Skip to main content
Log in

Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (ϕ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ1 rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berjanskii MV, Wishart DS (2008) Application of the random coil index to studying protein flexibility. J Biomol NMR 40:31–48

    Article  Google Scholar 

  • Berjanskii MV, Neal S, Wishart DS (2006) PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res 34:W63–W69

    Article  Google Scholar 

  • Berman HM, Kleywegt GJ, Nakamura H, Markley JL (2012) The protein data bank at 40: reflecting on the past to prepare for the future. Structure 20:391–396

    Article  Google Scholar 

  • Bower MJ, Cohen FE, Dunbrack RL (1997) Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol 267:1268–1282

    Article  Google Scholar 

  • Butterfoss GL, Richardson JS, Hermans J (2005) Protein imperfections: separating intrinsic from extrinsic variation of torsion angles. Acta Crystallogr Sect D-Biol Crystallogr 61:88–98

    Article  Google Scholar 

  • Case DA (1995) Calibration of ring-current effects in proteins and nucleic acids. J Biomol NMR 6:341–346

    Article  Google Scholar 

  • Cheung M-S, Maguire ML, Stevens TJ, Broadhurst RW (2010) DANGLE: a Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J Magn Reson 202:223–233

    Article  ADS  Google Scholar 

  • Chou JJ, Bax A (2001) Protein side-chain rotamers from dipolar couplings in a liquid crystalline phase. J Am Chem Soc 123:3844–3845

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Czinki E, Csaszar AG (2007) Empirical isotropic chemical shift surfaces. J Biomol NMR 38:269–287

    Article  Google Scholar 

  • de Dios AC, Pearson JG, Oldfield E (1993) Secondary and tertiary structural effects on protein NMR chemical shifts—an ab initio approach. Science 260:1491–1496

    Article  ADS  Google Scholar 

  • Dunbrack RL, Karplus M (1994) Conformational analysis of the backbone-dependent rotamer preferences of protein side-chains. Nature Structur Biol 1:334–340

    Article  Google Scholar 

  • Dzakula Z, Edison AS, Westler WM, Markley JL (1992a) Analysis of χ1 rotamer populations from NMR data by the Cupid method. J Am Chem Soc 114:6200–6207

    Article  Google Scholar 

  • Dzakula Z, Westler WM, Edison AS, Markley JL (1992b) The Cupid method for calculating the continuous probability- distribution of rotamers from NMR data. J Am Chem Soc 114:6195–6199

    Article  Google Scholar 

  • Ester, M, Kriegel, HP, Sander, J and Xu, XW (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the second international conference on knowledge discovery and data mining (KDD-96). In: Simoudis E, Han J, Fayyad UM, AAAI Press: 226–231

  • Ginzinger SW, Coles M (2009) SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database. J Biomol NMR 43:179–185

    Article  Google Scholar 

  • Haigh CW, Mallion RB (1979) Ring current theories in nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc 13:303–344

    Article  Google Scholar 

  • Han B, Liu YF, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57

    Article  Google Scholar 

  • Huang KY, Amodeo GA, Tong LA, McDermott A (2012) The structure of human ubiquitin in 2-methyl-2,4-pentanediol: a new conformational switch. Protein Sci 20:630–639

    Article  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  Google Scholar 

  • Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131:13894–13895

    Article  Google Scholar 

  • Koonin EV, Galperin MY (eds) (2003) Sequence - Evolution - Function: Computational Approaches in Comparative Genomics. Boston, Kluwer Academic

    Google Scholar 

  • Kryshtafovych A, Fidelis K, Moult J (2011) CASP9 results compared to those of previous CASP experiments. Proteins-Struct Funct Bioinformat 79:196–207

    Article  Google Scholar 

  • Kuszewski J, Qin J, Gronenborn AM, Clore GM (1995) The impact of direct refinement against 13Cα and 13Cβ chemical-shifts on protein-structure determination by NMR. J Magn Reson Ser B 106:92–96

    Article  Google Scholar 

  • Li DW, Bruschweiler R (2012) PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles. J Biomol NMR 54:257–265

    Article  Google Scholar 

  • Li DW, Brüschweiler R (2010) Certification of molecular dynamics trajectories with NMR chemical shifts. J Physic Chem Lett 1:246–248

    Article  Google Scholar 

  • Markley JL, Ulrich EL, Berman HM, Henrick K, Nakamura H, Akutsu H (2008) BioMagResBank (BMRB) as a partner in the worldwide protein data bank (wwPDB): new policies affecting biomolecular NMR depositions. J Biomol NMR 40:153–155

    Article  Google Scholar 

  • Miclet E, Boisbouvier J, Bax A (2005) Measurement of eight scalar and dipolar couplings for methine-methylene pairs in proteins and nucleic acids. J Biomol NMR 31:201–216

    Article  Google Scholar 

  • Mittermaier A, Kay LE (2001) χ1 torsion angle dynamics in proteins from dipolar couplings. J Am Chem Soc 123:6892–6903

    Article  Google Scholar 

  • Moon S, Case DA (2007) A new model for chemical shifts of amide hydrogens in proteins. J Biomol NMR 38:139–150

    Article  Google Scholar 

  • Neal S, Nip AM, Zhang HY, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J Biomol NMR 26:215–240

    Article  Google Scholar 

  • Nielsen JT, Eghbalnia HR, Nielsen NC (2012) Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Prog Nucl Magn Reson Spectrosc 60:1–28

    Article  Google Scholar 

  • Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M (2010) Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure 18:923–933

    Article  Google Scholar 

  • Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70 percent accuracy. J Mol Biol 232:584–599

    Article  Google Scholar 

  • Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M (2011) Structure-based prediction of methyl chemical shifts in proteins. J Biomol NMR 50:331–346

    Article  Google Scholar 

  • Saito H (1986) Conformation-dependent 13C chemical shifts—A new means of conformational characterization as obtained by high resolution solid state 13C NMR. Magn Reson Chem 24:835–852

    Article  Google Scholar 

  • Schmidt JM (2012) Transforming between discrete and continuous angle distribution models: application to protein χ1 torsions. J Biomol NMR 54:97–114

    Article  Google Scholar 

  • Shapovalov MV, Dunbrack RL (2011) A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19:844–858

    Article  Google Scholar 

  • Shen Y, Bax A (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38:289–302

    Article  Google Scholar 

  • Shen Y, Bax A (2010) SPARTA-plus : a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22

    Article  Google Scholar 

  • Shen Y, Bax A (2012) Identification of helix capping and beta-turn motifs from NMR chemical shifts. J Biomol NMR 52:211–232

    Article  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009a) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  Google Scholar 

  • Shen Y, Vernon R, Baker D, Bax A (2009b) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78

    Article  Google Scholar 

  • Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492

    Article  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544

    Article  Google Scholar 

  • Vila JA, Aramini JM, Rossi P, Kuzin A, Su M, Seetharaman J, Xiao R, Tong L, Montelione GT, Scheraga HA (2008) Quantum chemical 13Cα chemical shift calculations for protein NMR structure determination, refinement, and validation. Proc Natl Acad Sci USA 105:14389–14394

    Article  ADS  Google Scholar 

  • Vila JA, Arnautova YA, Martin OA, Scheraga HA (2009) Quantum-mechanics-derived 13Cα chemical shift server (CheShift) for protein structure validation. Proc Natl Acad Sci USA 106:16972–16977

    Article  ADS  Google Scholar 

  • Vila JA, Serrano P, Wuethrich K, Scheraga HA (2010) Sequential nearest-neighbor effects on computed 13Cα chemical shifts. J Biomol NMR 48:23–30

    Article  Google Scholar 

  • Villegas ME, Vila JA, Scheraga HA (2007) Effects of side-chain orientation on the 13C chemical shifts of antiparallel beta-sheet model peptides. J Biomol NMR 37:137–146

    Article  Google Scholar 

  • Williamson MP, Asakura T (1993) Empirical comparisons of models for chemical-shift calculation in proteins. J Magn Reson B 101:63–71

    Article  Google Scholar 

  • Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Magn Reson Spectrosc 58:62–87

    Article  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333

    Article  Google Scholar 

  • Xu XP, Case DA (2001) Automated prediction of 15N, 13Cα, 13Cβ and 13C’ chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333

    Article  Google Scholar 

Download references

Acknowledgments

We thank Frank Delaglio for assistance and useful discussions. This work was funded by the Intramural Research Program of the NIDDK, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ad Bax.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1039 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56, 227–241 (2013). https://doi.org/10.1007/s10858-013-9741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9741-y

Keywords

Navigation