Skip to main content

Advertisement

Log in

Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The fast Fourier transformation has been the gold standard for transforming data from time to frequency domain in many spectroscopic methods, including NMR. While reliable, it has as a drawback that it requires a grid of uniformly sampled data points. This needs very long measuring times for sampling in multidimensional experiments in all indirect dimensions uniformly and even does not allow reaching optimal evolution times that would match the resolution power of modern high-field instruments. Thus, many alternative sampling and transformation schemes have been proposed. Their common challenges are the suppression of the artifacts due to the non-uniformity of the sampling schedules, the preservation of the relative signal amplitudes, and the computing time needed for spectra reconstruction. Here we present a fast implementation of the Iterative Soft Thresholding approach (istHMS) that can reconstruct high-resolution non-uniformly sampled NMR data up to four dimensions within a few hours and make routine reconstruction of high-resolution NUS 3D and 4D spectra convenient. We include a graphical user interface for generating sampling schedules with the Poisson-Gap method and an estimation of optimal evolution times based on molecular properties. The performance of the approach is demonstrated with the reconstruction of non-uniformly sampled medium and high-resolution 3D and 4D protein spectra acquired with sampling densities as low as 0.8%. The method presented here facilitates acquisition, reconstruction and use of multidimensional NMR spectra at otherwise unreachable spectral resolution in indirect dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NMR:

Nuclear magnetic resonance

IST:

Iterative soft thresholding

istHMS:

Implementation of IST at Harvard Medical School

FM reconstruction:

Forward maximum entropy reconstruction

MDD:

Multi-dimensional decomposition

FDM:

Filter diagonalization method

FFT:

Fast Fourier transformation

DFT:

Discrete Fourier transformation

NOE:

Nuclear Overhauser enhancement

NOESY:

NOE spectroscopy

GUI:

Graphical user interface

References

  • Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson 73:69–77

    Google Scholar 

  • Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Information Theory, IEEE Transactions on 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG III, Rance M, Skelton NJ (2007) Protein NMR spectroscopy: principles and practice, 2nd edn. Academic Press, New York

    Google Scholar 

  • Chen J, Nietlispach D, Shaka AJ, Mandelshtam VA (2004) Ultra-high resolution 3D NMR spectra from limited-size data sets. J Magn Reson 169(2):215–224. doi:10.1016/j.jmr.2004.04.017

    Article  ADS  Google Scholar 

  • Coggins BE, Zhou P (2008) High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN. J Biomol NMR 42(4):225–239. doi:10.1007/s10858-008-9275-x

    Article  Google Scholar 

  • Denk W, Baumann R, Wagner G (1986) Quantitative evaluation of cross peak intensities by projection of two-dimensional NOE spectra on a linear space spanned by a set of reference resonance lines. J Magn Reson 67:386–390

    Google Scholar 

  • Donoho DL (1995) De-noising by soft-thresholding. Inform Theory IEEE Trans 41:613–627

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL (2006) Compressed sensing. Information Theory, IEEE Transactions on 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  • Drori I (2007) Fast l1 minimizatio by iterative thresholding for multidimensional NMR spectroscopy. Eurasip J Adv Signal Process 1–10

  • Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17(6):768–774. doi:10.1038/nsmb.1807

    Article  Google Scholar 

  • Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT, Clore GM (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253(5020):657–661

    Article  ADS  Google Scholar 

  • Hiller S, Ibraghimov I, Wagner G, Orekhov VY (2009) Coupled decomposition of four-dimensional NOESY spectra. J Am Chem Soc 131(36):12970–12978. doi:10.1021/ja902012x

    Article  Google Scholar 

  • Hoch JC (1989) Modern spectrum analysis in nuclear magnetic resonance: alternatives to the Fourier transform. Methods Enzymol 176:216–241

    Article  Google Scholar 

  • Högbom (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl 15:417–426

    ADS  Google Scholar 

  • Holland DJ, Bostock MJ, Gladden LF, Nietlispach D (2011) Fast multidimensional NMR spectroscopy using compressed sensing. Angew Chem 50(29):6548–6551. doi:10.1002/anie.201100440

    Article  Google Scholar 

  • Hyberts SG, Heffron GJ, Tarragona NG, Solanky K, Edmonds KA, Luithardt H, Fejzo J, Chorev M, Aktas H, Colson K, Falchuk KH, Halperin JA, Wagner G (2007) Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc 129(16):5108–5116

    Article  Google Scholar 

  • Hyberts SG, Frueh DP, Arthanari H, Wagner G (2009) FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation. J Biomol NMR 45(3):283–294. doi:10.1007/s10858-009-9368-1

    Article  Google Scholar 

  • Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J Am Chem Soc 132(7):2145–2147. doi:10.1021/ja908004w

    Article  Google Scholar 

  • Hyberts SG, Arthanari H, Wagner G (2011) Applications of non-uniform sampling and processing. Top Curr Chem. doi:10.1007/128_2011_187

  • Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem 50(24):5556–5559. doi:10.1002/anie.201100370

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2007) Lineshapes and artifacts in multidimensional Fourier transform of arbitrary sampled NMR data sets. J Magn Reson 188(2):344–356. doi:10.1016/j.jmr.2007.08.005

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W (2008) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192(1):123–130. doi:10.1016/j.jmr.2008.02.003

    Article  ADS  Google Scholar 

  • Kupce E, Freeman R (2003) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125(46):13958–13959

    Article  Google Scholar 

  • Kupce E, Freeman R (2005) Fast multidimensional NMR: radial sampling of evolution space. J Magn Reson 173(2):317–321. doi:10.1016/j.jmr.2004.12.004

    Article  ADS  Google Scholar 

  • LeMaster DM, Kushlan DM (1996) Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J Am Chem Soc 118(39):9255–9264

    Article  Google Scholar 

  • Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magnetic resonance in medicine. Official J Soci Magn Reson Med/Soci of Magn Reson Med 58(6):1182–1195. doi:10.1002/mrm.21391

    Google Scholar 

  • Mandelshtam VA, Taylor HS, Shaka AJ (1998) Application of the filter diagonalization method to one- and two-dimensional NMR spectra. J Magn Reson 133(2):304–312

    Article  ADS  Google Scholar 

  • Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 131(13):4648–4656. doi:10.1021/ja807893k

    Article  Google Scholar 

  • Milbradt AG, Kulkarni M, Yi T, Takeuchi K, Sun ZY, Luna RE, Selenko P, Naar AM, Wagner G (2011) Structure of the VP16 transactivator target in the Mediator. Nat Struct Mol Biol 18(4):410–415. doi:10.1038/nsmb.1999

    Article  Google Scholar 

  • Mobli M, Stern AS, Hoch JC (2006) Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson 182(1):96–105. doi:10.1016/j.jmr.2006.06.007

    Article  ADS  Google Scholar 

  • Peng JW, Wagner G (1992) Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J Magn Res 98:308–332

    Google Scholar 

  • Peng JW, Wagner G (1994) Investigation of protein motions via relaxation measurements. Methods Enzymol 239:563–596

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371

    Article  ADS  Google Scholar 

  • Rovnyak D, Frueh DP, Sastry M, Sun ZY, Stern AS, Hoch JC, Wagner G (2004a) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170(1):15–21

    Article  ADS  Google Scholar 

  • Rovnyak D, Hoch JC, Stern AS, Wagner G (2004b) Resolution and sensitivity of high field nuclear magnetic resonance spectroscopy. J Biomol NMR 30(1):1–10

    Article  Google Scholar 

  • Stanek J, Kozminski W (2010) Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. J Biomol NMR 47(1):65–77. doi:10.1007/s10858-010-9411-2

    Article  Google Scholar 

  • Stanek J, Augustyniak R, Kozminski W (2011) Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. J Magn Reson. doi:10.1016/j.jmr.2011.10.009

  • Stern AS, Donoho DL, Hoch JC (2007) NMR data processing using iterative thresholding and minimum l(1)-norm reconstruction. J Magn Reson 188(2):295–300. doi:10.1016/j.jmr.2007.07.008

    Article  ADS  Google Scholar 

  • Suzuki H, Toriwaki J (1991) Automatic segmentation of head MRI images by knowledge guided thresholding. Comput Med Imaging Graph 15(4):233–240

    Article  Google Scholar 

  • Ting M, Raich R, Hero AO 3rd (2009) Sparse image reconstruction for molecular imaging. IEEE Trans Image Process 18(6):1215–1227. doi:10.1109/TIP.2009.2017156

    Article  MathSciNet  ADS  Google Scholar 

  • Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28(2):165–172. doi:10.1023/B:JNMR.0000013824.93994.1f

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125(34):10420–10428. doi:10.1021/ja030153x

    Article  Google Scholar 

  • Tugarinov V, Kay LE, Ibraghimov I, Orekhov VY (2005) High-resolution four-dimensional 1H–13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc 127(8):2767–2775

    Article  Google Scholar 

  • Wagner G (1993) NMR relaxation and protein mobility. Curr Opin Struct Biol 3:748–754

    Article  Google Scholar 

  • Wagner G (1997) An account of NMR in structural biology. Nat Struct Biol 4(Suppl):841–844

    Google Scholar 

  • Wen J, Wu J, Zhou P (2011) Sparsely sampled high-resolution 4-D experiments for efficient backbone resonance assignment of disordered proteins. J Magn Reson 209(1):94–100. doi:10.1016/j.jmr.2010.12.012

    Article  ADS  Google Scholar 

  • Wilton DJ, Tunnicliffe RB, Kamatari YO, Akasaka K, Williamson MP (2008) Pressure-induced changes in the solution structure of the GB1 domain of protein G. Proteins 71(3):1432–1440. doi:10.1002/prot.21832

    Google Scholar 

  • Zhou P, Lugovskoy AA, Wagner G (2001) A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins. J Biomol NMR 20(1):11–14

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Institutes of Health (Grants GM047467, CA127990, GM094608 and EB002026). We thank Dr. Koh Takeuchi for providing the data used in Fig. 7B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wagner.

Additional information

Contribution from Harvard Medical School, Boston, MA 02115, USA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2867 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyberts, S.G., Milbradt, A.G., Wagner, A.B. et al. Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J Biomol NMR 52, 315–327 (2012). https://doi.org/10.1007/s10858-012-9611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9611-z

Keywords

Navigation