Skip to main content

Application of Bioinoculants for Sustainable Agriculture

  • Chapter
  • First Online:
Probiotics and Plant Health

Abstract

Agriculture provides the principle means of livelihood for the majority of the Indian population. Hence, there is a need for sustainable agriculture which can be achieved by engineering/manipulating the rhizospheric microflora. The use of biofertilizers (plant growth-promoting rhizobacteria and fungus) is cost-effective and eco-friendly which helps in mobilization of soil nutrients, increasing drought resistance and biocontrol over conventional fertilizers. Application of bioinoculants to the host plants serves as a biofertilizer (P solubilization), a biostimulator (phytohormone production), a stress regulator (drought and salinity), and a biocontrol agent (against phytopathogens). Further research on the exploitation of bioinoculants can be used as an innovative technology in organic farming for better crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achatz B, Kogel K-H, Franken P, Waller F (2010) Piriformospora indica mycorrhization increases grain yield by accelerating early development of barley plants. Plant Signal Behav 5(12):1685–1687

    Article  PubMed  PubMed Central  Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorous uptake in Wheat (Triticum aestivum). Int J Agric Biol 10(1):85–88

    CAS  Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Al-Khaliel AS (2010) Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant Soil Environ 56:318–324

    CAS  Google Scholar 

  • Altinok HH, Dikilitas M, Yildiz HN (2013) Potential of Pseudomonas and Bacillus isolates as biocontrol agents against fusarium wilt of eggplant. Biotechnol Biotechnol Equip 27(4):3952–3958

    Article  CAS  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño AM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Arvin P, Vafabakhsh J, Mazaheri D, Noormohamadi G, Azizi M (2012) Study of drought stress and plant growth promoting rhizobacteria (PGPR) on yield, yield components and seed oil content of different cultivars and species of Brassica oilseed rape. Ann Biol Res 3(9):4444–4451

    Google Scholar 

  • Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant 44(5):373–383

    Article  CAS  Google Scholar 

  • Aseri GK, Jain N, Tarafdar JC (2009) Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi-arid soils of India. Am-Eurasian J Agric Environ Sci 5:564–570

    CAS  Google Scholar 

  • Augé RM, Moore JL (2005) Arbuscular mycorrhizal symbiosis and plant drought resistance In: Mehrotra VS (ed) Mycorrhiza: role and applications. Allied Publishers Limited, New Delhi, pp 136–157

    Google Scholar 

  • Bagde US, Prasad R, Varma A (2011) Influence of culture filtrate of Piriformospora indica on growth and yield of seed oil in Helianthus annuus. Symbiosis 53(2):83–88

    Article  Google Scholar 

  • Bagheri AA, Saadatmand S, Niknam V, Nejadsatari T, Babaeizad V (2013) Effect of endophytic fungus, Piriformospora indica on growth and activity of antioxidant enzymes of rice (Oryzae sativa L) under salinity stress. Int J Biomed Adv Res 11:1337–1350

    Google Scholar 

  • Balaz M, Vosatka M (1997) Effect of Mycorrhiza and different forms of phosphorous on the growth of Calamagrostis villosa. Biol Plantarum 39:281–288

    Article  Google Scholar 

  • Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234–243

    Article  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bharucha U, Patel K, Trivedi UB (2013) Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric Res 2:215–221

    Article  CAS  Google Scholar 

  • Biermann B, Linderman RG (1983) Increased geranium growth using pre-transplant inoculation with a mycorrhizal fungus. J Am Soc Hortic Sci 108:972–976

    Google Scholar 

  • Bilkay IS, Åžafak K, Nilüfer A (2010) Indole-3-acetic acid and gibberellic acid production in Aspergillus niger. Turk J Biol 34:313–318

    CAS  Google Scholar 

  • BoÄŸa A, Binokay S, Sertdemir Y (2009) The toxicity and teratogenicity of gibberellic acid (GA3) based on the frog embryo teratogenesis assay-Xenopus (FETAX). Turk J Biol 33:181–188

    Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Chandanie W, Kubota M, Hyakumachi M (2006) Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant and Soil 286:209–217

    Article  CAS  Google Scholar 

  • Cruz AF, Ishii T, Matsumoto I, Kadoya K (2002) Network establishment of vesicular arbuscular mycorrhizal hyphae in the rhizosphere between trifoliate orange and some plants. J Jpn Soc Hortic Sci 71:19–25

    Article  Google Scholar 

  • Datta C, Basu P (2000) lndole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub Cajanus cajan. Microbiol Res 155:123–127

    Article  CAS  PubMed  Google Scholar 

  • De-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer. Water Res 38:4222–4246

    Article  CAS  PubMed  Google Scholar 

  • Deubel A, Merbach W (2005) Influence of microorganisms on phosphorus bioavailability in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, p 62

    Google Scholar 

  • Dhara PS, Hemangi GC, Vijay MK, Dilip DD, Balu AC (2009) Isolation and characterization of Indole acetic acid producing Klebsiella pneumonia strain from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Boil 47:993–1000

    Google Scholar 

  • Dong HZ, Cohen Y (2002) Dry mycelium of Penicillium chrysogenum induces resistance against Verticillium wilt and enhances growth of cotton plants. Phytoparasitica 30:147–157

    Article  Google Scholar 

  • Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161

    Article  CAS  Google Scholar 

  • Druege U, Baltruschat H, Franken P (2007) Piriformospora indica promotes adventitious root formation in cuttings. Sci Hortic 112:422–426

    Article  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20(3):191–200

    Article  PubMed  Google Scholar 

  • Fatima Z, Saleemi M, Zia M, Sultan T, Aslam M, Riaz-Ur-Rehman, Chaudhary MF (2009) Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. Afr J Biotechnol 8(2):219–225

    Google Scholar 

  • Fernandez LA, Zalba P, Gomez MA, Sagardoy MA (2007) Phosphate solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43:805–809

    Article  CAS  Google Scholar 

  • Ghahfarokhi RM, Goltapeh ME (2010) Potential of the root endophytic fungus Piriformospora indica; Sebacina vermifera and Trichoderma species in biocontrol of take-all disease of wheat Gaeumannomyces graminis var tritici in vitro. J Agric Technol 6(1):11–18

    Google Scholar 

  • Gosal SK, Karlupia A, Gosal SS, Chhibba IM, Varma A (2010) Biotization with Piriformospora indica and P fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated chlorophytum Sp. Indian J Biotechnol 9:289–297

    CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh A, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hashem A, AbdAllah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242

    Article  Google Scholar 

  • Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L). J Saudi Soc Agric Sci 11(1):57–61

    Google Scholar 

  • Hemavathi VN, Sivakumr BS, Suresh CK, Earanna N (2006) Effect of Glomus fasciculatum and plant growth promoting rhizobacteria on growth and yield of Ocimum basilicum. Karnataka J Agric Sci 19:17–20

    Google Scholar 

  • Hilbert M, Lars M, Yi D, Jorg H, Monica S, Zuccaroa A (2012) Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol 196:520–534

    Article  CAS  PubMed  Google Scholar 

  • Hilbert M, Nostadta R, Zuccaroa A (2013) Exogenous auxin affects the oxidative burst in barley roots colonized by Piriformospora indica. Plant Signal Behav 8(4):e235721–e235721

    Article  CAS  Google Scholar 

  • Hossein KD, Ebrahim MG, Ahmad M, Varma A (2012) Evaluation of different densities of auxin and endophytic fungi (Piriformospora indica and Sebacina vermifera) on Mentha piperita and Thymus vulgaris growth. Afr J Biotechnol 11(7):1644–1650

    Google Scholar 

  • Husaini AM, Abdin MZ, Khan SY, Xu W, Aquil S, Anis M (2012) Modifying strawberry for better adaptability to adverse impact of climate change. Curr Sci 102(12):1660–1673

    CAS  Google Scholar 

  • Idris EES, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

    Article  CAS  PubMed  Google Scholar 

  • Ivanova I, Bojinova D, Nedialkova K (2006) Rock phosphate solubilization by soil bacteria. J Univ Chem Technol Metallurgy 41(3):297–302

    CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil J Agric Res 73(3):213–219

    Article  Google Scholar 

  • Jogawat A, Shreya S, Madhunita B, Vikram D, Kumar M, Meenakshi D, Varma A, Oelmüller R, Narendra T, Kumar AJ (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8(10):e26891–e26896

    Article  PubMed Central  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205(1):25–44

    Article  CAS  Google Scholar 

  • Jupe SC, Causton DR, Scott IM (1988) Cellular basis of the effects of gibberellin and the pro gene on stem growth in tomato. Planta 174:106–111

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7(11):1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kanchana D, Jayanthi M, Kanchana D, Saranraj P, Sujitha D (2013) Evaluation of plant growth promoting substance production by Azospirillum sp isolated from rhizosphere of Chilli (Capsicum annuum L). Int J Microbiol Res 4(3):300–304

    CAS  Google Scholar 

  • Kang SC, Pandey P, Khillon R, Maheshwari DK (2008) Process of rock phosphate solubilization by Aspergillus sp PS 104 in soil amended medium. J Environ Biol 29(5):743–746

    CAS  PubMed  Google Scholar 

  • Khin ML, Moe MM, Tar T, Aung WZM (2012) Isolation of plant hormone (indole-3-acetic acid – IAA) producing rhizobacteria and study on their effects on maize seedling. Eng J 16(5):137–144

    Article  Google Scholar 

  • Kiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, O’Gara F (2006) Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microb Ecol 51:257–266

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Jordan DD, McDonald GA (1997) Solubilization of hydroxyapatite by Khan et al: phosphorus solubilizing bacteria for crop production 56 Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352

    Article  CAS  Google Scholar 

  • Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155:780–790

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sahai V, Bisaria VS (2012) Production of amylase and Chlamydospores by Piriformospora indica, a root endophytic fungus. Biocatal Agric Biotechnol 1:124–128

    CAS  Google Scholar 

  • Lenin G, Jayanthi M (2012) Indole acetic acid, gibberellic acid and siderophore production by PGPR isolates from rhizospheric soils of Catharanthus roseus. Int J Pharm Biol Sci Arch 3(4):933–938

    Google Scholar 

  • Lwin KM, Myint MM, Tar T, Aung WZM (2012) Isolation of plant hormone (indole-3-acetic acid – IAA) producing rhizobacteria and study on their effects on maize seedling. Eng J 16(5):137–144

    Article  Google Scholar 

  • Malla R, Prasad R, Kumari R, Giang PH, Pokharel U, Oelmüller R, Varma A (2004) Phosphorus solubilizing symbiotic fungus: Piriformospora indica endocytobiosis. Cell Res 15(2):579–600

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G et al (2009) Coinoculation of the endophytic fungus Piriformospora indica with the phosphate solubilising bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46:169–174

    Article  CAS  Google Scholar 

  • Mehrvarz S, Chaichi MR, Alikhani HA (2008) Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of barley (Hordeum vulgare L). Am-Eurasian J Agric Environ Sci 3(6):822–828

    Google Scholar 

  • Mishra N, Sundari KS (2015) Native PGPM consortium: a beneficial solution to support plant growth in the presence of phytopathogens and residual organophosphate pesticides. J Bioproces Biotech 5(2):1–8

    Google Scholar 

  • Molitor A, Zajic D, Voll LM, Pons-Kühnemann J, Samans B, Kogel K-H, Waller F (2011) Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica–mediated systemic induced resistance to powdery mildew. Mol Plant Microbe Interact 24(12):1427–1439

    Article  CAS  PubMed  Google Scholar 

  • Murali M, Amruthesh KN, Sudisha J, Niranjana SR, Shetty HS (2012) Screening for plant growth promoting fungi and their ability for growth promotion and induction of resistance in pearl millet against downy mildew disease. J Phytol 4(5):30–36

    Google Scholar 

  • Nadeem S, Zahir Z, Naveed M, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Am J 74(2):533–542

    Article  CAS  Google Scholar 

  • Nain L, Rana A, Joshi M, Jadhav SD, Kumar D et al (2009) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230

    Article  CAS  Google Scholar 

  • Nath R, Sharma GD, Barooah M (2012) Efficiency of tricalcium phosphate solubilization by two different endophytic Penicillium sp isolated from tea (Camellia sinensis L). Eur J Exp Biol 2(4):1354–1358

    CAS  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    Article  CAS  PubMed  Google Scholar 

  • Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+− induced cytosolic Ca2+ transients and stomatal closure. Plant J 53:988–998

    Article  CAS  PubMed  Google Scholar 

  • Ögüt M, Akdag C, Düzdemir O, Sakin MA (2005) Single and double inoculation with Azospirillum/Trichoderma: the effects on dry bean and wheat. Biol Fertil Soils 41:262–272

    Article  Google Scholar 

  • Ona O, Van Impe J, Prinsen E, Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246:125–132

    Article  CAS  PubMed  Google Scholar 

  • Pandya ND, Desai PV (2014) Screening and characterization of GA3 producing Pseudomonas monteilii and its impact on plant growth promotion. Int J Curr Microbiol App Sci 3(5):110–115

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effect on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Lee CY, Son HJ (2009) Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett Appl Microbiol 49:222–228

    Article  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Peskan-Berghofera T, Shahollari B, Giong PH, Hehl S, Markerta C, Blanked V, Kost G, Varma A, Oelmullera R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122:465–477

    Article  CAS  Google Scholar 

  • Polanco LR, Rodrigues FA, Nascimento KJT, Cruz MFA, Curvelo CRS, DaMatta FM, Vale FXR (2014) Photosynthetic gas exchange and antioxidative system in common bean plants infected by Colletotrichum lindemuthianum and supplied with silicon. Trop Plant Pathol 39(1):035–042

    Article  Google Scholar 

  • Ponmurugan P, Gopi C (2006) Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. J Agron 5:600–604

    Article  Google Scholar 

  • Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruíz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi: a review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Prasad R, Bagde US, Puspangadan P, Varma A (2008) Bacopa monnieri L: pharmacological aspects and case study involving Piriformospora indica. Int J Integr Biol 3(2):100–110

    CAS  Google Scholar 

  • Rai MK (2010) Review: biotechnological strategies for conservation of rare and endangered medicinal plants. Biodiversitas 11(3):157–166

    Article  Google Scholar 

  • Rai M, Varma A (2005) Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. Electron J Biotechnol 8(1):107–112

    Article  Google Scholar 

  • Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  PubMed  Google Scholar 

  • Rathod DP, Brestic M, Shao HB (2011) Chlorophyll a fluorescence determines the drought resistance capabilities in two varieties of mycorrhized and non-mycorrhized Glycine max Linn. Afr J Microbiol Res 5(24):4197–4206

    Article  CAS  Google Scholar 

  • Ray JG, Valsalakumar N (2010) Arbuscular mycorrhizal fungi and Piriformospora indica individually and in combination with Rhizobium on green gram. J Plant Nutr 33:285–298

    Article  CAS  Google Scholar 

  • Resende MP, Jakoby ICMC, dos Santos LCR, Soares MA, Pereira FD, Souchie EL et al (2014) Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of guanandi (Calophyllum brasiliense Cambess). Afr J Microbiol Res 8:2616–2623

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2007) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Dev Plant Soil Sci 102:15–21

    Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress new perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ryu R, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by 4 TyrR in Enterobacter cloacae UW5. Am Soc Microbiol 190(21):1–35

    Google Scholar 

  • Saber Z, Pirdashti H, Heidarzade A (2013) Plant growth promoting rhizobacteria effects on yield and yield components of four rapeseed (Brassica napus L) cultivars under salt condition. Int J Agric Crop Sci 5(17):1869–1873

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sanchez MR, Aroca R, Munoz Y, Polon R, Lozano JMR (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869

    Article  CAS  Google Scholar 

  • Sattar MA, Rahman MF, Das DK, Choudhury TMAA (2008) Prospects of using Azotobacter, Azospirillum and Cyanobacteria as supplements of urea nitrogen for rice production in Bangladesh. In: Proceedings of Australia Centre for International Agricultural Research, no 130, pp 59–66

    Google Scholar 

  • Schachtman DP, Goodger JQD (2008) Chemical root to shoot signalling under drought. Trends Plant Sci 13:281–287

    Article  CAS  PubMed  Google Scholar 

  • Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kuhnemann J, Sonnewald S, Sonnewald U, Kogel K-H (2009) ‘Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica’. The Plant Journal, 59: 461–474.

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–666

    Article  PubMed  Google Scholar 

  • Serfling A, Wirsel SGR, Lind V, Deising H (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field condition. Phytopathology 97:523–531

    Article  CAS  PubMed  Google Scholar 

  • Sirrenberg A, Gobel C, Gron S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussnera I, Pawlowskia K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589

    Article  CAS  PubMed  Google Scholar 

  • Sudadi S (2012) Exogenous application of tryptophan and indole acetic acid (IAA) to induce root nodule formation and increase yield of soybean. Agric Sci Res J 2(4):134–139

    Google Scholar 

  • Sudharani M, Shivaprakash MK, Prabhavathi MK (2014) Role of consortia of biocontrol agents and PGPR s in the production of cabbage under nursery condition. Int J Curr Microbiol App Sci 3(6):1055–1064

    Google Scholar 

  • Tajini F, Trabelsi M, Drevon JJ (2011) Co-inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases P use efficiency for N2 fixation in common bean under P deficiency in hydroaeroponic culture. Symbiosis 53:123–129

    Article  CAS  Google Scholar 

  • Tallapragada P, Dikshit R, Seshagiri S (2015a) Isolation and optimization of IAA producing Burkholderia seminalis and its effect on seedlings of tomato Songklanakarin. J Sci Technol 37(5):553–559

    CAS  Google Scholar 

  • Tallapragada P, Dikshit R, Seshagiri S (2015b) Effect of Rhizophagus spp and plant growth-promoting Acinetobacter junii on Solanum lycopersicum and Capsicum annuum. Braz J Bot 38(2):273–280

    Article  Google Scholar 

  • Tanwar A, Aggarwal A, Kadian N, Gupta A (2013) Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annuum L. J Soil Sci Plant Nutr 13(1):55–66

    Google Scholar 

  • Tejera NA, Soussi M, Lluch C (2006) Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic condition. Environ Exp Bot 58:17–24

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Upadhyay A, Srivastava S (2010) Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd. Indian J Exp Biol 48(6):601–609

    CAS  PubMed  Google Scholar 

  • Uthandi S, Karthikeyan S, Sabarinathan KG (2010) Gibberellic acid production by Fusarium fujikuroi SG2. J Sci Ind Res 69:211–214

    CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Dyé FW, Combaret CP (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4(356):1–19

    Google Scholar 

  • Vadassery J, Ranf S, Drzewiecki C, Mithofer A, Mazars C, Scheel D, Lee J, Oelmuller R (2009) A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J 59:193–206

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velazquez E et al (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    Article  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Varma A, Savita V, Sudha Sahay N, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant–growth–promoting root endophyte. Appl Environ Microbiol 65(6):2741–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K-H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt–stress tolerance, disease resistance, and higher yield. Proc Natl Acad Soc U S A 102(38):13386–13391

    Article  CAS  Google Scholar 

  • Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, Schäfer P, Kogel KH (2008) Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J Plant Physiol 165:60–70

    Article  CAS  PubMed  Google Scholar 

  • Waqas M, Khana AL, Hamayuna M, Shahzada R, Kanga S-M, Kime J-G, Leea I-J (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10(1):280–287

    Article  CAS  Google Scholar 

  • Yadav BK, Tarafdar JC (2011) Penicillium Purpurogenum, unique P mobilizers in arid agro-ecosystems. Arid Land Res Manag 25(1):87–99

    Article  CAS  Google Scholar 

  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in the phosphate transport to the host plant. J Biol Chem 285(34):26532–26544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim E, Turan M, Donmez MF (2008) Mitigation of salt stress in radish (Raphanus sativus L) by plant growth promoting rhizobacteria. Rom Biotechnol Lett 13(5):3933–3943

    Google Scholar 

  • Yooyongwech S, Phaukinsang N, Cha-Um S, Supaibulwatana K (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul 69:285–293

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram – Bradyrhizobium symbiosis. Turk J Agric 30:223–230

    CAS  Google Scholar 

  • Zarea MJ, Hajinia S, Karimi N, Goltapeh EM, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmavathi Tallapragada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tallapragada, P., Seshagiri, S. (2017). Application of Bioinoculants for Sustainable Agriculture. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_22

Download citation

Publish with us

Policies and ethics