Skip to main content
Log in

Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The US Department of Agriculture-Agricultural Research Service (USDA-ARS), National Plant Germplasm System (NPGS) plant collections are a critical source of genetic diversity for breeding and selection of improved crops, including vegetatively propagated plants. Information on these collections is readily accessible to breeders and researchers on the internet from the Germplasm Resources Information Network (GRIN). The clonal collections are at risk for loss due in part to their genetic diversity that makes growing them in one location a challenge, but also because it is difficult to have duplicate collections without incurring great expense. The development of cryopreservation techniques during the last two decades provides a low maintenance form of security backup for these collections. National plant collections for vegetatively propagated crop plants and their wild relatives are maintained by the USDA-ARS, NPGS at 15 sites across the country. These sites include various combinations of field, greenhouse, screenhouse, and in vitro collections. Cryopreserved backup collections in liquid nitrogen storage were instituted in the 1990s, increased greatly in the 2000s with the advent of new techniques, and are continuing today. Collections of dormant buds of temperate trees, shoot tips of in vitro cultures of many crops, and embryonic axes of some large seeded or recalcitrant seeded plants are all part of the clonal backup storage system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Abreu-Tarazi MF, Navarrete AA, Androete FD, Almeida CV (2010) Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR-DGGE. World J Microbiol Biotechnol 26:555–560

    Article  Google Scholar 

  • Bairu MW, Aremu AO, van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Bairu MW, Fennel CW, van Staden J (2006) The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Zelg’). Sci Hortic 108:347–351

    Article  CAS  Google Scholar 

  • Bairu MW, Strik WA, Doležal K, van Staden J (2008) The role of topolins in micropropagation and somaclonal variation of banana cultivars ‘Williams’ and ‘Grand Naine’ (Musa spp. AAA). Plant Cell Tissue Organ Cult 95:373–379

    Article  CAS  Google Scholar 

  • Bamberg JB, Martin MW, Abad J, Jenderek MM, Tanner J, Donnelly DJ, Nassar AMK, Veilleux RE, Novy RG (2016) In vitro technology at the US Potato Genebank. In Vitro Cell Dev Biol Plant 52:213–225

    Article  Google Scholar 

  • Bell RL, Reed BM (2002) In vitro tissue culture of pear: advance in techniques for micropropagation and germplasm preservation. Proc. 8th IS on Pear. Acta Hortic 596:412–418

    Article  Google Scholar 

  • Benson EE (1999) Plant conservation biotechnology. Taylor and Francis, London

    Google Scholar 

  • de Boucaud MT, Brison M (1995) Cryopreservation of germplasm of walnut (Juglans species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 129–147

  • Botkin DB, Saxe H, Araújo B, Betts R, Bradshaw HW, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, Ferrier S, Guisan A, Skjoldborg Hansen A, Hibert DW, Loehle C, Margules CH, New M, Sobel MJ, Stockwell DRB (2007) Forcasting the effects of global warming on biodiversity. BioScience 57:227–236

  • Chang Y, Barker R, Reed BM (2000) Cold acclimation improves recovery of cryopreserved grass (Zoysia and Lolium sp.) CryoLetters 21:107–116

    CAS  PubMed  Google Scholar 

  • Chang Y, Reed BM (1999) Extended cold acclimation and recovery medium alteration improve regrowth of Rubus shoot tips following cryopreservation. CryoLetters 20:371–376

  • Dullinger S, Essl F, Rabittsch W, Erb K-H, Gengrich S, Haberl H, Hülber K, Jarošik V, Krausmann I, Kühn I, Pergl J, Pyšek P, Hulme PE (2013) Europe’s other debt crisis caused by long legacy of future extinction. PANS 110(18):7342–7347 

  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T, Caccianiga M, Dirnböck T, Erti S, Fischer A, Lenior J, Svenning JCH, Psomas A, Schmatz DR, Silc U, Vittoz P, Hülber K (2012) Extinction debt of high-mountain plants under twenty-first century climate change. Nat Clim Chang 2:619–622

    Article  Google Scholar 

  • Dulloo ME, Ebert AW, Dussert S, Gotor E, Astroga C, Vasquez N, Rakotomalala JJ, Rabemiafara A, Eira M, Bellachew B, Omondi C, Engelman F, Anthony F, Watts J, Qamar Z, Snook L (2009) Cost efficency of cryopreservation as a long-term conservation method for coffee genetic resources. Crop Sci 49:2123–2138

    Article  Google Scholar 

  • Dulloo ME, Guarino L, Engelmann F, Maxted N, Newbury JH, Atterc F, Ford-Lloyd BV (1998) Complementary conservation strategies for the genus Coffea: a case study of Mascarene Coffea species. Genet Resour Crop Evol 45:565–579

    Article  Google Scholar 

  • Ellis D, Skogerboe D, Andre C, Hellier B, Volg G (2006) Implementation of garlic cryopreservation techniques in the National Plant Germplasm System. CryoLetters 27:99–106

  • Folimonova SY, Robertson CJ, Garnsey SM, Gowda S, Dawson WO (2009) Examination of the responses of different genotypes of citrus to Huanglongbing (citrus greening) under different conditions. Phytopathology 99:1346–1354

    Article  PubMed  Google Scholar 

  • Forsline PL, Towill LE, Waddell JW, Stushnoff C, Lamboy WF, McFerson JR (1998) Recovery and longevity of cryopreserved dormant apple buds. J Am Soc Hortic Sci 123:365–370

    Google Scholar 

  • Graca JD (1991) Citrus greening disease. Annu Rev Phytopathol 29:109–136

    Article  Google Scholar 

  • Groenendael JM, Klimeš L, Klimešová J, Hendriks RJJ (1996) Comparative ecology of clonal plants. Phil Trans R Soc Lond B 351:1331–1339

    Article  Google Scholar 

  • Grout BWW, Westcott RJ, Henshaw GG (1978) Survival of shoot meristems of tomato seedlings frozen in liquid nitrogen. Cryobiology 15:478–483

    Article  CAS  PubMed  Google Scholar 

  • Hamill SD, Wasmund K, Smith M, Eccleston K, MsKay D (2005) Endogenous bacteria isolated from banana meristems during tissue culture initiation: problems and potential. In: Benett IJ, Bunn E, Clarke H, McComb JA (eds) Contributing to a Sustainable Future. Proc of the Australian Branch IAPTC & B, Perth, pp 101–111

  • Harada T, Inaba A, Yakuwa T, Tamura T (1985) Freeze-preservation of apices isolated from small heads of brussels sprouts. Hortscience 20:678–680

    Google Scholar 

  • Harvengt L, MeierDinkel A, Dumas E, Collin E (2004) Establishment of a cryopreserved gene bank of European elms. Can Res For Res 34:43–55

    Article  Google Scholar 

  • Heywood VH, Iriondo JM (2003) Plant conservation: old problems, new perspectives. Biol Conserv 113:321–335

    Article  Google Scholar 

  • Hirai D, Shirai K, Shirai S, Sakai A (1998) Cryopreservation of in vitro-grown meristems of strawberry (Fragaria x ananassa Duch.) by encapsulation-vitrification. Euphytica 101:109–115

    Article  CAS  Google Scholar 

  • Huang CM, Li YR, Ye YP (2003) Minimizing phenol pollution in sugarcane stem apical meristem culture. Sugar Tech 5:297–300

    Article  CAS  Google Scholar 

  • Jahn OL, Westwood MN (1982) Maintenance of clonal germplasm. Hortscience 17:122

    Google Scholar 

  • Jarret RL, Florkowski WJ (1990) In vitro active vs. field genebank maintenance of sweet potato germplasm: major costs and considerations. Hortscience 25:141–146

    Google Scholar 

  • Jenderek MM, Ambruzs B, Tanner J, Holman G, Ledbetter C, Postman J, Ellis D, Leslie C (2014) Extending the dormant bud cryopreservation method to new tree species. Proc IInd IS on Plant Cryopreservation. Acta Hortic 1039:133–136

  • Jenderek MM, Forsline P, Postman J, Stover E, Ellis D (2011) Effect of geographical location, year and cultivar on survival of Malus sp. dormant buds stored in vapor of liquid nitrogen. Hortscience 46:1230–1234

    Google Scholar 

  • Jenderek MM, Tanner JD, Ambruzs BD, West M, Postman JD, Hummer KE (2017) Twig pre-harvest temperature significantly influences effective caryopreservation of Vaccinium dormant buds. Cryobiology 74:154–159

    Article  PubMed  Google Scholar 

  • Kartha K (1985) Cryopreservation of plant cells and organs, Vol.1. CRC, Florida, p 276

  • Kartha KK, Leung NL, Gamborg OL (1979) Freeze-preservation of pea meristems in liquid nitrogen and subsequent plant regeneration. Plant Sci Lett 15:7–15

    Article  Google Scholar 

  • Katano M, Ishihara A, Sakai A (1983) Survival of dormant apple shoot tips after immersion in liquid nitrogen. Hortscience 18:707–708

    Google Scholar 

  • Keller ERJ, Kaczmarczyk A, Senula A (2008) Cryopreservation for plant genebanks–a matter between high expectations and cautious reservation. CryoLetters 29:53–62

    Google Scholar 

  • Kerns HR, Meyer MM Jr (1986) Tissue culture propagation of Acer freemanii using thidiazuron to stimulate shoot proliferation. Hortscience 21:1209–1210

    CAS  Google Scholar 

  • Khan SA, Rashid H, Chaudhary MF, Chaudhary Z (2007) Optimization of explant sterilization condition in sugarcane cultivars. Pakistan J Agric Res 20:119–123

    Google Scholar 

  • Kovalchuk I, Turtiev T, Muckhitdova Z, Frolov S, Reed B, Kairova G (2014) New techniques for rapid cryopreservation of dormant vegetative buds. Acta Hortic 1039:137–146

    Article  Google Scholar 

  • Kumari R, Verma DK (2001) Development of micropropagation protocols for sugarcane (Saccharum officinarum L.)–a review. Agric Rev 22:87–94

    Google Scholar 

  • Kuoksa T, Hohtola A (1991) Freeze preservation of buds from Scots pine trees. Plant Cell Tissue Organ Cult 27:89–93

    Article  Google Scholar 

  • Lorenzo JC, Angels ML, Pelaez O, Gonzalez A, Cid M, Iglesias A, Gonzalez B, Escalona M, Espinoza P, Borrato C (2001) Sugarcane micropropagation and phenolic excretion. Plant Cell Tissue Organ Cult 65:1–8

    Article  CAS  Google Scholar 

  • Lux-Endrich A, Treautter D, Feucht W (2000) Influence of nutrients and carbohydrate supply on the phenolcomposition of apple shoot culture. Plant Cell Tissue Organ Cult 60:15–21

    Article  CAS  Google Scholar 

  • Matsumoto T, Mochida K, Itamura H, Sakai A (2001) Cryopreservation of persimmon (Diospyrus kakai Thumb.) by vitrification of dormant shoot tips. Plant Cell Rep 20:398–402

    Article  CAS  Google Scholar 

  • Moriguchi T (1995) Cryopreservation and minimum growth storage of pear (Pyrus species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 114–128

    Google Scholar 

  • Mneney E, Ndakidemi P (2014) Effects of ascorbic acid in controlling lethal browning in in vitro culture of Brahylaena huillensis using nodal segments. Am J Plant Sci 5:187–191

    Article  Google Scholar 

  • Nehra NS, Katha KK, Stushnoff C, Glies KL (1992) The influence of plant growth regulator concentrations and callus age on somaclonal variation in callus culture regenerants of strawberry. Plant Cell Tissue Organ Cult 29:257–268

    Article  CAS  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius PP, Purugganan MD, Richards CL, Valladeres F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    Article  CAS  PubMed  Google Scholar 

  • Niino T (1995) Cryopreservation of germplasm of mulberry (Morus species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer-Verlag, Berlin, pp 102–113

    Google Scholar 

  • Normah MN, Cyde MM, Cho EG, Ramantha Rao V (2002) Ex situ conservation of tropical rare fruit species. Proc. IS on Trop. & Subtrop. Fruits Acta Hortic 575:221–230

    Article  Google Scholar 

  • Orlikowska T, Nowak K, Reed BM (2017) Bacteria in the plant tissue culture environment. Plant Cell Tissue Organ Culture 128:487–508

    Article  CAS  Google Scholar 

  • Ozyigit II, Kahraman MV, Ercan O (2007) Relation between explant age, total phenols and regeneration response in tissue cultured cotton (Gossypium hirsutum L.) Afr J Biotechnol 6:3–9

    CAS  Google Scholar 

  • Panis B, Vandenbranden K, Schoofs H, Swennen R (1998) Conservation of banana germplasm through cryopreservation. Acta Hortic 461:515–521

    Article  Google Scholar 

  • Pence VC (2010) The possibilities and challenges of in vitro methods for plant conservation. Kew Bull 65:539–547

    Article  Google Scholar 

  • Pence VC (2011) Evaluating costs for in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47:176–187

    Article  Google Scholar 

  • Ploetz RC (2006) Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96:653–656

    Article  PubMed  Google Scholar 

  • Postman J, Hummer K, Stover E, Krueger R, Forsline P, Grauke LJ, Zee F, Ayala-Silva T, Irish B (2006) Fruit and nut genebanks in the US National Plant Germplasm System. Hortscience 41:1188–1194

    Google Scholar 

  • Qin TH, Zhou ZL, Wu CW (1997) Study on phenol pollution in tissue culture of sugarcane. Sugarcane 4:12–14

    Google Scholar 

  • Reed BM (1999) The in vitro genebank of temperate fruit and nut crops at the National Clonal Germplasm Repository-Corvallis. In: Engelmann F (ed) Management of field and in vitro germplasm collections. Proceedings of a Consultation Meeting, CIAT, Cali, Columbia. International Plant Genetic Resources Institute, Rome, Italy, 15–20 January 1996

  • Reed BM (2001) Implementing cryogenic storage of clonally propagated plants. CryoLetters 22:97–104

    CAS  PubMed  Google Scholar 

  • Reed BM (2008) Cryopreservation - Practical consideration, pp 10-13. In: Plant Cryopreservation. A practical guide. Springer Science and Business Media LLC, New York

  • Reed BM (2013) Antioxidant and cryopreservation, the new normal? Proc 2nd Int Symp Plant Cryopreservation Acta Hortic 1039:41–46

    Google Scholar 

  • Reed BM, Brennan RM, Benson EE (2000) Cryopreservation: an in vitro method for conserving Ribes germplasm in international gene banks. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical germplasm: current research progress and application. Japan International Research Center for Agricultural Sciences and International Plant Genetic Resources Institute, Rome, pp 470–473

    Google Scholar 

  • Reed BM, Chang Y (1997) Medium- and long-term storage of in vitro cultures of temperate fruit and nut crops. In: Razdan MK, Cocking EC (eds) Conservation of plant genetic resources in vitro. Science, Enfield, pp 67–105

    Google Scholar 

  • Reed BM, DeNoma J, Luo J, Chang Y, Towill L (1998) Cryopreservation and long-term storage of pear germplasm. In Vitro Cell Dev Biol Plant 34:256–260

    Article  Google Scholar 

  • Reed BM, Engelmann F, Dulloo E, Engels J (2004a) Technical Guidelines for the Management of Field and In vitro Germplasm Collections. IPGR Handbooks for Genebanks no 7. International Plant Genetic Resources Institute/Food Agriculture Organization/System-wide Genetic Resources Programme, Rome, Italy

  • Reed B, Gupta S, Uchendu E (2013) In vitro genebanks for preserving tropical diversity. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, New York, pp 77–106

    Chapter  Google Scholar 

  • Reed BM, Hummer K (1995) Conservation of germplasm of strawberry (Fragaria species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry: cryopreservation of plant germplasm I. Springer, Berlin, pp 354–370

    Chapter  Google Scholar 

  • Reed BM, Lagerstedt HB (1987) Freeze preservation of apical meristems of Rubus in liquid nitrogen. Hortscience 22:302–303

    CAS  Google Scholar 

  • Reed BM, Meier-Dinkel A, Kovalchuk I, Pluta S, Benson EE (2004b) Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. CryoLetters 25:341–352

    PubMed  Google Scholar 

  • Reed BM, Okut N, D’Achino J, Narver L, DeNoma J (2003) Cold storage and cryopreservation of hops (Humulus L.) shoot cultures through application of standard protocols. CryoLetters 24:389–396

    PubMed  Google Scholar 

  • Reed BM, Schumacher L, Wang N, D’Achino J, Barker RE (2006) Cryopreservation of bermudagrass germplasm by encapsulation dehydration. Crop Sci 46:6–11

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Ryynänen L (1996) Survival and regeneration of dormant sliver birch buds stored at super-low temperatures. Can J For Res 26:617–623

    Article  Google Scholar 

  • Sahijram L, Soneji JR, Bollamma KT (2003) Analyzing somaclonal variation in micropropagated banana (Musa spp.) In Vitro Cell Dev Biol Plant 39:551–556

    Article  Google Scholar 

  • Sakai A (1960) Survival of the twig of woody plants at −196°C. Nature 185:392–394

    Google Scholar 

  • Sakai A (1984) Cryopreservation of apical meristems. Hortic Rev 6:357–372

    Google Scholar 

  • Sakai A (1985) Cryopreservation of shoot-tips of fruit trees and herbaceous plants. In: Kartha KK (ed) Cryopreservation of plant cells and tissues. CRC Press, Boca Raton, pp 135–170

    Google Scholar 

  • Sakai A, Nishiyama Y (1978) Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. Hortscience 13:225–227

    Google Scholar 

  • Sakai A, Yamakawa M, Sakata D, Harada T, Yakuwa T (1978) Development of a whole plant from an excised strawberry runner apex frozen to −196 C. Low Temp Sci Ser 36:31–38

    Google Scholar 

  • Sarasan V, Crips R, Ramsey MM, Atherton C, McMichen M, Prendergast G, Rowntree JK (2006) Conservation in vitro of threatened plants–progress in the past decade. In Vitro Cell Dev Biol Plant 42:206–214

  • Schafer-Menuhr A (1996) Refinement of cryopreservation techniques for potato. Final report for the period Sept. 1991–1993. IPGRI Report No. XXX. International Plant Genetic Resources Institute, Rome

  • Seufferheld MJ, Stushnoff C, Forsline PL, Gonzalez GHT (1999) Cryopreservation of cold-tender apple germplasm. J Amer Soc Hortic Sci 124:612–618

    CAS  Google Scholar 

  • Shimelis D (2015) Effects of polyvinylpyrrolidone and activated charcoal to control effects of phenolic oxidation on in vitro culture establishment stage of micropropagation of sugarcane (Saccharum officinarum L.) J Appl Sci Res 2:52–57

    Google Scholar 

  • Skirvin RM, McPheeters KB, Norton M (1994) Sources and frequency of somaclonal variation. Hortscience 29:1232–1237

    Google Scholar 

  • Stuefer JF (1994) Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogenity. Vegetatio 127:55–70

    Article  Google Scholar 

  • Stushnoff C (1985) Cryopreservation of in vitro shoots from Prunus pennsylvanica and Prunus fruticosa. FAO/IBPGR Plant Genet Resour Newslett 51:48

    Google Scholar 

  • Stushnoff C, Seufferheld M (1995) Cryopreservation of apple (Malus species) genetic resources. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer-Verlag, Berlin, pp 87–101

    Google Scholar 

  • Suzuki M, Niino T, Akihama T, Oka S (1997) Shoot formation and plant regeneration of vegetative pear buds cryopreserved at −150 degree C. J Jpn Soc Hortic Sci 66:29–34

    Article  Google Scholar 

  • Taniguchi K, Tanaka R, Ashitani N, Miyagawa H (1988) Freeze preservation of tissue-cultured shoot primordia of the annual Haplopappus gracilis (2n=4). Jpn J Genet 63:267–272

    Article  Google Scholar 

  • Towill LE (1981) Solanum etuberosum: a model for studying the cryobiology of shoot-tips in the tuber-bearing Solanum species. Plant Sci Lett 20:315–324

    Article  Google Scholar 

  • Towill LE (1984) Survival at ultra-low temperatures of shoot tips from Solanum tuberosum groups Andigena, Phureja, Stenotomum, Tuberosum, and other tuber-bearing Solanum species. CryoLetters 5:319–326

    Google Scholar 

  • Towill LE (1988) Survival of shoot tips from mint species after short-term exposure to cryogenic conditions. Hortscience 23:839–841

    Google Scholar 

  • Towill LE, Bonnart R (2005) Cryopreservation of apple using nondesiccated sections from winter-collected scions. CryoLetters 26:323–332

    PubMed  Google Scholar 

  • Towill LE, Forsline PL (1999) Cryopreservation of sour cherry (Prunus cerasus L.) using a dormant bud vegetative bud method. CryoLetters 20:215–222

    Google Scholar 

  • Towill LE, Forsline PL, Walters C, Waddell JW, Laufman J (2004) Cryopreservation of Malus germplasm using winter vegetative bud method: results from 1915 accessions. CryoLetters 25:323–334

  • Towill LE, Widrlechner M (2004) Cryopreservation of Salix species using sections from winter vegetative scions. CryoLetters 25:71–80

  • Turner SR, Senaratna T, Bunn E, Tan B, Dixon KW, Touchell DH (2001) Cryopreservation of shoot tips from six endangered Australian species using modified vitrification protocol. Ann Bot 87:371–378

    Article  CAS  Google Scholar 

  • Tyler N, Stushnoff C (1988) Dehydration of dormant apple buds at different stages of cold acclimation to induce cryopreservability in different cultivars. Can J Plant Sci 68:1169–1176

    Article  Google Scholar 

  • Uchendu EE, Leonard SW, Traber MG, Reed BM (2009) Vitamin C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29:25–35

    Article  PubMed  Google Scholar 

  • Uchendu EE, Muminova M, Gupta S, Reed BM (2010) Antioxidant and anti-stress compounds improve regrowth of cryopreserved in vitro grown Rubus shoot tips. In Vitro Cell Dev Biol Plant 46:386–393

    Article  CAS  Google Scholar 

  • Uemura M, Sakai A (1980) Survival of carnation (Dianthus caryophyllus L.) shoot apices frozen to the temperature of liquid nitrogen. Plant Cell Physiol 21:85–94

    CAS  Google Scholar 

  • Van den Houwe I, Swennen R (2000) Characterization and control of bacterial contaminants in in vitro cultivars of banana (Musa spp.) Acta Hortic 530:69–70

    Article  Google Scholar 

  • Volk GM, Bonnart R, Krueger R, Lee R (2012) Cryopreservation of citrus shoot tips using micrografting for recovery. CryoLetters 33:418–426

    CAS  PubMed  Google Scholar 

  • Volk GM, Bonnart R, Waddell J, Widrlechner MP (2009) Cryopreservation of dormant buds from diverse Fraxinus species. CryoLetters 30:262–267

    CAS  PubMed  Google Scholar 

  • Volk GM, Henk AD, Jenderek MM, Richards CM (2016) Probablistic viability calculations for cryoprocessing vegetatively propagated collections in genebanks. Gen Res Crop Evol 62:765–794

    Article  Google Scholar 

  • Volk GM, Waddell J, Bonnart R, Towill L, Ellis D, Laufman J (2008) High viability of dormant Malus buds after 10 years of storage in liquid nitrogen vapor. CryoLetters 29:89–94

    CAS  PubMed  Google Scholar 

  • Westwood M (1989) Maintenance and storage: clonal germplasm. Plant Breed Rev 7:111–128

    Google Scholar 

  • Wilson AD (1996) Resources and testing of endophyte - infected germplasm in national grass repository collections. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. Systematics, Ecology and Evaluation, pp 179–195

  • Withers LA (1985) Cryopreservation of cultured cells and meristems. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol Vol. 2. Academic Press, NY, pp 253–316

    Google Scholar 

Download references

Acknowledgements

This project was funded by USDA-ARS CRIS project 5402-21000-007-00D at the Plant and Animal Genetic Resources Preservation Unit, Fort Collins, CO and CRIS project 5358-21000-044-00D at the National Clonal Germplasm Repository, Corvallis, OR.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria M. Jenderek.

Additional information

Editor: John Finer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenderek, M.M., Reed, B.M. Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. In Vitro Cell.Dev.Biol.-Plant 53, 299–308 (2017). https://doi.org/10.1007/s11627-017-9828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-017-9828-3

Keywords

Navigation