    Google Scholar 

  • Atmakuri, A. R., Chaudhury, R., Malik, S. K., Kumar, S., Ramachandran, R., & Qadri, S. M. H. (2009). Mulberry biodiversity conservation through cryopreservation. In Vitro Cellular & Developmental Biology – Plant, 45(6), 639.

    Article  Google Scholar 

  • Badara, G. (2016). In vitro propagation and conservation of tropical RTBs. Indian Journal of Plant Genetic Resources, 29(3), 307–310.

    Article  Google Scholar 

  • Balachandran, S. M., Bhat, S. R., & Chandel, K. P. S. (1990). In vitro clonal multiplication of turmeric (Curcuma spp.) and ginger (Zingiber officinale Rosc.). Plant Cell Reports, 8, 521–524.

    Google Scholar 

  • Banerjee, N., & de Langhe, E. A. (1985). A tissue culture technique for rapid clonal propagation and storage under minimal growth conditions of Musa (banana and plantains). Plant Cell Reports, 4, 351–354.

    Article  CAS  PubMed  Google Scholar 

  • Benson, E. E. (2008). Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Critical Reviews in Plant Sciences, 27(3), 141–219.

    Article  CAS  Google Scholar 

  • Benson, E. E., Harding, K., Debouck, D., Dumet, D., Escobar, R., Mafla, G., Panis, B., Panta, A., Tay, D., Van den Houwe, I., & Roux, N. (2011a). Refinement and standardization of storage procedures for clonal crops – Global public goods phase 2: Part I. Project landscape and general status of clonal crop in vitro conservation technologies. System-wide genetic resources programme, Rome, Italy.

    Google Scholar 

  • Benson, E. E., Harding, K., Debouck, D., Dumet, D., Escobar, R., Mafla, G., Panis, B., Panta, A., Tay, D., Van den Houwe, I., & Roux, N. (2011b) Refinement and standardization of storage procedures for clonal crops – Global public goods phase 2: Part II. Status of In Vitro conservation technologies for: andean root and tuber crops, cassava, musa, potato, sweet potato and yam. System-wide genetic resources programme, Rome, Italy

    Google Scholar 

  • Benson, E. E., Harding, K., Debouck, D., Dumet, D., Escobar, R., Mafla, G., Panis, B., Panta, A., Tay, D., Van den Houwe, I., & Roux, N. (2011c) Refinement and standardization of storage procedures for clonal crops – Global public goods phase 2: Part III. Multi-crop guidelines for developing In Vitro conservation best practices for clonal crops. System-wide genetic resources programme, Rome, Italy

    Google Scholar 

  • Bessembinder, J. J. E., Staritsky, G., & Zandvoort, E. A. (1993). Long-term in vitro storage of Colocasia esculenta under minimal growth conditions. Plant Cell Tissue and Organ Culture, 33(2), 121–127.

    Article  Google Scholar 

  • Bhat, S. R., & Chandel, K. P. S. (1993). In vitro conservation of Musa germplasm: Effects of mannitol and temperature on growth and storage. Journal of Horticultural Science, 68(6), 841–846.

    Article  CAS  Google Scholar 

  • Bhat, S. R., Chandel, K. P. S., & Kackar, A. (1994). In vitro induction of rhizomes in ginger (Zingiber officinale Roscoe.). Indian Journal of Experimental Biology, 32, 340–344.

    Google Scholar 

  • Bhat, S. R., Chandel, K. P. S., & Malik, S. K. (1995). Plant regeneration from various explants of cultivated Piper species. Plant Cell Reports, 14, 398–402.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya, P., Kumaria, S., Diengdoh, R., & Tandon, P. (2014). Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid. Meta Gene, 2, 489–504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi, W. L., Yin, Z. F., Guo, L., Chen, L., Pan, C., & Wang, Q. C. (2015). Plant regeneration from shoot regrowth and de novo embryo-like structures from cryopreserved shoot tips of Lilium spp. In Vitro Cellular & Developmental Biology – Plant, 51(4), 390–398.

    Article  CAS  Google Scholar 

  • Bi, W. L., Pan, C., Liu, J., & Wang, Q. C. (2016). Greenhouse performance, genetic stability and biochemical compounds in Chrysanthemum morifolium ‘Hangju’ plants regenerated from cryopreserved shoot tips. Acta Physiologiae Plantarum, 38(11), 268.

    Article  CAS  Google Scholar 

  • Bunn, E. (2005). Development of in vitro methods for ex situ conservation of Eucalyptus impensa, an endangered mallee from southwest Western Australia. Plant Cell Tissue and Organ Culture, 83(1), 97–102.

    Article  CAS  Google Scholar 

  • Canto, A. M. M. E., Souza, F. V. D., Costa, M. A. P. C., Souza, A. S., Ledo, C. A. S., & Cabral, J. R. S. (2004). Conservação in vitro de germoplasma de abacaxi tratado com paclobutrazol. Pesquisa Agropecuária Brasileira, 39(7), 717–720.

    Article  Google Scholar 

  • Capuana, M., & Di Lonardo, S. (2013). In vitro conservation of chestnut (Castanea sativa) by slow growth. In Vitro Cellular & Developmental Biology – Plant, 49, 605–610.

    Article  CAS  Google Scholar 

  • Castillo, N. R. F., Bassil, N. V., Wada, S., & Reed, B. M. (2010). Genetic stability of cryopreserved shoot tips of Rubus germplasm. In Vitro Cellular & Developmental Biology – Plant, 46(3), 246–256.

    Article  Google Scholar 

  • Chanemougasoundharam, A., Sarkar, D., Pandey, S. K., Al-Biski, F., Helali, O., & Minhas, J. S. (2004). Culture tube closure-type affects potato plantlets growth and chlorophyll contents. Biologia Plantarum, 48(1), 7–11.

    Article  CAS  Google Scholar 

  • Chaudhury, R., Sharma, N., Pandey, R., Mandal, B. B., Malik, S. K., Gupta, S., & Hussain, Z. (2006). Biotechnological approaches to PGR conservation. In S. Ak, K. Srinivasan, S. Saxena, & B. S. Dhillon (Eds.), Hundred years of plant genetic resources management in India (pp. 211–226). New Delhi: National Bureau of Plant Genetic Resources, ICAR.

    Google Scholar 

  • Choudhary, R., Chaudhury, R., Malik, S. K., Kumar, S., & Pal, D. (2013). Genetic stability of mulberry germplasm after cryopreservation by two-step freezing technique. African Journal of Biotechnology, 12(41), 5983–5993.

    Article  CAS  Google Scholar 

  • Choudhary, R., Malik, S. K., Chaudhury, R., & Sharma, K. C. (2014). Long-term conservation of dormant buds of Prunus dulcis (Miller) DA Webb using three different new cryotechniques. Romanian Biotechnology Letters, 19(4), 9575–9584.

    Google Scholar 

  • Christelová, P., De Langhe, E., Hřibová, E., Čížková, J., Sardos, J., Hušáková, M., Sutanto, A., Kepler, A. K., Swennen, R., Roux, N., & Doležel, J. (2017). Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodiversity and Conservation, 26(4), 801–824.

    Article  Google Scholar 

  • Condello, E., Caboni, E., Andrè, E., Piette, B., Druart, P., Swennen, R., & Panis, B. (2011). Cryopreservation of apple in vitro axillary buds using droplet-vitrification. CryoLetters, 32(2), 175–185.

    CAS  PubMed  Google Scholar 

  • Cordova, I. I., Luis, B., & Thammasiri, K. (2016). Cryopreservation on a cryo-plate of Arundina graminifolia protocorms, dehydrated with silica gel and drying beads. CryoLetters, 37(2), 68–76.

    PubMed  Google Scholar 

  • Cristea, V., Crăciunaş, C., Marcu, D., Palada, M., & Butiuc-Keul, A. (2014). Genetic stability during in vitro propagation of Dianthus spiculifolius Schur. Propagation of Ornamental Plants, 14(1), 26–31.

    Google Scholar 

  • Da Silva, J. A. T., Zeng, S., Galdiano, R. F., Dobránszki, J., Cardoso, J. C., & aVendrame, W. A. (2014). In vitro conservation of Dendrobium germplasm. Plant Cell Reports, 33(9), 1413–1423.

    Article  CAS  Google Scholar 

  • De Goes, M. (1993). Studies on the Conservation of Sweet Potato (Ipomoea batatas (L) LAM) Germplasm. PhD thesis, University of Bath, Bath, UK

    Google Scholar 

  • Devi, J., Ray, B. K., Chetia, S., & Deka, P. C. (1998). Regeneration of low temperature stored encapsulated protocorms of orchids. Journal of Orchid Society, 12, 39–41.

    Google Scholar 

  • Dhungana, S. A., Kunitake, H., Niino, T., Yamamoto, S. I., Fukui, K., Tanaka, D., Maki, S., & Matsumoto, T. (2017). Cryopreservation of blueberry shoot tips derived from in vitro and current shoots using D cryo-plate technique. Plant Biotechnolgy, 34(1), 1–5.

    Article  CAS  Google Scholar 

  • Divakaran, M., Babu, K. N., & Peter, K. V. (2006). Conservation of Vanilla species, in vitro. Scientia Horticulturae, 110, 175–180.

    Article  CAS  Google Scholar 

  • Dixit, S., Mandal, B. B., Ahuja, S., & Srivastava, P. S. (2003). Genetic stability assessment of plants regenerated from cryopreserved embryogenic tissues of Dioscorea bulbifera L. using RAPD, biochemical and morphological analyses. CryoLetters, 24(2), 77–84.

    CAS  PubMed  Google Scholar 

  • Dumet, D., Diebiru, E., Adeyemi, A., Akinyemi, O., Gueye, B., & Franco, J. (2013). Cryopreservation for the ‘in perpetuity’ conservation of yam and cassava genetic resources. CryoLetters, 34(2), 107–118.

    CAS  PubMed  Google Scholar 

  • Dussert, S., Engelmann, F., & Noirot, M. (2003). Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections. CryoLetters, 24, 149–160.

    PubMed  Google Scholar 

  • Engelmann, F. (2004). Plant cryopreservation: progress and prospects. In Vitro Cellular & Developmental Biology: Plant, 40(5), 427–433.

    Article  Google Scholar 

  • Engelmann, F. (2011). Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cellular & Developmental Biology – Plant, 47, 5–16.

    Article  Google Scholar 

  • Engelmann, F., & Takagi, H. (Eds.). (2000). Cryopreservation of tropical plant germplasm. Current research progress and application. Japan International Research Center for Agricultural Sciences, Tsukuba, Japan/International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Engelmann-Sylvestre, I., & Engelmann, F. (2015). Cryopreservation of in vitro-grown shoot tips of Clinopodium odorum using aluminium cryo-plates. In Vitro Cellular & Developmental Biology – Plant, 51(2), 185–191.

    Article  CAS  Google Scholar 

  • Escobar, R. H., Manrique, N., Munoz, L., Rios, A., Debouck, D., & Tohme, J. (2009). Cassava cryopreservation by rapid freezing methodology. CIAT, Cali, Colombia. Available from https://cgspace.cgiar.org/bitstream/handle/10568/83102/Cassava%20cryopreservation%20by%20rapid%20freezing%20methodology.pdf?sequence=1. Accessed 2 Aug 2017

  • Fabre, J., & Dereuddre, J. (1990). Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot-tips. CryoLetters, 11, 413–426.

    Google Scholar 

  • Fahy, G. M., Mac Farlane, D. R., Angell, C. A., & Meryman, H. T. (1984). Vitrification as an approach to cryopreservation. Cryobiology, 21, 407–426.

    Article  CAS  PubMed  Google Scholar 

  • FAO. (2010). The second report on the state of the world’s plant genetic resources for food and agriculture. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • FAO. (2014). Genebank standards for plant genetic resources for food and agriculture (Rev. edn.). Rome.

    Google Scholar 

  • FAO. (2017). http://www.fao.org/plant-treaty/areas-of-work/the-multilateral-system/overview/en/ Accessed 2 Aug 2017.

  • Fki, L., Bouaziz, N., Chkir, O., Benjemaa-Masmoudi, R., Rival, A., Swennen, R., Drira, N., & Panis, B. (2013). Cold hardening and sucrose treatment improve cryopreservation of date palm meristems. Biologia Plantarum, 57(2), 375–379.

    Article  CAS  Google Scholar 

  • Fukui, K., Shirata, K., Niino, T., & Kashif, I. M. (2009). Cryopreservation of mulberry winter buds in Japan. International Symposium on Cryopreservation in Horticultural Species, 908(April), 483–488.

    Google Scholar 

  • Funnekotter, B., Whiteley, S. E., Turner, S. R., Bunn, E., & Mancera, R. L. (2015). Evaluation of the new vacuum infiltration vitrification (VIV) cryopreservation technique for native Australian plant shoot tips. CryoLetters, 36(2), 104–113.

    PubMed  Google Scholar 

  • Funnekotter, B., Bunn, E., & Mancera, R. L. (2017). Cryo-Mesh: A simple alternative cryopreservation protocol. CryoLetters, 38(2), 155–159.

    CAS  PubMed  Google Scholar 

  • Gangopadhyay, G., Bandyopadhyay, T., Poddar, R., Gangopadhyay, S. B., & Mukharjee, K. K. (2005). Encapsulation of pineapple microshoots in alginate beads for temporary storage. Current Science, 88(6), 972–977.

    CAS  Google Scholar 

  • Gantait, S., Sinniah, U. R., Suranthran, P., SR, P., & Subramaniam, S. (2015). Improved cryopreservation of oil palm (Elaeis guineensis Jacq.) polyembryoids using droplet vitrification approach and assessment of genetic fidelity. Protoplasma, 252(1), 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, R., Pacheco, G., Falcao, E., Borges, G., & Mansur, E. (2011). Influence of type of explant, plant growth regeneration, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa (Passifloraceae). Plant Cell, Tissue and Organ Culture, 106, 47–54.

    Article  CAS  Google Scholar 

  • Ghaffarzadeh-Namazi, L., Joachim Keller, E. R., Senula, A., & Babaeian, N. (2017). Investigations on various methods for cryopreservation of callus of the medicinal plant Satureja spicigera. Journal of Applied Research on Medicinal and Aromatic Plants, 5, 10–15.

    Article  Google Scholar 

  • Gianní, S., & Sottile, F. (2015). In vitro storage of plum germplasm by slow growth. Horticultural Science, 42(2), 61–69.

    Article  Google Scholar 

  • Golmirzaei, A. M., Panta, A., & Delgado, C. (2000). Structural observations on potato shoot tips after thawing from liquid nitrogen. In F. Engelmann & H. Takagi (Eds.), Cryopreservation of tropical plant germplasm. Current research progress and application (pp. 388–389). Tsukuba: Japan International Research Center for Agricultural Sciences.

    Google Scholar 

  • Gonçalves, S., & Romano, A. (2007). In vitro minimum growth for conservation of Drosophyllum lusitanicum. Biologia Plantarum, 51(4), 795–798.

    Article  Google Scholar 

  • Gonzalez-Arnao, M. T., Panta, A., Roca, W. M., Escobar, R. H., & Engelmann, F. (2008). Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell, Tissue and Organ Culture, 92(1), 1–3.

    Article  Google Scholar 

  • Gonzalez-Arnao, M. T., Lazaro-Vallejo, C. E., Engelmann, F., Gamez-Pastrana, R., Martinez-Ocampo, Y. M., Pastelin-Solano, M. C., & Diaz-Ramos, C. (2009). Multiplication and cryopreservation of vanilla (Vanilla planifolia ‘Andrews’). In Vitro Cellular & Developmental Biology – Plant, 45(5), 574–582.

    Article  Google Scholar 

  • Gopal, J., Chamail, A., & Sarkar, D. (2002). Slow-growth in-vitro conservation of potato germplasm at normal propagation temperature. Potato Research, 45, 203–213.

    Article  Google Scholar 

  • Guanino, T., Silvanini, A., Benelli, C., Beghe, D., & Fabbri, A. (2009). Synthetic seed production and conservation of Kober 5BB grapevine rootstock. Italian Horticulture, 16, 267–270.

    Google Scholar 

  • Gupta, S. (2011). Cryopreservation of in vitro-grown shoot tips of Morus spp. and Pyrus cossonii Rehder by encapsulation-dehydration. Acta Horticulturae, 908, 309–317.

    Article  CAS  Google Scholar 

  • Gupta, S., & Mahalaxmi, V. (2009). In vitro high frequency direct plant regeneration from whole leaves of blackberry. Scientia Horticulturae, 120, 22–26.

    Article  CAS  Google Scholar 

  • Gupta, S., & Reed, B. M. (2006). Cryopreservation of shoot tips of blackberry and raspberry by encapsulation-dehydration and vitrification. Cryo Letters, 27(1), 29–42.

    PubMed  Google Scholar 

  • Gupta, S., Mandal, B., & Gautam, P. (2002). In Vitro and cryorepository of NBPGR. In N. Kumar, P. Negi, & N. Singh (Eds.), Plant biotechnology for sustainable hill agriculture. Pithoragarh: Defence Agricultural Research Laboratory.

    Google Scholar 

  • Gupta, S., Chauhan, D., & Bala, M. (2008). Micropropagation of Bael (Aegle marmelos (L.) Corr.) – An indigenous medicinal fruit tree of India. Indian Journal of Plant Genetic Resources, 21(3), 213–216.

    Google Scholar 

  • Gupta, S., Singh, P., & Rao, A. A. (2009). Micropropagation of mulberry (Morus indica L.) using explants from mature tree: Effects of plant growth regulators on shoot multiplication and rooting. Progressive Horticulture, 41(2), 136–144.

    Google Scholar 

  • Guzman-Garcia, E., Bradai, F., & Saanchez-Romero, C. (2013). Cryopreservation of avocado embryogenic cultures using the droplet-vitrification method. Acta Physiologiae Plantarum, 35, 183–193.

    Google Scholar 

  • Halmagyi, A., & Pinker, I. (2006). Plant regeneration from Rosa shoot tips cryopreserved by a combined droplet vitrification method. Plant Cell Tissue and Organ Culture, 84(2), 145–153.

    Article  Google Scholar 

  • Halmagyi, A. D., Constantin, I., & Valentina. (2010). Cryopreservation of Malus cultivars: Comparison of two droplet protocols. Scientia Horticulturae, 124, 387–392.

    Article  CAS  Google Scholar 

  • Hamed, A. M., Gomma, A. H., Aly, A. S., & Ibrahim, I. A. (2003). In vitro storage of encapsulated somatic embryos of Phoenix dactylifera L. Bulletin of Faculty of Pharmacy, Cairo University, 54, 585–598.

    Google Scholar 

  • Hao, Y. J., & Deng, X. X. (2003). Genetically stable regeneration of apple plants from slow growth. Plant Cell Tissue and Organ Culture, 72, 253–260.

    Article  CAS  Google Scholar 

  • Harding, K. (2004). Genetic integrity of cryopreserved plant cells: A review. CryoLetters, 25(1), 3–22.

    PubMed  Google Scholar 

  • Hu, W. H., Liu, S. F., & Liaw, S. I. (2015). Long-term preconditioning of plantlets: a practical method for enhancing survival of pineapple (Ananas comosus (l.) Merr.) shoot tips cryopreserved using vitrification. CryoLetters, 36(4), 226–236.

    CAS  PubMed  Google Scholar 

  • Hussain, Z., & Tyagi, R. K. (2006). In vitro corm induction and genetic stability of regenerated plants in taro (Colocasia esculenta (L.) Schott.). Indian Journal of Biotechnology, 5, 535–542.

    CAS  Google Scholar 

  • IITA. (2007). Cassava in vitro processing and gene banking. (IITA Genebank series 2007).

    Google Scholar 

  • Islam, M. T., Dembel, D. P., & Keller, E. R. J. (2005). Influence of explant, temperature and different culture vessels on in vitro culture for germplasm maintenance of four mint accessions. Plant Cell Tissue and Organ Culture, 81, 123–130.

    Article  Google Scholar 

  • Jarda, L., Butiuc-Keul, A., Hőhn, M., Pedryc, A., & Cristea, V. (2014). Ex situ conservation of Dianthus giganteus D’Urv. subsp. banaticus (Heuff.) Tutin by in vitro culture and assessment of somaclonal variability by molecular markers. Turkish Journal of Biology, 38, 21–30.

    Article  Google Scholar 

  • Jayasankar, S., Van Aman, V., Cordts, J., Dhekney, S., Li, Z. T., & Gray, D. J. (2005). Low temperature storage of suspension culture-derived grapevine somatic embryos and regeneration of plants. In Vitro Cellular & Developmental Biology – Plant, 41, 752–756.

    Article  Google Scholar 

  • Jenderek, M. M., & Reed, B. M. (2017). Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. In Vitro Cellular & Developmental Biology – Plant, 53, 299. https://doi.org/10.1007/s11627-017-9828-3.

    Article  CAS  Google Scholar 

  • Jenderek, M. M., Tanner, J. D., Ambruzs, B. D., West, M., & Postman JD Hummer, K. E. (2017). Twig pre-harvest temperature significantly influences effective cryopreservation of Vaccinium dormant buds. Cryobiology, 74, 154–159.

    Article  PubMed  Google Scholar 

  • Jeon, S. M., Arun, M., Lee, S. Y., & Kim, C. K. (2015). Application of encapsulation-vitrification in combination with air dehydration enhances cryotolerance of Chrysanthemum morifolium shoots tips. Scientia Horticulturae, 194, 91–99.

    Article  CAS  Google Scholar 

  • Joshi, P., & Dhawan, V. (2007). Assessment of genetic fidelity of micropropagated Swertia chirayita plantlets by ISSR marker assay. Biologia Plantarum, 51, 22–26.

    Article  CAS  Google Scholar 

  • Kaczmarczyk, A., Grübe, M., & Keller, E. R. J. (2010). History and development of the potato cryopreservation method and the cryopreserved collection in the IPK Gatersleben. CryoLetters, 31, 76–94.

    Google Scholar 

  • Kartha, K. K., Leung, N. L., & Mroginski, L. A. (1982). In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz). Zeitschrift für Pflanzenphysiologie, 107(2), 133–140.

    Article  Google Scholar 

  • Kaviani, B. (2011a). Conservation of plant genetic resources by cryopreservation. Australian Journal of Crop Science, 5(6), 778–800.

    Google Scholar 

  • Kaviani, B. (2011b). Cryopreservation of lily seeds by encapsulation-dehydration. Acta Horticulturae, 908, 253–256.

    Article  CAS  Google Scholar 

  • Keller, E. R. J., Senula, A., & Dreiling, M. (2005). Gene banking of vegetative propagated medicinal plants –two cases: Allium and Mentha. Acta Horticulturae, 676, 103–109.

    Article  Google Scholar 

  • Keller, E. R., Grübe, M., Hajirezaei, M. R., Melzer, M., Mock, H. P., Rolletschek, H., Senula, A., & Subbarayan, K. (2016). Experience in large-scale cryopreservation and links to applied research for safe storage of plant germplasm. Acta Horticulturae, 1113, 239–249.

    Article  Google Scholar 

  • Kim, H. H., Lee, J. K., Hwang, H. S., & Engelmann, F. (2007). Cryopreservation of garlic germplasm collections using the droplet-vitrification technique. Cryo Letters, 28(6), 471–482.

    CAS  PubMed  Google Scholar 

  • Kim, H. H., Popova, E., Shin, D. J., Yi, J. Y., Kim, C. H., Lee, J. S., Yoon, M. K., & Engelmann, F. (2012). Cryobanking of Korean Allium germplasm collections: results from a 10 year experience. Cryo Letters, 33(1), 45–57.

    CAS  PubMed  Google Scholar 

  • Ko, W. H., Hwang, S. C., & Ku, F. M. (1991). A new technique for storage of meristem-tip cultures of Cavendish banana. Plant Cell Tissue and Organ Culture, 25, 179–183.

    Google Scholar 

  • Kovalchuk, I., Zhumagulova, Z., Turdiev, T., & Reed, B. M. (2014). Growth medium alterations improve in vitro cold storage of pear germplasm. Cryo Letters, 35(3), 197–203.

    CAS  PubMed  Google Scholar 

  • Kulus, D. (2016). Application of cryogenic technologies and somatic embryogenesis in the storage and protection of valuable genetic resources of ornamental plants. In Somatic embryogenesis in ornamentals and its applications (pp. 1–25). New Delhi: Springer.

    Google Scholar 

  • Kulus, D., & Zalewska, M. (2014). Cryopreservation as a tool used in long-term storage of ornamental species–a review. Scientia Horticulturae, 168, 88–107.

    Article  Google Scholar 

  • Kumar, P., Reid, D., & Thorpe, T. (1987). The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata. Physiologia Plantarum, 69(1), 244–251.

    Article  CAS  Google Scholar 

  • Kumar, P., Gambhir, G., Gaur, A., & Srivastava, D. K. (2015). Molecular analysis of genetic stability in in vitro regenerated plants of broccoli (Brassica oleracea L. var. italica). Current Science, 109(8), 1470–1475.

    CAS  Google Scholar 

  • Lambardi, M., Benelli, C., De Carlo, A., Fabbri, A., Grassi, S., & Lynch, P. T. (2002). Medium- and long- term in vitro conservation of olive germplasm (Olea europaea L.). Acta Horticulturae, 586, 109–112.

    Article  Google Scholar 

  • Lata, H., Moraes, R. M., Bertoni, B., & Pereira, A. M. S. (2010). In vitro germplasm conservation of Podophyllum peltatum L. under slow growth conditions. In Vitro Cellular & Developmental Biology – Plant, 46, 22–27.

    Article  Google Scholar 

  • Lentini, Z., Mussel, H., Mutschler, M. A., & Earle, E. D. (1988). Ethylene generation and reversal of ethylene effects during developments in vitro of rapid cycling Brassica campestris L. Plant Science, 54(1), 75–81.

    Article  CAS  Google Scholar 

  • Leunufna, S., & Keller, E. R. (2003). Investigating a new cryopreservation protocol for yams (Dioscorea spp.). Plant Cell Reports, 21(12), 1159–1166.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. W., Chen, H. Y., Li, X. Y., Zhang, Z., Blystad, D. R., & Wang, Q. C. (2017). Cryopreservation and evaluations of vegetative growth, microtuber production and genetic stability in regenerants of purple-fleshed potato. Plant Cell Tissue and Organ Culture, 128(3), 641–653.

    Article  CAS  Google Scholar 

  • Maki, S., Hirai, Y., Niino, T., & Matsumoto, T. (2015). Assessment of molecular genetic stability between long-term cryopreserved and tissue cultured wasabi (Wasabia japonica) plants. CryoLetters, 36(5), 318–324.

    CAS  PubMed  Google Scholar 

  • Malik, S. K., & Chaudhury, R. (2016). Cryopreservation of plant genetic resources: A novel approaches for safe long-term conservation. In A. Singh, P. C. Trivedi, & B. P. Singh (Eds.), Plant genetic resources-an overview (pp. 169–183). Jaipur: Avishkar Publishers.

    Google Scholar 

  • Malik, S. K., Chaudhury, R., & Kalia, R. K. (2005). Rapid in vitro multiplication and conservation of Garcinia indica: A tropical medicinal tree species. Scientia Horticulturae, 106(4), 539–553.

    Article  Google Scholar 

  • Mandal, B. B., Tyagi, R. K., Pandey, R., Sharma, N., & Agrawal, A. (2000). In vitro conservation of germplasm of agri-horticultural crops at NBPGR: An overview. In M. K. Razdan & E. C. Cocking (Eds.), Conservation of plant genetic resources in vitro, vol. 2: Applications and limitations (pp. 279–307). Enfield/Oxford/New Delhi: Science Publishers Inc./IBH Publishing Co..

    Google Scholar 

  • Mandal, B. B., Sharma, S. D., & Srivastava, P. S. (2009). Cryopreservation of embryogenic cultures of Dioscorea bulbifera l. by encapsulation- dehydration. CryoLetters, 30(6), 440–448.

    CAS  PubMed  Google Scholar 

  • Manikandan, R., Vijayakumar, P. K., Karthikeyan, A., & Karutha, P. S. (2011). RAPD based genetic stability analysis among micropropagated, synthetic seed derived and hardened plants of Bacopa monnieri (L.): A threatened Indian medicinal herb. Acta Physiologiae Plantarum, 33, 163–171.

    Article  Google Scholar 

  • Martín, C., Kremer, C., González, I., & González-Benito, M. E. (2015). Influence of the cryopreservation technique, recovery medium and genotype on genetic stability of mint cryopreserved shoot tips. Plant Cell Tissue and Organ Culture, 122(1), 185–195.

    Article  CAS  Google Scholar 

  • Maślanka, M., Panis, B., & Bach, A. (2013). Cryopreservation of Galanthus elwesii Hook. apical meristems by droplet vitrification. CryoLetters, 34(1), 1–9.

    PubMed  Google Scholar 

  • Maslanka, M., Panis, B., & Malik, M. (2016). Cryopreservation of Narcissus L. ‘Carlton’ somatic embryos by droplet vitrification. Propagation Ornamental Plants, 16(1), 28–35.

    Google Scholar 

  • Mata-Rosas, M., & Lastre-Puertos, E. (2015). Long-term conservation of protocorms of Brassavola nodosa (L) Lind. (Orchidaceae): Effect of ABA and a range of cryoconservation techniques. Cryo Letters, 36(5), 289–298.

    CAS  PubMed  Google Scholar 

  • Matsumoto, T. (2017). Cryopreservation of plant genetic resources: conventional and new methods. Reviews in Agricultural Science, 5, 13–20.

    Article  Google Scholar 

  • Matsumoto, T., & Sakai, A. (2003). Cryopreservation of axillary shoot tips of in vitro-grown grape (Vitis) by a two-step vitrification protocol. Euphytica, 131(3), 299–304.

    Article  CAS  Google Scholar 

  • Matsumoto, T., Sakai, A., Takahashi, C., & Yamada, K. (1995). Cryopreservation of n vitro-grown meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. CryoLetters, 16, 189–196.

    Google Scholar 

  • Matsumoto, T., Yamamoto, S. I., Fukui, K., Rafique, T., Engelmann, F., & Niino, T. (2015). Cryopreservation of persimmon shoot tips from dormant buds using the D cryo-plate technique. The Horticulture Journal, 84(2), 106–110.

    Article  CAS  Google Scholar 

  • Mazur, P. (1984). Freezing of living cells: mechanisms and applications. The American Journal of Physiology, 247, 125–142.

    Article  Google Scholar 

  • Mix-Wagner, G., Conner, A. J., & Cross, R. J. (2000). Survival and recovery of asparagus shoot tips after cryopreservation using the “droplet” method. New Zealand Journal of Crop and Horticultural Science, 28, 283–287.

    Article  Google Scholar 

  • Mix-Wagner, G., Schumacher, H. M., & Cross, R. J. (2003). Recovery of potato apices after several years of storage in liquid nitrogen. CryoLetters, 24, 33–41.

    CAS  PubMed  Google Scholar 

  • Morris, G. J., & Acton, E. (2013). Controlled ice nucleation in cryopreservation – a review. Cryobiology, 66(2), 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, P., Mandal, B. B., Bhat, K. V., & Biswas, A. K. (2009). Cryopreservation of Asian Dioscorea bulbifera L. and D. alata L. by vitrification: importance of plant growth regulators. CryoLetters, 30, 100–111.

    CAS  PubMed  Google Scholar 

  • Negash, A., Krens, F., Schaart, J., & Visser, B. (2001). In vitro conservation of enset under slow-growth conditions. Plant Cell Tissue and Organ Culture, 66, 107–111.

    Article  CAS  Google Scholar 

  • Niino, T., & Arizaga, M. V. (2015). Cryopreservation for preservation of potato genetic resources. Breeding Science, 65(1), 41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niino, T., Yamamoto, S. I., Fukui, K., Martínez, C. R., Arizaga, M. V., Matsumoto, T., & Engelmann, F. (2013). Dehydration improves cryopreservation of mat rush (Juncus decipiens Nakai) basal stem buds on cryo-plates. CryoLetters, 34(6), 549–560.

    CAS  PubMed  Google Scholar 

  • Niu, Y. L., Zhang, Y. F., Zhang, Q. L., & Luo, Z. R. (2010). A preliminary study on cryopreservation protocol applicable to all types of Diospyros kaki Thunb. Biotechnology and Biotechnological Equipment, 24(3), 1960–1964.

    Article  Google Scholar 

  • Olas-Sochacka, M., & Kotlińska, T. (2015). International cryobank of the genus Allium. In J. J. Rybczynski, & J. T. Puchalski (Eds.), Biological diversity in Poland. The challenges and tasks for botanical gardens and genebanks until 2020 (Monographs of Botanical Gardens, 2). Poland.

    Google Scholar 

  • Ozudogru, E. A., Kirdok, E., Kaya, E., Capuana, M., Benelli, C., & Engelmann, E. (2011). Cryopreservation of redwood (Sequoia sempervirens) in vitro buds using vitrification-based techniques. CryoLetters, 32(2), 99–110.

    CAS  PubMed  Google Scholar 

  • Pandey, R., Chandel, K. P. S., & Rao, A. R. (1992). In vitro propagation of Allium tuberosum Rottl. ex. Spreng. by shoot proliferation. Plant Cell Reports, 11, 375–378.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, R., Das, A., Apte, S. R., & Negi, K. S. (2005). In vitro conservation of exotic Allium scorodoprasum germplasm. Indian Journal of Plant Genetic Resources, 18, 99–100.

    Google Scholar 

  • Pandey, A., Pradheep, K., & Sharma, N. (2014). Potential introduced medicinal plant African bitter leaf (Vernonia amygdalina Delile) in India: botany, propagation and uses. Medicinal Plants, 6(4), 272–276.

    Google Scholar 

  • Pandey, R., Sharma, N., Agrawal, A., Gupta, S., Hussain, Z., Jain, A., & Tyagi, R. K. (2015). In vitro and cryopreservation of vegetatively propagated crops. In S. R. Jacob, N. Singh, K. Srinivasan, V. Gupta, J. Radhamani, A. Kak, C. Pandey, S. Pandey, J. Aravind, I. S. Bisht, & R. K. Tyagi (Eds.), Management of plant genetic resources (pp. 197–204). New Delhi: ICAR-National Bureau of Plant Genetic Resources.

    Google Scholar 

  • Panis, B. (2009). In F. Engelmann, & E. Benson (Eds.), Cryopreservation of Musa germplasm (2nd edn, p. 48)). Technical Guidelines No. 9. Montpellier: Bioversity International.

    Google Scholar 

  • Panis, B., Piette, B., & Swennen, R. (2005). Droplet vitrification of apical meristem: a cryopreservation protocol applicable to all Musaceae. Plant Science, 168, 45–55.

    Article  CAS  Google Scholar 

  • Panis, B., Van den houwe, I., Swennen, R., Rhee, J., & Roux, N. (2016). Securing plant genetic resources for perpetuity through cryopreservation. Indian Journal of Plant Genetic Resources, 29(3), 300–302.

    Article  Google Scholar 

  • Panta, A., Panis, B., Ynouye, C., Swennen, R., Roca, W., Tay, D., & Ellis, D. (2015). Improved cryopreservation method for the long-term conservation of the world potato germplasm collection. Plant Cell Tissue and Organ Culture, 120(1), 117–125.

    Article  CAS  Google Scholar 

  • Park, S. U., & Kim, H. H. (2015). Cryopreservation of sweet potato shoot tips using a droplet-vitrification procedure. CryoLetters, 36, 344–352.

    CAS  PubMed  Google Scholar 

  • Patil, M. S., Adiga, J. D., Kotmani, S. B., & Shankarnag. (2005). In vitro storage of gladiolus: use of growth retardants and osmotica. Plant Cell Biotechnology and Molecular Biology, 6(1/2), 77–80.

    Google Scholar 

  • Peredo, L., Arroyo-García, R., Reed, B. M., & Revilla, M. A. (2009). Genetic stability of in vitro conserved germplasm of Humulus lupulus. Agricultural and Food Science, 18, 144–151.

    Article  CAS  Google Scholar 

  • Pinker, I., Halmagyi, A., Olbricht, K., & Ehrig, F. (2009). Cryopreservation of strawberry cv. ‘Senga sengana’ by droplet vitrification. Acta Horticulturae, 839, 253–260.

    Article  Google Scholar 

  • Preetha, T. S., Hemantha Kumar, A. S., & Krishnan, P. N. (2013). Shoot tip cryopreservation by vitrification in Kaempferia galanga L. an endangered, overexploited medicinal plant in Tropical Asia. IOSR Journal of Pharmacy and Biological Sciences, 8(3), 19–23.

    Article  Google Scholar 

  • Rafique, T., Yamamoto, S. I., Fukui, K., & Mahmood Z Niino, T. (2015). Cryopreservation of sugarcane using the V cryo-plate technique. CryoLetters, 36(1), 51–59.

    PubMed  Google Scholar 

  • Rafique, T., Yamamoto, S. I., Fukui, K., Tanaka, D., Arizaga, M. V., Abbas, M., Matsumoto, T., & Niino, T. (2016). Cryopreservation of shoot-tips from different sugarcane varieties using D cryo-plate technique. Pakistan Journal of Agricultural Sciences, 53(1), 151–158.

    Article  Google Scholar 

  • Rai, M. K., Jaiswal, V. S., & Jaiswal, U. (2008). Encapsulation of shoot tips of guava (Psidium guajava L.) for short-term storage and germplasm exchange. Scientia Horticulturae, 118, 33–38.

    Article  CAS  Google Scholar 

  • Rajasekharan, P. E., & Sahijram, L. (2015). In vitro conservation of plant germplasm. In B. Bahadur, M. V. Rajam, L. Sahijram, & K. V. Krishnamurthy (Eds.), Plant biology and biotechnology, volume II: Plant genomics and biotechnology (pp. 417–443). New Delhi: Springer.

    Chapter  Google Scholar 

  • Rajasekharan, P. E., Ambika, S. R., & Ganeshan, S. (2005). In vitro conservation of Coleus forskohlii-an endangered medicinal plant. Journal of Plant Biotechnology, 7(2), 135–141.

    Google Scholar 

  • Rajasekharan, P. E., Ambika, S. R., & Ganeshan, S. (2009). In vitro conservation of Tylophora indica: A threatened medicinal plant. ICFAI University Journal of Genetics and Evolution, 2(3), 26–35.

    Google Scholar 

  • Rakosy-Tican, E., Bors, B., & Szatmari, A. M. (2012). In vitro culture and medium-term conservation of the rare wild species Gladiolus imbricatus. African Journal of Biotechnology, 11, 14703–14712.

    CAS  Google Scholar 

  • Rathwell, R., Popova, E., Shukla, M. R., & Saxena, P. K. (2016). Development of cryopreservation methods for cherry birch (Betula lenta L.), an endangered tree species in Canada. Canadian Journal of Forest Research, 46(11), 1284–1292.

    Article  CAS  Google Scholar 

  • Ray, A., & Bhattacharya, S. (2008). Storage and plant regeneration from encapsulated shoot tips of Rauvolfia serpentina- an effective way of conservation and mass propagation. South African Journal of Botany, 74, 776–779.

    Article  CAS  Google Scholar 

  • Reddy, G. S., Kumar, D. D., Babu, R. S., & Madhavi, M. (2005). Callus culture and synthetic seed production in Rauvolfia serpentina. Indian Journal of Horticulture, 62(1), 102–103.

    Google Scholar 

  • Redenbaugh, K., Fujii, J., Slade, D., Viss, P., & Kossler, M. (1991). Artificial seeds—encapsulated somatic embryos. In High-Tech and micropropagation I (pp. 395–416). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Reed, B. M. (1991). Application of gas-permeable bags for in vitro cold storage of strawberry germplasm. Plant Cell Reports, 10, 431–434.

    Article  CAS  PubMed  Google Scholar 

  • Reed, B. M. (1993). Improved survival of in vitro-stored Rubus germplasm. Journal of the American Society for Horticultural Science, 118(6), 890–895.

    Article  Google Scholar 

  • Reed, B. M. (2017). Plant cryopreservation: a continuing requirement for food and ecosystem security. In Vitro Cellular & Developmental Biology – Plant, 53, 285. https://doi.org/10.1007/s11627-017-9851-4.

    Article  CAS  Google Scholar 

  • Reed, B. M., & Chang, Y. (1997). Medium and long-term storage of in vitro cultures of temperate fruit and nut crops. In M. K. Razdan & E. C. Cocking (Eds.), Conservation of plant genetic resources in vitro (Vol. 1, pp. 67–105). Enfield: Science Publishers, Inc.

    Google Scholar 

  • Reed, B. M., Engelmann, F., Dulloo, M. E., & Engels, J. M. M. (2004). Technical guidelines for the management of field and in vitro germplasm collections (IPGRI Handbooks for Genebanks no. 7). Rome: International Plant Genetic Resources Institute.

    Google Scholar 

  • Reed, B. M., Gupta, S., & Uchendu, E. E. (2013). In vitro genebanks for preserving tropical biodiversity. In M. N. Normah, H. F. Chin, & B. M. Reed (Eds.), Conservation of tropical plant species (pp. 77–106). New York: Springer.

    Chapter  Google Scholar 

  • Renau-Morata, B., Arrillaga, I., & Segura, J. (2006). In vitro storage of cedar shoot cultures under minimal growth conditions. Plant Cell Reports, 25(7), 636–642.

    Article  CAS  PubMed  Google Scholar 

  • Saikat, G., Uma, R. S., Periasamy, S., Sharrmila, R. P., & Sreeramanan, S. (2015). Improved cryopreservation of oil palm (Elaeis guineensis Jacq.) polyembryoids using droplet vitrification approach and assessment of genetic fidelity. Protoplasma, 252(1), 89–101.

    Article  CAS  Google Scholar 

  • Sakai, A., & Engelmann, F. (2007). Vitrification, encapsulation-vitrification and droplet-vitrification: A review. CryoLetters, 28(3), 151–172.

    CAS  PubMed  Google Scholar 

  • Sakai, A., & Yoshida, S. (1967). Survival of plant tissue at super-low temperature VI. Effects of cooling and rewarming rates on survival. Plant Physiology, 42, 1695–1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai, A., Kobayashi, S., & Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var Brasiliensis Tanaka) by vitrification. Plant Cell Reports, 9(1), 30–33.

    Article  CAS  PubMed  Google Scholar 

  • Sanayaima, R. K., Kaur, A., Agrawal, A., & Babbar, S. B. (2006). Cryopreservation of in vitro grown shoot tips of Crateva nurvala Buch. Ham, an important medicinal tree. CryoLetters, 27(6), 375–386.

    CAS  PubMed  Google Scholar 

  • Sánchez-Romero, C., Swennen, R., & Panis, B. (2009). Cryopreservation of olive embryogenic cultures. CryoLetters, 30(5), 359–372.

    PubMed  Google Scholar 

  • Sant, R., Panis, B., Taylor, M., & Tyagi, A. (2008). Cryopreservation of shoot-tips by droplet vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell, Tissue and Organ Culture, 92, 107–111.

    Article  Google Scholar 

  • Santos, H. L., Garcia, M., Campose, J. E., & Agurirre, L. E. (2005). In vitro propagation of Laelia albida (Orchidaceae) for conservation and ornamental purpose in Mexico. Horticultural Science, 40(2), 439–442.

    Google Scholar 

  • Sarkar, D., & Naik, P. S. (1998). Factors affecting minimal growth conservation of potato microplants in vitro. Euphytica, 102, 275–280.

    Article  Google Scholar 

  • Schäfer-Menuhr, A., Schumacher, H. M., & Mix-Wagner, G. (1994). Long-term storage of old potato varieties by cryopreservation of shoot- tips in liquid nitrogen. Landbauforschung Völkenrode, 44, 301–313.

    Google Scholar 

  • Schäfer-Menuhr, A., Schumacher, H. M., & Mix-Wagner, G. (1997). Cryopreservation of potato cultivars: design of a method for routine application in genebanks. Acta Horticulturae, 447, 477–482.

    Article  Google Scholar 

  • Scowcroft, W. R. (1985). Somaclonal variation: the myth of clonal uniformity. In B. Hohn & E. S. Dennis (Eds.), Genetic flux in plants (pp. 217–243). New York: Springer.

    Chapter  Google Scholar 

  • Sekizawa, K., Yamamoto, S., Rafique, T., Fukui, K., & Niino, T. (2011). Cryopreservation of in vitro-grown shoot tips of carnation (Dianthus caryophyllus L.) by vitrification method using aluminium cryo-plates. Plant Biotechnology, 28, 401–405.

    Article  Google Scholar 

  • Sen-Rong, H., & Ming-Hua, Y. (2012). A simple and efficient protocol for cryopreservation of embryogenic calli of the medicinal plant Anemarrhena asphodeloides Bunge by vitrification. Plant Cell Tissue and Organ Culture, 109(2), 287–296.

    Article  Google Scholar 

  • Shailja, K. K., Soni, M., & Singh, A. (2017). In vitro propagation and conservation of an endangered high value medicinal herb Swertia chirayita of temperate Himalayas. Indian Journal of Plant Physiology, 22(2), 247–257.

    Article  CAS  Google Scholar 

  • Sharma, N., & Chandel, K. P. S. (1992a). Effects of ascorbic acid on axillary shoot induction in Tylophora indica (Burm. f.) Merrill. Plant Cell Tissue and Organ Culture, 29, 109–113.

    Article  CAS  Google Scholar 

  • Sharma, N., & Chandel, K. P. S. (1992b). Low temperature storage of Rauvolfia serpentina Benth. Ex Kurz: An endangered endemic medicinal plant. Plant Cell Reports, 11, 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, N., & Pandey, R. (2013). Conservation of medicinal plants in the tropics. In M. N. Normah, H. F. Chin, & B. M. Reed (Eds.), Conservation of tropical plant species (pp. 437–490). New York: Springer.

    Chapter  Google Scholar 

  • Sharma, N., & Sharma, B. (2003). Cryopreservation of shoot tips of Picrorhiza kurroa Royle ex Benth., an indigenous endangered medicinal plant through vitrification. CryoLetters, 24, 181–190.

    PubMed  Google Scholar 

  • Sharma, T. R., & Singh, B. M. (1995). Simple and cost effective medium for propagation of ginger (Zingiber officinale). Indian Journal of Agriculture Science, 65(7), 506–508.

    Google Scholar 

  • Sharma, N., Chandel, K. P. S., & Srivastava, V. K. (1991). In vitro propagation of Coleus forskohlii Briq., a threatened medicinal plant. Plant Cell Reports, 10, 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, N., Chandel, K. P. S., & Paul, A. (1993). In vitro propagation of Gentiana kuroo-an indigenous plant of medicinal importance. Plant Cell Tissue and Organ Culture, 34, 307–309.

    Article  CAS  Google Scholar 

  • Sharma, N., Vimala Devi, S., & Satsangi, R. (2005). In vitro conservation of exotic mint germplasm. Indian Journal of Plant Genetic Resources, 18(1), 122–123.

    Google Scholar 

  • Sharma, N., Satsangi, R., Pandey, R., Devi, S., & Vimala, S. (2007a). In vitro clonal propagation and medium term conservation of Brahmi (Bacopa monnieri(L) Wettst). Journal of Plant Biochemistry and Biotechnology, 16(2), 139–143.

    Article  CAS  Google Scholar 

  • Sharma, N., Vimala Devi, S., & Pandey, R. (2007b). In vitro propagation of the threatened anticarcinogenic herb, Curculigo orchioides Gaertn. Journal of Plant Biochemistry and Biotechnology, 16(1), 63–65.

    Article  Google Scholar 

  • Sharma, N., Satsangi, R., & Pandey, R. (2011). Cryopreservation of shoot tips of Bacopa monnieri (L.)Wettst. by vitrification technique. Acta Horticulturae, 908, 283–288.

    Article  CAS  Google Scholar 

  • Sharma, N., Satsangi, R., Pandey, R., Singh, R., Kaushik, N., & Tyagi, R. K. (2012). In vitro conservation of Bacopa monnieri (L.) using mineral oil. Plant Cell Tissue and Organ Culture, 111, 291–301.

    Article  CAS  Google Scholar 

  • Sharma, N., Singh, R., Pandey, R., & Kaushik, N. (2017). Genetic and biochemical stability assessment of plants regenerated from cryopreserved shoot tips of a commercially valuable medicinal herb Bacopa monnieri(L.) Wettst. In Vitro Cellular & Developmental Biology – Plant, 53, 346.

    Article  CAS  Google Scholar 

  • Sholi, N. J. Y., Chaurasia, A., Agrawal, A., & Sarin, N. B. (2009). ABA enhances plant regeneration of somatic embryos derived from cell suspension cultures of plantain cv. Spambia (Musa sp.). Plant Cell Tissue and Organ Culture, 99(2), 133–140.

    Article  CAS  Google Scholar 

  • Sintim, H. Y., & Akromah, R. (2015). Differing sucrose requirements for in-vitro conservation of cassava genotypes. International Journal of Plant & Soil Science, 7(1), 45–54.

    Article  Google Scholar 

  • Smith, A. A. L., & Spomer, L. (1995). Vessels, gels, liquid media and support systems. In J. Aitken-Chistic (Ed.), Automation and environmental control in plant tissue culture (pp. 371–404). Dordretcht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Soliman, H. I. A. (2013). Cryopreservation of in vitro-grown shoot tips of apricot (Prunus armeniaca L.) using encapsulation-dehydration. African Journal of Biotechnology, 12(12), 1419–1430.

    CAS  Google Scholar 

  • Son, S. Y., Chun, Y. W., & Hall, R. B. (1991). Cold storage of in vitro cultures of hybrid poplar shoots (Populus albaL. ×P. Grandidentata Michx.). Plant Cell Tissue and Organ Culture, 27, 161–168.

    Article  Google Scholar 

  • Soneji, J. R., Rao, P. S., & Mhatre, M. (2002). Germination of synthetic seeds of pineapple (Ananas comosus Merr.). Plant Cell Reports, 20, 891–894.

    Article  CAS  Google Scholar 

  • Souza, F. V., Kaya, E., de Jesus Vieira, L., de Souza, E. H., de Oliveira Amorim, V. B., Skogerboe, D., Matsumoto, T., Alves, A. A., da Silva Ledo, C. A., & Jenderek, M. M. (2016). Droplet-vitrification and morphohistological studies of cryopreserved shoot tips of cultivated and wild pineapple genotypes. Plant Cell Tissue and Organ Culture, 124(2), 351–360.

    Article  CAS  Google Scholar 

  • Sundararaj, S. G., Agrawal, A., & Tyagi, R. K. (2010). Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Scientia Horticulturae, 125, 761–766.

    Article  CAS  Google Scholar 

  • Takagi, H. (2000). Recent developments in cryopreservation of shoot apices of tropical species. In F. Engelmann & H. Takagi (Eds.), Cryopreservation of Tropical Plant Germplasm. Current research progress and application (pp. 178–193). Rome: IPGRI.

    Google Scholar 

  • Tavazza, R., Lucioli, A., Benelli, C., Giorgi, D., D’Aloisio, E., & Papacchioli, V. (2013). Cryopreservation in artichoke: towards a phytosanitary qualified germplasm collection. The Annals of Applied Biology, 163, 231–241.

    Article  CAS  Google Scholar 

  • Tendulkar, M. C., & Ahmad, H. (2005). Embryo culture and artificial seed production of Spathoglottis plicata and Rhyncostylis setusa. Journal Ornamental Horticulture, 8(1), 13–17.

    Google Scholar 

  • Tiwari, J. K., Chandel, P., Gupta, S., Gopal, J., Singh, B. P., & Bhardwa, V. (2013). Analysis of genetic stability of in vitro propagated potato microtubers using DNA markers. Physiology and Molecular Biology of Plants, 19(4), 587–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsvetkov, I., Benelli, C., & Capuana, M. (2008). Application of vitrification-derived cryotechniques for long-term storage of poplar and aspen (Populus spp.) germplasm. Agricultural and Food Science, 18(2), 160–166.

    Article  Google Scholar 

  • Tyagi, R. K., & Prakash, S. (2004). Genotype and sex- specific protocols for in vitro micropropagation and medium-term conservation of jojoba. Biologia Plantarum, 48(1), 19–23.

    Article  Google Scholar 

  • Tyagi, R. K., Bhat, S. R., & Chandel, K. P. S. (1998). In vitro conservation strategies for spices crop germplasm Zingiber, Curcuma and Piper species. In N. M. Mathew & J. C. Kuruvila (Eds.), Developments in plantation crop research (pp. 77–82). Kerala: Rubber Research Institute of India.

    Google Scholar 

  • Tyagi, R. K., Yusuf, A., & Dua, P. (2000) In Vitro conservation of Zingiber, Curcuma and Piper species at NBPGR. In Proceedings of the national symposium prospects and potentials of plant biotechnology in India in the 21st century, Department of Botany, Jai Narain Vyas University, Jodhpur, pp. 172.

    Google Scholar 

  • Tyagi, R. K., Yusuf, A., Dua, P., & Agrawal, A. (2004). In vitro plant regeneration and genotype conservation of eight wild species of curcuma. Biologia Plantarum, 48(1), 120–132.

    Google Scholar 

  • Tyagi, R. K., Agrawal, A., & Yusuf, A. (2006). Conservation of Zingiber germplasm through in vitro rhizome formation. Scientia Horticulturae, 108, 210–219.

    Article  CAS  Google Scholar 

  • Tyagi, R. K., Agrawal, A., Mahalakshmi, C., & Hussain, Z. (2007). Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cellular & Developmental Biology – Plant, 43, 51–58.

    Article  CAS  Google Scholar 

  • Tyagi, R. K., Goswami, R., Sanayaima, R., Singh, R., Tandon, R., & Agrawal, A. (2009). Micropropagation and slow growth conservation of cardamom (Elettaria cardamomum Maton). In Vitro Cellular & Developmental Biology, 45(6), 721–729.

    Article  Google Scholar 

  • Tyagi, R. K., Agrawal, A., Pandey. R., Celia Chalam, V., & Mal B (Eds.). (2016) Guidelines for management of plant genetic resources in India. New Delhi: ICAR-National Bureau of Plant Genetic Resources, 142 +xxiv p

    Google Scholar 

  • Uchendu, E. E., & Joachim Keller, E. R. (2016). Melatonin-loaded alginate beads improve cryopreservation of yam (Dioscorea alata and D. cayenensis). CryoLetters, 37(2), 77–87.

    CAS  PubMed  Google Scholar 

  • Uchendu, E. E., Muminova, M., Gupta, S., & Reed, B. M. (2010, August 1). Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cellular & Developmental Biology-Plant, 46(4), 386–393.

    Google Scholar 

  • Uragami, A., Sakai, A., & Nagai, M. (1990). Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Reports, 9(6), 328–331.

    Article  CAS  PubMed  Google Scholar 

  • Valle, M., Villalobus, O. F., Castillo, C. M., Cruz, E. J., López, H. A., Yamamoto, S., Watanabe, K., & Niino, T. (2017). Improvement of the D cryo-plate protocol applied to practical cryopreservation of in vitro grown potato shoot tips. Horticulture Journal, 86, 222–228.

    Article  Google Scholar 

  • Volk, G. M., & Walters, C. (2006). Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology, 52(1), 48–61.

    Article  CAS  PubMed  Google Scholar 

  • Volk, G. M., Henk, A. D., Jenderek, M. M., & Richards, C. M. (2017). Probabilistic viability calculations for cryopreserving vegetatively propagated collections in genebanks. Genetic Resources and Crop Evolution, 64, 1613–1622.

    Article  CAS  Google Scholar 

  • Vollmer, R., Villagaray, R., Cárdenas, J., Castro, M., Chávez, O., Anglin, N. L., & Ellis, D. (2017). A large-scale viability assessment of the potato cryobank at the International Potato Center (CIP). In Vitro Cellular & Developmental Biology. Plant, 53, 309. https://doi.org/10.1007/s11627-017-9846-1.

    Article  Google Scholar 

  • Vujović, T., Chatelet, P., Ružić, Đ., & Engelmann, F. (2015). Cryopreservation of Prunus spp. using aluminium cryo-plates. Scientia Horticulturae, 195, 173–182.

    Article  CAS  Google Scholar 

  • Wang, Y., Fan, M., & Liaw, S. (2005). Cryopreservation of in vitro-grown shoot tips of papaya (Carica papaya L.) by vitrification. Botanical Bulletin Academia Sinica, 46, 29–34.

    Google Scholar 

  • Watt, M. P., Banasiak, M., Reddy, D., Albertse, E. H., & Snyman, S. J. (2009). In vitro minimal growth storage of Saccharum spp. hybrid (genotype 88H0019) at two stages of direct somatic embryogenic regeneration. Plant Cell Tissue and Organ Culture, 96, 263–271.

    Article  Google Scholar 

  • West, T. P., Ravindra, M. B., & Preece, J. E. (2006). Encapsulation, cold storage, and growth of Hibiscus moscheutos nodal segments. Plant Cell Tissue and Organ Culture, 87, 223–231.

    Article  Google Scholar 

  • Withers, L. A., & Engelmann, F. (1997). In vitro conservation of plant genetic resources. Biotechnology in agriculture (pp. 57–88). New York: Marcel Dekker Inc.

    Google Scholar 

  • Yamamoto, S., Fukui, K., Rafique, T., Khan, N. I., Castillo Martinez, C. R., Sekizawa, K., Matsumoto, T., & Niino, T. (2011a). Cryopreservation of in vitro-grown shoot tips of strawberry by the vitrification method using aluminium cryo-plates. Plant Genetic Resource: Characterization Utilization, 10, 14–19.

    Article  CAS  Google Scholar 

  • Yamamoto, S. I., Rafique, T., Priyantha, W. S., Fukui, K., Matsumoto, T., & Niino, T. (2011b). Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters, 32, 256–265.

    CAS  PubMed  Google Scholar 

  • Yamamoto, S. I., Fukui, K., & Niino, T. (2011c). Development and facilitation of cryopreservation techniques in NIAS genebank. Cryobiology, 63(3), 319.

    Article  Google Scholar 

  • Yamamoto, S., Rafique, T., Fukui, K., Sekizawa, K., Koyama, A., Ichihashi, T., & Niino, T. (2012a). Development of an effective cryopreservation protocol using aluminium cryo-plates for in vitro-grown shoot tips of mulberries (Morus spp.) originated from the tropics and subtropics. Sanshi-Konchu Biotec, 81, 57–62.

    Google Scholar 

  • Yamamoto, S., Rafique, T., Fukui, K., Sekizawa, K., & Niino, T. (2012b). V-Cryo-plate procedure as an effective protocol for cryobanks: Case study of mint cryopreservation. CryoLetters, 33, 12–23.

    CAS  PubMed  Google Scholar 

  • Yamamoto, S. I., Fukui, K., & Niino, T. (2012c). Cryostorage facilitation by the NIAS Genebank. FAO RAP-NIAS (2012) Plant Genetic Resources for Food and Agriculture in Asia and the Pacific: Impacts and future directions. In Proceedings of a symposium held in Tsukuba, Japan. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand. RAP Publication 2012/1.

    Google Scholar 

  • Yamamoto, S. I., Rafique, T., Arizaga, M. V., Fukui, K., Gutierrez, E. J. C., Martinez, C. R. C., Watanabe, K., & Niino, T. (2015). The aluminum cryo-plate increases efficiency of cryopreservation protocols for potato shoot tips. American Journal of Potato Research, 92(2), 250–257.

    Article  Google Scholar 

  • Yamuna, G., Sumathi, V., Geetha, S. P., Praveen, K., Swapna, N., & Babu, K. N. (2007). Cryopreservation of in vitro grown shoots of ginger (Zingiber officinale Rosc.). CryoLetters, 28(4), 241–252.

    CAS  PubMed  Google Scholar 

  • Yi, J. Y., Chung, J. W., Lee, Y. Y., Kwak, J. G., & Lee, S. Y. (2015). Morphological and genetic stability of dormant apple winter buds after cryopreservation. Korean Journal of Plant Resources, 28(6), 697–703.

    Article  Google Scholar 

  • Yusuf, A., Tyagi, R. K., & Malik, S. K. (2001). Somatic embryogenesis and plantlet regeneration from leaf segments of Piper colubrinum. Plant Cell Tissue and Organ Culture, 65, 255–258.

    Article  CAS  Google Scholar 

  • Zarghami, R., Pirseyedi, M., Hasrak, S., & Sardrood, B. K. (2008). Evaluation of genetic stability in cryopreserved Solanum tuberosum. African Journal of Biotechnology, 7(16), 2798–2802.

    CAS  Google Scholar 

  • Zee, E. T., & Munekata, M. (1992). In vitro storage of pineapple (Ananas spp.) germplasm. Horticultural Science, 16, 495.

    Google Scholar 

  • Zhang, J. M., Han, L., Lu, X. X., Volk, G. M., Xin, X., Yin, G. K., He, J. J., Wang, L., & Chen, X. L. (2017). Cryopreservation of Jerusalem artichoke cultivars using an improved droplet-vitrification method. Plant Cell Tissue and Organ Culture, 128(3), 577–587.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director(s) and all staff of NBPGR/TCCU who have contributed towards the above-mentioned activities. All photographs used in the chapter are copyright of ICAR-NBPGR.

Disclaimer: The views, opinions or recommendations expressed are strictly those of the authors and do represent those of the organization they are affiliated to.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, A., Singh, S., Malhotra, E.V., Meena, D.P.S., Tyagi, R.K. (2019). In Vitro Conservation and Cryopreservation of Clonally Propagated Horticultural Species. In: Rajasekharan, P., Rao, V. (eds) Conservation and Utilization of Horticultural Genetic Resources. Springer, Singapore. https://doi.org/10.1007/978-981-13-3669-0_18

Download citation

Publish with us

Policies and ethics