Skip to main content

Advances in NMR Data Acquisition and Processing for Protein Structure Determination

  • Chapter
  • First Online:
Experimental Approaches of NMR Spectroscopy
  • 2544 Accesses

Abstract

Solution NMR has become an indispensable technique in studying the physical properties and functions of biomacromolecules at near physiological conditions. However, biomolecular systems are often extraordinarily large, dynamic, and possess low solubility, which complicates the acquisition and analysis of NMR spectra. Together this results in severe signal overlapping and low signal to noise, which demands longer total experimental time. NMR spectroscopists must consider how to improve spectral resolution and sensitivity to extract the maximum structural information from imperfect data within reasonable measurement times. Recent advances in multi-dimensional NMR acquisition and computation methods overcome these problems and enable the investigation of larger and more complicated biomolecular systems. This chapter first reviews conventional and then state-of-the-art methodologies for NMR data collection, signal processing, and protein structure data analysis. In the first section, we survey the basics of multi-dimensional NMR and present rapid measurement techniques such as non-uniform sampling and spectrum reconstruction algorithms. In the second half, we illustrate the conventions of protein structure determination using chemical shift and NOE data to obtain interatomic distances, dihedral angles, and dynamics information. We also briefly introduce the currently popular hybridisation of NMR with solution angle scattering for 3D structure analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rovnyak, D., Hoch, J.C., Stern, A.S., Wagner, G.: Resolution and sensitivity of high field nuclear magnetic resonance spectroscopy. J. Biomol. NMR 30, 1–10 (2004). doi:10.1023/B:JNMR.0000042946.04002.19

    Article  CAS  Google Scholar 

  2. Barkhuijsen, H., Debeer, R., Bovee, W.M.M.J., Vanormondt, D.: Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure. J. Magn. Reson. 61, 465–481 (1985). doi:10.1016/0022-2364(85)90187-8

    CAS  Google Scholar 

  3. Laue, E.D., Mayger, M.R., Skilling, J., Staunton, J.: Reconstruction of phase-sensitive two-dimensional NMR spectra by maximum entropy. J. Magn. Reson. 68, 14–29 (1986). doi:10.1016/0022-2364(86)90312-4

    CAS  Google Scholar 

  4. Hoch, J.A., Stern, A.S.: NMR Data Processing. Wiley, New York (1996)

    Google Scholar 

  5. Kupce, E., Freeman, R.: Fast multi-dimensional Hadamard spectroscopy. J. Magn. Reson. 163, 56–63 (2003). doi:10.1016/S1090-7807(03)00036-3

    Article  CAS  Google Scholar 

  6. Hyberts, S.G., Arthanari, H., Robson, S.A., Wagner, G.: Perspectives in magnetic resonance: NMR in the post-FFT era. J. Magn. Reson. 241, 60–73 (2014). doi:10.1016/j.jmr.2013.11.014

    Article  CAS  Google Scholar 

  7. Schanda, P., Brutscher, B.: Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J. Am. Chem. Soc. 127, 8014–8015 (2005). doi:10.1021/ja051306e

    Article  CAS  Google Scholar 

  8. Schanda, P., Kupce, E., Brutscher, B.: SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33, 199–211 (2005). doi:10.1007/s10858-005-4425-x

    Article  CAS  Google Scholar 

  9. Schanda, P., Van Melckebeke, H., Brutscher, B.: Speeding up three-dimensional protein NMR experiments to a few minutes. J. Am. Chem. Soc. 128, 9042–9043 (2006). doi:10.1021/ja062025p

    Article  CAS  Google Scholar 

  10. Lescop, E., Schanda, P., Brutscher, B.: A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J. Magn. Reson. 187, 163–169 (2007). doi:10.1016/j.jmr.2007.04.002

    Article  CAS  Google Scholar 

  11. Pervushin, K., Vogeli, B., Eletsky, A.: Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy. J. Am. Chem. Soc. 124, 12898–12902 (2002). doi:10.1021/ja027149q

    Article  CAS  Google Scholar 

  12. Kupce, E., Freeman, R.: Projection-reconstruction of three-dimensional NMR spectra. J. Am. Chem. Soc. 125, 13958–13959 (2003). doi:10.1021/Ja038297z

    Article  CAS  Google Scholar 

  13. Kupce, E., Freeman, R.: Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J. Am. Chem. Soc. 126, 6429–6440 (2004). doi:10.1021/Ja049432q

    Article  CAS  Google Scholar 

  14. Kim, S., Szyperski, T.: GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J. Am. Chem. Soc. 125, 1385–1393 (2003). doi:10.1021/Ja028197d

    Article  CAS  Google Scholar 

  15. Hiller, S., Fiorito, F., Wuthrich, K., Wider, G.: Automated projection spectroscopy (APSY). Proc. Natl. Acad. Sci. USA 102, 10876–10881 (2005). doi:10.1073/pnas.0504818102

    Article  CAS  Google Scholar 

  16. Barna, J.C.J., Laue, E.D., Mayger, M.R., Skilling, J., Worrall, S.J.P.: Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J. Magn. Reson. 73, 69–77 (1987). doi:10.1016/0022-2364(87)90225-3

    CAS  Google Scholar 

  17. Schmieder, P., Stern, A.S., Wagner, G., Hoch, J.C.: Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. J. Biomol. NMR 4, 483–490 (1994). doi:10.1007/BF00156615

    Article  CAS  Google Scholar 

  18. Rovnyak, D., Frueh, D.P., Sastry, M., Sun, Z.Y., Stern, A.S., Hoch, J.C., Wagner, G.: Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J. Magn. Reson. 170, 15–21 (2004). doi:10.1016/j.jmr.2004.05.016

    Article  CAS  Google Scholar 

  19. Frydman, L., Scherf, T., Lupulescu, A.: The acquisition of multidimensional NMR spectra within a single scan. Proc Natl Acad Sci USA 99, 15858–15862 (2002). doi:10.1073/pnas.252644399

    Article  CAS  Google Scholar 

  20. Frydman, L., Lupulescu, A., Scherf, T.: Principles and features of single-scan two-dimensional NMR spectroscopy. J. Am. Chem. Soc. 125, 9204–9217 (2003). doi:10.1021/ja030055b

    Article  CAS  Google Scholar 

  21. Kupce, E., Freeman, R.: Two-dimensional Hadamard spectroscopy. J. Magn. Reson. 162, 300–310 (2003). doi:10.1016/S1090-7807(02)00196-9

    Article  CAS  Google Scholar 

  22. Hyberts, S.G., Heffron, G.J., Tarragona, N.G., Solanky, K., Edmonds, K.A., Luithardt, H., Fejzo, J., Chorev, M., Aktas, H., Colson, K., Falchuk, K.H., Halperin, J.A., Wagner, G.: Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J. Am. Chem. Soc. 129, 5108–5116 (2007). doi:10.1021/ja068541x

    Article  CAS  Google Scholar 

  23. Hyberts, S.G., Frueh, D.P., Arthanari, H., Wagner, G.: FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation. J. Biomol. NMR 45, 283–294 (2009). doi:10.1007/s10858-009-9368-1

    Article  CAS  Google Scholar 

  24. Hamatsu, J., O’Donovan, D., Tanaka, T., Shirai, T., Hourai, Y., Mikawa, T., Ikeya, T., Mishima, M., Boucher, W., Smith, B.O., Laue, E.D., Shirakawa, M., Ito, Y.: High-resolution heteronuclear multidimensional NMR of proteins in living insect cells using a baculovirus protein expression system. J. Am. Chem. Soc. 135, 1688–1691 (2013). doi:10.1021/ja310928u

    Article  CAS  Google Scholar 

  25. Ikeya, T., Ikeda, S., Kigawa, T., Ito, Y., Güntert, P.: Protein NMR structure refinement based on Bayesian inference. J. Phys: Conf. Ser. 699, 012005 (2016). doi:10.1088/1742-6596/699/1/012005

    Google Scholar 

  26. Kazimierczuk, K., Zawadzka, A., Kozminski, W., Zhukov, I.: Random sampling of evolution time space and Fourier transform processing. J. Biomol. NMR 36, 157–168 (2006). doi:10.1007/s10858-006-9077-y

    Article  CAS  Google Scholar 

  27. Stanek, J., Kozminski, W.: Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. J. Biomol. NMR 47, 65–77 (2010). doi:10.1007/s10858-010-9411-2

    Article  CAS  Google Scholar 

  28. Jaravine, V.A., Orekhov, V.Y.: Targeted acquisition for real-time NMR spectroscopy. J. Am. Chem. Soc. 128, 13421–13426 (2006). doi:10.1021/ja062146p

    Article  CAS  Google Scholar 

  29. Jaravine, V., Ibraghimov, I., Orekhov, V.Y.: Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat. Methods 3, 605–607 (2006). doi:10.1038/Nmeth900

    Article  CAS  Google Scholar 

  30. Mayzel, M., Rosenlow, J., Isaksson, L., Orekhov, V.Y.: Time-resolved multidimensional NMR with non-uniform sampling. J. Biomol. NMR 58, 129–139 (2014). doi:10.1007/s10858-013-9811-1

    Article  CAS  Google Scholar 

  31. Matsuki, Y., Eddy, M.T., Herzfeld, J.: Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J. Am. Chem. Soc. 131, 4648–4656 (2009). doi:10.1021/ja807893k

    Article  CAS  Google Scholar 

  32. Kazimierczuk, K., Orekhov, V.Y.: Accelerated NMR spectroscopy by using compressed sensing. Angew. Chem. Int. Ed. Engl. 50, 5556–5559 (2011). doi:10.1002/anie.201100370

    Article  CAS  Google Scholar 

  33. Holland, D.J., Bostock, M.J., Gladden, L.F., Nietlispach, D.: Fast multidimensional NMR spectroscopy using compressed sensing. Angew. Chem. Int. Ed. Engl. 50, 6548–6551 (2011). doi:10.1002/anie.201100440

    Article  CAS  Google Scholar 

  34. Stern, A.S., Donoho, D.L., Hoch, J.C.: NMR data processing using iterative thresholding and minimum l(1)-norm reconstruction. J. Magn. Reson. 188, 295–300 (2007). doi:10.1016/j.jmr.2007.07.008

    Article  CAS  Google Scholar 

  35. Hyberts, S.G., Milbradt, A.G., Wagner, A.B., Arthanari, H., Wagner, G.: Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J. Biomol. NMR 52, 315–327 (2012). doi:10.1007/s10858-012-9611-z

    Article  CAS  Google Scholar 

  36. Sun, S., Gill, M., Li, Y., Huang, M., Byrd, R.A.: Efficient and generalized processing of multidimensional NUS NMR data: the NESTA algorithm and comparison of regularization terms. J. Biomol. NMR 62, 105–117 (2015). doi:10.1007/s10858-015-9923-x

    Article  CAS  Google Scholar 

  37. Ying, J., Delaglio, F., Torchia, D.A., Bax, A.: Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J. Biomol. NMR (2016). doi:10.1007/s10858-016-0072-7

    Google Scholar 

  38. Orekhov, V.Y., Jaravine, V.A.: Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog. Nucl. Magn. Reson. Spectrosc. 59, 271–292 (2011). doi:10.1016/j.pnmrs.2011.02.002

    Article  CAS  Google Scholar 

  39. Kurashima-Ito, K., Ikeya, T., Senbongi, H., Tochio, H., Mikawa, T., Shibata, T., Ito, Y.: Heteronuclear multidimensional NMR and homology modelling studies of the C-terminal nucleotide-binding domain of the human mitochondrial ABC transporter ABCB6. J. Biomol. NMR 35, 53–71 (2006). doi:10.1007/s10858-006-9000-6

  40. Schuyler, A.D., Maciejewski, M.W., Stern, A.S., Hoch, J.C.: Nonuniform sampling of hypercomplex multidimensional NMR experiments: dimensionality, quadrature phase and randomization. J. Magn. Reson. 254, 121–130 (2015). doi:10.1016/j.jmr.2015.02.015

    Article  CAS  Google Scholar 

  41. Bostock, M.J., Holland, D.J., Nietlispach, D.: Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction. J. Biomol. NMR (2016). doi:10.1007/s10858-016-0062-9

    Google Scholar 

  42. Kazimierczuk, K., Zawadzka, A., Kozminski, W.: Optimization of random time domain sampling in multidimensional NMR. J. Magn. Reson. 192, 123–130 (2008). doi:10.1016/j.jmr.2008.02.003

    Article  CAS  Google Scholar 

  43. Hyberts, S.G., Takeuchi, K., Wagner, G.: Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J. Am. Chem. Soc. 132, 2145–2147 (2010). doi:10.1021/ja908004w

    Article  CAS  Google Scholar 

  44. Kay, L.E., Keifer, P., Saarinen, T.: Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114(26), 10663–10665 (1992). doi:10.1021/ja00052a088

  45. Wishart, D.S., Case, D.A.: Use of Chemical Shifts in Macromolecular Structure Determination, Vol. 338. Methods Enzymol. Elsevier, New York (2001). doi:10.1016/s0076-6879(02)38214-4

    Google Scholar 

  46. Wishart, D.S., Sykes, B.D., Richards, F.M.: The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651 (1992). doi:10.1021/bi00121a010

    Article  CAS  Google Scholar 

  47. Beger, R.D., Bolton, P.H.: Protein phi and psi dihedral restraints determined from multidimensional hypersurface correlations of backbone chemical shifts and their use in the determination of protein tertiary structures. J. Biomol. NMR 10, 129–142 (1997). doi:10.1023/A:1018302105638

    Article  CAS  Google Scholar 

  48. Shen, Y., Delaglio, F., Cornilescu, G., Bax, A.: TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009). doi:10.1007/s10858-009-9333-z

    Article  CAS  Google Scholar 

  49. Shen, Y., Bax, A.: Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013). doi:10.1007/s10858-013-9741-y

    Article  CAS  Google Scholar 

  50. Sumowski, C.V., Hanni, M., Schweizer, S., Ochsenfeld, C.: Sensitivity of ab initio vs empirical methods in computing structural effects on NMR chemical shifts for the example of peptides. J. Chem. Theory Comput. 10, 122–133 (2014). doi:10.1021/ct400713t

    Article  CAS  Google Scholar 

  51. Granata, D., Camilloni, C., Vendruscolo, M., Laio, A.: Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics. Proc. Natl. Acad. Sci USA 110, 6817–6822 (2013). doi:10.1073/pnas.1218350110

    Article  CAS  Google Scholar 

  52. Shen, Y., Lange, O., Delaglio, F., Rossi, P., Aramini, J.M., Liu, G., Eletsky, A., Wu, Y., Singarapu, K.K., Lemak, A., Ignatchenko, A., Arrowsmith, C.H., Szyperski, T., Montelione, G.T., Baker, D., Bax, A.: Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA 105, 4685–4690 (2008). doi:10.1073/pnas.0800256105

    Article  CAS  Google Scholar 

  53. Bradley, P., Misura, K.M., Baker, D.: Toward high-resolution de novo structure prediction for small proteins. Science 309, 1868–1871 (2005). doi:10.1126/science.1113801

    Article  CAS  Google Scholar 

  54. Moult, J., Pedersen, J.T., Judson, R., Fidelis, K.: A large-scale experiment to assess protein structure prediction methods. Proteins 23, ii–v (1995). doi:10.1002/prot.340230303

  55. Kryshtafovych, A., Monastyrskyy, B., Fidelis, K.: CASP11 statistics and the prediction center evaluation system. Proteins 84(Suppl 1), 15–19 (2016). doi:10.1002/prot.25005

    Article  Google Scholar 

  56. Guntert, P., Mumenthaler, C., Wuthrich, K.: Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997). doi:10.1006/jmbi.1997.1284

    Article  CAS  Google Scholar 

  57. Guntert, P.: Automated NMR protein structure calculation. Prog. Nucl. Mag. Res. Spectrosc. 43, 105–125 (2003). doi:10.1016/S0079-6565(03)00021-9

    Article  CAS  Google Scholar 

  58. Rieping, W., Habeck, M., Bardiaux, B., Bernard, A., Malliavin, T.E., Nilges, M.: ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23, 381–382 (2007). doi:10.1093/bioinformatics/btl589

    Article  CAS  Google Scholar 

  59. Hooft, R.W., Vriend, G., Sander, C., Abola, E.E.: Errors in protein structures. Nature 381, 272 (1996). doi:10.1038/381272a0

    Article  CAS  Google Scholar 

  60. Laskowski, R.A., Macarthur, M.W., Moss, D.S., Thornton, J.M.: Procheck—a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993). doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  61. Sippl, M.J.: Recognition of errors in three-dimensional structures of proteins. Proteins 17, 355–362 (1993). doi:10.1002/prot.340170404

    Article  CAS  Google Scholar 

  62. Vogeli, B., Segawa, T.F., Leitz, D., Sobol, A., Choutko, A., Trzesniak, D., van Gunsteren, W., Riek, R.: Exact distances and internal dynamics of perdeuterated ubiquitin from NOE buildups. J. Am. Chem. Soc. 131, 17215–17225 (2009). doi:10.1021/ja905366h

    Article  CAS  Google Scholar 

  63. Vogeli, B., Kazemi, S., Guntert, P., Riek, R.: Spatial elucidation of motion in proteins by ensemble-based structure calculation using exact NOEs. Nat. Struct. Mol. Biol. 19, 1053–1057 (2012). doi:10.1038/nsmb.2355

    Article  Google Scholar 

  64. Rieping, W., Habeck, M., Nilges, M.: Inferential structure determination. Science 309, 303–306 (2005). doi:10.1126/science.1110428

    Article  CAS  Google Scholar 

  65. Habeck, M., Nilges, M., Rieping, W.: Bayesian inference applied to macromolecular structure determination. Phys. Rev. E 72, 031912 (2005). doi:10.1103/PhysRevE.72.031912

    Article  Google Scholar 

  66. Ikeya, T., Hanashima, T., Hosoya, S., Shimazaki, M., Ikeda, S., Mishima, M., Guntert, P., Ito, Y.: Improved in-cell structure determination of proteins at near-physiological concentration. Sci. Rep. 6, 38312 (2016). doi:10.1038/srep38312

    Article  CAS  Google Scholar 

  67. Northrup, S.H., McCammon, J.A.: Simulation methods for protein structure fluctuations. Biopolymers 19, 1001–1016 (1980). doi:10.1002/bip.1980.360190506

    Article  CAS  Google Scholar 

  68. Yamashita, H., Endo, S., Wako, H., Kidera, A.: Sampling efficiency of molecular dynamics and Monte Carlo method in protein simulation. Chem. Phys. Lett. 342, 382–386 (2001). doi:10.1016/S0009-2614(01)00613-3

    Article  CAS  Google Scholar 

  69. Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., Kollman, P.: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003). doi:10.1002/jcc.10349

    Article  CAS  Google Scholar 

  70. Baker, N.A.: Improving implicit solvent simulations: a Poisson-centric view. Curr. Opin. Struct. Biol. 15, 137–143 (2005). doi:10.1016/j.sbi.2005.02.001

    Article  CAS  Google Scholar 

  71. Venditti, V., Schwieters, C.D., Grishaev, A., Clore, G.M.: Dynamic equilibrium between closed and partially closed states of the bacterial Enzyme I unveiled by solution NMR and X-ray scattering. Proc. Natl. Acad. Sci. USA 112, 11565–11570 (2015). doi:10.1073/pnas.1515366112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Youhei Kawabata for useful discussions regarding solution scattering and Dr. Joshua James Ziarek and Prof. Peter Güntert for a critical reading of this manuscript. We gratefully acknowledge financial supports by Scientific Research on Innovative Areas (JP26102538, JP25120003, JP16H00779 to T.I., and JP15H01645, JP16H00847 to Y.I.) and Grants-in-Aid for Scientific Research (JP15K06979 to T.I.) from the Japan for the Promotion of Science (JSPS) and by the Funding Program for Core Research for Evolutional Science and Technology (CREST JPMJCR13M3) from Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikeya, T., Ito, Y. (2018). Advances in NMR Data Acquisition and Processing for Protein Structure Determination. In: The Nuclear Magnetic Resonance Society of Japan (eds) Experimental Approaches of NMR Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-10-5966-7_3

Download citation

Publish with us

Policies and ethics