Skip to main content

Advertisement

Log in

An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Results are presented from the first intercomparison of large-eddy simulation (LES) models for the stable boundary layer (SBL), as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative. A moderately stable case is used, based on Arctic observations. All models produce successful simulations, in as much as they generate resolved turbulence and reflect many of the results from local scaling theory and observations. Simulations performed at 1-m and 2-m resolution show only small changes in the mean profiles compared to coarser resolutions. Also, sensitivity to subgrid models for individual models highlights their importance in SBL simulation at moderate resolution (6.25 m). Stability functions are derived from the LES using typical mixing lengths used in numerical weather prediction (NWP) and climate models. The functions have smaller values than those used in NWP. There is also support for the use of K-profile similarity in parametrizations. Thus, the results provide improved understanding and motivate future developments of the parametrization of the SBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andren A. (1995). ‘The Structure of Stably Stratified Atmospheric Boundary Layes: A Large-Eddy Simulation Study’. Quart. J. Roy. Meterol. Soc. 121: 961–985

    Article  Google Scholar 

  • Beare R.J. and MacVean M.K. (2004). ‘Resolution Sensitivity and Scaling of Large-Eddy Simulations of the Stable Boundary Layer’. Boundary-Layer Meteorol. 112: 257–281

    Article  Google Scholar 

  • Beljaars A.C.M. and Holtslag A.A.M. (1991). Flux Parameterization Over Land Surfaces for Atmospheric Models’. J. Appl. Meteorol 30: 327–341

    Article  Google Scholar 

  • Brost R.A. and Wyngaard J.C. (1978). ‘A Model Study of the Stably Stratified Planetary Boundary Layer’. J. Atmos. Sci 35: 1427–1440

    Article  Google Scholar 

  • Brown A.R. (1999). ‘The Sensitivity of Large-Eddy Simulations of Shallow Cumulus Convection to Resolution and Subgrid Model’. Quart. J. Roy. Meteorol. Soc 125: 469–482

    Article  Google Scholar 

  • Brown A.R., Cederwall R.T., Chlond A., Duynkerke P., Golaz J.-C., Khairoutdinov M., Lewellen D.C., Lock A.P., MacVean M.K., Moeng C.-H., Neggers R.A.J., Siebesma A.P. and Stevens B. (2002). ‘Large-Eddy Simulation of the Diurnal Cycle of Shallow Cumulus Convection Over Land’. Quart. J. Roy. Meteorol. Soc. 128: 1075–1093

    Article  Google Scholar 

  • Brown A.R., Derbyshire S.H. and Mason P.J. (1994). ‘Large-Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model’. Quart. J. Roy. Meteorol. Soc. 120: 1485–1512

    Article  Google Scholar 

  • Cuijpers J.W.M. and Duynkerke P.G. (1993). ‘Large Eddy Simulation of Trade Wind Cumulus Clouds’. J. Atmos. Sci. 50: 3894–3908

    Article  Google Scholar 

  • Cuxart J., Bougeault P. and Redelsperger J.L. (2000). ‘A Turbulence Scheme Allowing for Mesoscale and Large-Eddy Simulations’. Quart. J. Roy. Meteorol. Soc. 126: 1–30

    Article  Google Scholar 

  • Dosio A., Holtslag A.A.M., Builtjes P.J.H. and Arellano J.V.G. (2003). ‘Dispersion of a Passive Tracer in Buoyancy- and Shear-Driven Boundary Layers’. J. Appl. Meteorol. 42: 1116–1130

    Article  Google Scholar 

  • Esau, I.: 2004, ‘Simulation of Ekman Boundary Layers by Large Eddy Model with Dynamic Mixed Subfilter Closure’, J. Environ. Fluid Mech. 4, in press

  • Galmarini S., Beets C., Duynkerke P.G. and Arellano J.V.-G. (1998). ‘Stable Nocturnal Boundary Layers: a Comparison of One-dimensional and Large-Eddy Simulation Models’. Boundary-Layer Meteorol. 88: 181–210

    Article  Google Scholar 

  • Grant A.L.M. (1997). ‘An Observational Study of the Evening Transition Boundary-layer’. Quart. J. Roy. Meteorol. Soc. 123: 657–677

    Article  Google Scholar 

  • Grimsdell A.W. and Angevine W.M. (2002). ‘Observations of the Afternoon Transition of the Convective Boundary Layer’. J. Appl. Meteorol. 41: 3–11

    Article  Google Scholar 

  • Hodur R.M. (1997). ‘The Naval Research Laboratory’s Coupled Ocean/Atmosphere MesoScale Prediction System(COAMPS)’. Mon. Wea. Rev. 117: 1414–1430

    Article  Google Scholar 

  • Holtslag, A. A. M.: 1998, ‘Modelling Atmospheric Boundary Layers’, in A. A. M. Holtslag and P. G. Duynkerke, (eds.), Clear and Cloudy Boundary Layers, Proceedings of the Academy colloquim held in Amsterdam, August 1997, Chapter 4, pp. 85–110

  • Holtslag A.A.M. (2003). ‘GABLS Initiates Intercomparison for Stable Boundary Layer Case’. GEWEX News 13: 7–8

    Google Scholar 

  • Holtslag A.A.M. and Nieuwstadt F.T.M. (1986). ‘Scaling the Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 36: 201–209

    Article  Google Scholar 

  • Khairoutdinov M.F. and Randall D.A. (2003). ‘Cloud Resolving Modeling of the ARM Summer 1997 IOP.: Model Formulation, Results, Uncertainties and Sensitivities’. J. Atmos. Sci. 60: 607–625

    Article  Google Scholar 

  • King J.C., Connolley W.M. and Derbyshire S.H. (2001). ‘Sensitivity of Modelled Antarctic Climate to Surface and Boundary-Layer Flux Parametrizations’. Quart. J. Roy. Meteorol. Soc. 127: 779–794

    Article  Google Scholar 

  • Koren B. (1993). ‘A Robust Upwind Discretization Method for Advection, Diffusion and Source Terms’. Notes Numer. Fluid Mech. 45: 117–138

    Google Scholar 

  • Kosovic B. (1997). ‘Subgrid-scale Modelling for the Large-Eddy Simulation of High-Reynolds-Number Boundary Layers’. J. Fluid Mech. 336: 151–182

    Article  Google Scholar 

  • Kosovic B. and Curry J.A. (2000). ‘A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer’. J. Atmos. Sci. 57: 1052–1068

    Article  Google Scholar 

  • Lewellen D.C. and Lewellen W.S. (1998). ‘Large-Eddy Boundary Layer Entrainment’. J. Atmos. Sci. 55: 2645–2665

    Article  Google Scholar 

  • Lewellen D.C., Lewellen W.S. and Xia J. (2000). ‘The Influence of a Local Swirl Ratio on Tornado Intensification near the Surface’. J. Atmos. Sci. 57: 527–544

    Article  Google Scholar 

  • Lilly D.K. (1967). ‘The Representation of Small-Scale Turbulence in Numerical Simulation Experiments’, Proc, IBM Scientific Computing Symp. Environ. Sci, pp. 195–210

  • Louis J.F. (1979). ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’. Boundary-Layer Meteorol. 17: 187–202

    Article  Google Scholar 

  • Mahrt L. (1987). ‘Grid-Averaged Surface Fluxes’. Mon. Wea. Rev. 115: 1550–1560

    Article  Google Scholar 

  • Mason P.J. (1994). ‘Large-Eddy Simulation: A Critical Review of the Technique’. Quart. J. Roy. Meteorol. Soc. 120: 1–26

    Article  Google Scholar 

  • Mason P.J. and Derbyshire S.H. (1990). ‘Large-Eddy Simulation of the Stably-Stratified Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 53: 117–162

    Article  Google Scholar 

  • Moeng C.-H., Cotton W., Stevens B., Bretherton C., Rand H., Chlond A., Khairoutdinov M., Krueger S., Lewellen W., MacVean M., Pasquier J., Siebesma A. and Sykes R. (1996). ‘Simulation of a Stratocumulus-Topped Planetary Boundary Layer: Intercomparison among Different Numerical Codes’. Bull. Amer. Meteorol. Soc. 77: 261–278

    Article  Google Scholar 

  • Nieuwstadt F.T.M. (1984). ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’. J. Atmos. Sci. 41: 2202–2216

    Article  Google Scholar 

  • Nieuwstadt, F. T. M.: 1985, ‘A Model for the Stationary, Stable Boundary Layer’, in J. C. R. Hunt (ed.), Turbulence and Diffusion in Stable Environments, Oxford University Press, pp. 149–179

  • Persson P.O.G., Fairall C.W., Andreas E.L., Guest P.S. and Perovich D.K. (2002). ‘Measurements Near the Atmospheric Surface Flux Group Tower at SHEBA: Near Surface Conditions and Surface Energy Budget’. J. Geophys. Res. 107(C10): 8045

    Article  Google Scholar 

  • Poulos G.S., Blumen W., Fritts D.C., Lundquist J.K., Sun J., Burns S.P., Nappo C., Banta R., Newsom R., Cuxart J., Terradellas E., Balsley B. and Jensen M. (2002). ‘CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer’. Bull. Amer. Meteorol. Soc. 83: 555–581

    Article  Google Scholar 

  • Raasch S. and Etling D. (1991). ‘Numerical Simulations of Rotating Turbulent Thermal Convection’. Beitr. Phys. Atmos. 64: 185–199

    Google Scholar 

  • Raasch S. and Schröter M. (2001). ‘PALM – A Large-Eddy Simulation Model Performing on Massively Parallel Computers’. Meteorol. Z. 10: 363–372

    Article  Google Scholar 

  • Saiki E.M., Moeng C.-H. and Sullivan P.P. (2000). ‘Large-Eddy Simulation of the Stably Stratified Planetary Boundary Layer’. Boundary-Layer Meteorol. 95: 1–30

    Article  Google Scholar 

  • Sullivan P.P., McWilliams J.C. and Moeng C.-H. (1994). ‘A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows’. Boundary-Layer Meteorol. 71: 247–276

    Article  Google Scholar 

  • Troen I.B. and Mahrt L. (1986). ‘A Simple Model of the Atmospheric Boundary Layers: Sensitivity to Surface Evaporation’. Boundary-Layer Meteorol. 37: 129–148

    Article  Google Scholar 

  • Van de Wiel B.J.H., Moene A.F., Hartogensis O.K., Holtstlag A.A.M. and Bruin H.A.R. (2003). ‘Intermittent Turbulence in the Stable Boundary Layer Over Land Part III: A Classification for Observations During CASES-99’. J. Atmos. Sci. 60: 2509–2522

    Article  Google Scholar 

  • Vogelezang D.H.P. and Holtslag A.A.M. (1996). ‘Evaluation and Model Impacts of Alternative Boundary-Layer Height Formulations’. Boundary-Layer Meteorol. 81: 245–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Beare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beare, R.J., Macvean, M.K., Holtslag, A.A.M. et al. An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer. Boundary-Layer Meteorol 118, 247–272 (2006). https://doi.org/10.1007/s10546-004-2820-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-2820-6

Keywords

Navigation