Skip to main content
Log in

SOFAST-HMQC Experiments for Recording Two-dimensional Deteronuclear Correlation Spectra of Proteins within a Few Seconds

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Fast multidimensional NMR with a time resolution of a few seconds provides a new tool for high throughput screening and site-resolved real-time studies of kinetic molecular processes by NMR. Recently we have demonstrated the feasibility to record protein 1H–15N correlation spectra in a few seconds of acquisition time using a new SOFAST-HMQC experiment (Schanda and Brutscher (2005) J. Am. Chem. Soc. 127, 8014). Here, we investigate in detail the performance of SOFAST-HMQC to record 1H–15N and 1H−13C correlation spectra of proteins of different size and at different magnetic field strengths. Compared to standard 1H–15N correlation experiments SOFAST-HMQC provides a significant gain in sensitivity, especially for fast repetition rates. Guidelines are provided on how to set up SOFAST-HMQC experiments for a given protein sample. In addition, an alternative pulse scheme, IPAP-SOFAST-HMQC is presented that allows application on NMR spectrometers equipped with cryogenic probes, and fast measurement of one-bond 1H–13C and 1H–15N scalar and residual dipolar coupling constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Andersson J. Weigelt G. Otting (1998) J. Biomol. NMR 12 435–441 Occurrence Handle10.1023/A:1008239027287 Occurrence Handle1:CAS:528:DyaK1MXpsFCqsw%3D%3D

    Article  CAS  Google Scholar 

  • H.S. Atreya T. Szyperski (2004) Proc. Natl. Acad. Sci. USA 101 9642–9647 Occurrence Handle10.1073/pnas.0403529101 Occurrence Handle1:CAS:528:DC%2BD2cXlvVahsb0%3D

    Article  CAS  Google Scholar 

  • M. Blackledge (2005) Prog. Nucl. Magn. Reson. Spectrosc. 46 23–61 Occurrence Handle1:CAS:528:DC%2BD2MXisFahtrY%3D

    CAS  Google Scholar 

  • B. Brutscher (2000) Concept. Magnetic Res. 12 207–229 Occurrence Handle1:CAS:528:DC%2BD3cXkslyht7o%3D

    CAS  Google Scholar 

  • B. Brutscher (2004) J. Biomol. NMR 29 57–64 Occurrence Handle10.1023/B:JNMR.0000019501.21697.34 Occurrence Handle1:CAS:528:DC%2BD2cXhvF2murc%3D

    Article  CAS  Google Scholar 

  • B. Brutscher J.P. Simorre M.S. Caffrey D. Marion (1994) J. Magn. Reson. B 105 77–82 Occurrence Handle1:CAS:528:DyaK2cXmt1Gmtrg%3D

    CAS  Google Scholar 

  • L. Emsley G. Bodenhausen (1992) J. Magn. Reson. 97 135–148 Occurrence Handle1:CAS:528:DyaK38XhvVKgsLc%3D

    CAS  Google Scholar 

  • R. Ernst G. Bodenhausen G. Wokaun (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions Oxford University Press Oxford

    Google Scholar 

  • L. Frydman T. Scherf A. Lupulescu (2002) Proc. Natl. Acad. Sci. USA 99 15858–15862 Occurrence Handle10.1073/pnas.252644399 Occurrence Handle1:CAS:528:DC%2BD38Xps1egtbw%3D

    Article  CAS  Google Scholar 

  • H. Geen R. Freeman (1991) J. Magn. Reson. 93 93–141

    Google Scholar 

  • P.J. Hajduk D.J. Augeri J. Mack R. Mendoza J.G. Yang S.F. Betz S.W. Fesik (2000) J. Am. Chem. Soc. 122 7898–7904 Occurrence Handle10.1021/ja000350l Occurrence Handle1:CAS:528:DC%2BD3cXlsVSlsLw%3D

    Article  CAS  Google Scholar 

  • J.C. Hoch A.S. Stern (2001) Nucl. Mag. Reson. Biol. Macromol., Pt A 338 159–178 Occurrence Handle1:CAS:528:DC%2BD3MXls1elt78%3D

    CAS  Google Scholar 

  • S. Kim T. Szyperski (2003) J. Am. Chem. Soc. 125 1385–1393 Occurrence Handle1:CAS:528:DC%2BD3sXitVOrtA%3D%3D

    CAS  Google Scholar 

  • E. Kupčce J. Boyd I.D. Campbell (1995) J. Magn. Reson. B 106 300–303 Occurrence Handle1:CAS:528:DyaK2MXktF2msr0%3D

    CAS  Google Scholar 

  • E. Kupče R. Freeman (1994) J. Magn. Reson. A 108 268–273

    Google Scholar 

  • E. Kupče R. Freeman (1996) J. Magn. Reson. A 118 299–303

    Google Scholar 

  • E. Kupče R. Freeman (2004) J. Am. Chem. Soc. 126 6429–6440

    Google Scholar 

  • E. Kupče T. Nishida R. Freeman (2003) Prog. Nucl. Magn. Reson. Spectrosc. 42 95–122

    Google Scholar 

  • E. Kupče G. Wagner (1995) J. Magn. Reson. B 109 329–333

    Google Scholar 

  • V.A. Mandelshtam (2000) J. Magn. Reson. 144 343–356 Occurrence Handle10.1006/jmre.2000.2023 Occurrence Handle1:CAS:528:DC%2BD3cXjs1Sgtbg%3D

    Article  CAS  Google Scholar 

  • M. Ottiger F. Delaglio A. Bax (1998) J. Magn. Reson. 131 373–378 Occurrence Handle10.1006/jmre.1998.1361 Occurrence Handle1:CAS:528:DyaK1cXislagsbo%3D

    Article  CAS  Google Scholar 

  • K. Pervushin B. Vogeli A. Eletsky (2002) J. Am. Chem. Soc. 124 12898–12902 Occurrence Handle10.1021/ja027149q Occurrence Handle1:CAS:528:DC%2BD38XnsVeksLw%3D

    Article  CAS  Google Scholar 

  • M. Piotto V. Saudek V. Sklenar (1992) J. Biomol. NMR 2 661–665 Occurrence Handle10.1007/BF02192855 Occurrence Handle1:CAS:528:DyaK3sXitVyktrY%3D

    Article  CAS  Google Scholar 

  • M.K. Rosen K.H. Gardner R.C. Willis W.E. Parris T. Pawson L.E. Kay (1996) J. Mol. Biol. 263 627–636 Occurrence Handle10.1006/jmbi.1996.0603 Occurrence Handle1:CAS:528:DyaK28XntFyqs7c%3D

    Article  CAS  Google Scholar 

  • A. Ross M. Salzmann H. Senn (1997) J. Biomol. NMR 10 389–396 Occurrence Handle10.1023/A:1018361214472 Occurrence Handle1:CAS:528:DyaK1cXks1Ghtw%3D%3D

    Article  CAS  Google Scholar 

  • M. Ruckert G. Otting (2000) J. Am. Chem. Soc. 122 7793–7797 Occurrence Handle10.1021/ja001068h

    Article  Google Scholar 

  • P. Schanda B. Brutscher (2005) J. Am. Chem. Soc. 127 8014–8015 Occurrence Handle10.1021/ja051306e Occurrence Handle1:CAS:528:DC%2BD2MXktFCgtrc%3D

    Article  CAS  Google Scholar 

  • T. Szyperski G. Wider J.H. Bushweller K. Wuthrich (1993) J. Am. Chem. Soc. 115 9307–9308 Occurrence Handle10.1021/ja00073a064 Occurrence Handle1:CAS:528:DyaK3sXlvFCiuro%3D

    Article  CAS  Google Scholar 

  • N. Tjandra A. Bax (1997) Science 278 1111–1114 Occurrence Handle10.1126/science.278.5340.1111 Occurrence Handle1:CAS:528:DyaK2sXnt1aju7c%3D

    Article  CAS  Google Scholar 

  • V. Tugarinov P.M. Hwang J.E. Ollerenshaw L.E. Kay (2003) J. Am. Chem. Soc. 125 10420–10428 Occurrence Handle1:CAS:528:DC%2BD3sXlvFKqu74%3D

    CAS  Google Scholar 

  • H. Melckebeke ParticleVan J.P. Simorre B. Brutscher (2004) J. Am. Chem. Soc. 126 9584–9591

    Google Scholar 

  • J. Weigelt (1998) J. Am. Chem. Soc. 120 10778–10779 Occurrence Handle1:CAS:528:DyaK1cXmtlantr0%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Brutscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schanda, P., Kupče, Ē. & Brutscher, B. SOFAST-HMQC Experiments for Recording Two-dimensional Deteronuclear Correlation Spectra of Proteins within a Few Seconds. J Biomol NMR 33, 199–211 (2005). https://doi.org/10.1007/s10858-005-4425-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-4425-x

Keywords

Navigation