Skip to main content

Fundamental Facets of Somatic Embryogenesis and Its Applications for Advancement of Peanut Biotechnology

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 1

Abstract

Peanut (Arachis hypogaea Linn.) is one of the most vital crops providing predominant supply of protein, vitamins and fats, along with other necessary nutrients. Various factors, responsible for induction, maintenance, multiplication of the embryogenic cultures, as well as maturation and conversion of somatic embryos (SEs) into complete plants have been discussed in this review. In order to find the present trends and thriving methodologies for the development of somatic embryogenesis, a lot of emphasis has been given to the economically important species. It has been reported that from young meristematic tissues like immature embryos and leaves of legumes, SE can be induced comparatively in a easier way. However, there are multiple constraints that limit the usage of somatic embryogenesis-based biotechnological applications on legumes, such as low rate of embryo formation, reduced germination, inadequate conversion into plantlets and somaclonal variation. These hindrances, nonetheless, may significantly be diminished in future, since the effective plant growth regulators with specific morphogenic targets are becoming available for experimental purposes. Existing reports reveal that somatic embryogenic systems, having superior germination and regeneration ability shall have direct usage in large-scale propagation and several other crop improvement features. With increasing knowledge of different morphogenic processes, involving differentiation of zygotic embryos, it is possible that improvement of this technology having practical efficacy may be applicable for the important peanut genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-dichlorophenoxy acetic acid

IAA:

indole-3-acetic acid

B5:

Gamborg’s medium

BA:

N6-benzyladenine

BAP:

N6-benzylaminopurine

BLB:

Bulbil-like body

CPPU:

forchlorfenuron

GA3 :

Gibberellin A3

IBA:

indole-3-butyric acid

Kinetin:

6-furfurylaminopurine

MS:

Murashige and Skoog

MZEL:

Mature zygotic embryo-derived leaflet

NAA:

α-naphthalene acetic acid

PEDCs:

Pre-embryogenic determined cells

PGR:

Plant growth regulator

SE:

Somatic embryo

TDZ:

N-phenyl-N′-(1,2,3-thiadiazol-5-yl) urea or thidiazuron

Zeatin:

4-hydroxy-3-methyl-terms-2-butenyl aminopurine

References

  • Athmaram TN, Bali G, Devaiah KM (2006) Integration and expression of bluetongue VP2 gene in somatic embryos of peanut through particle bombardment method. Vaccine 24:2994–3000

    Article  CAS  PubMed  Google Scholar 

  • Baker CM, Burns JA, Wetzstein HY (1994) Influence of photoperiod and medium formulation on peanut somatic embryogenesis. Plant Cell Rep 13:159–163

    PubMed  CAS  Google Scholar 

  • Baker CM, Durham RE, Burns JA, Parrott WA, Wetzstein HY (1995) High frequency somatic embryogenesis in peanut (Arachis hypogaea L.)using mature, dry seed. Plant Cell Rep 15:38–42

    Article  CAS  PubMed  Google Scholar 

  • Baker CM, Wetzstein HY (1992) Somatic embryogenesis and plant regeneration from leaflets of peanut, Arachis hypogaea. Plant Cell Rep 11:71–75

    Article  CAS  PubMed  Google Scholar 

  • Baker CM, Wetzstein HY (1994) Influence of auxin type and concentration on peanut somatic embryogenesis. Plant Cell Tissue Organ Cult 36:361–368

    Article  CAS  Google Scholar 

  • Baker CM, Wetzstein HY (1995) Repetitive somatic embryogenesis in peanut cotyledon cultures by continual exposure to 2,4-D. Plant Cell Tissue Organ Cult 40:249–254

    Article  CAS  Google Scholar 

  • Baker CM, Wetzstein HY (1998) Leaflet development, induction time, and medium influence somatic embryogenesis in peanut (Arachis hypogaea L.) Plant Cell Rep 17:925–929

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Hamill JD (2000) Ultrastructural studies of somatic embryos of Eucalyptus nitens and comparisons with zygotic embryos found in mature seeds. Ann Bot 86:237–244

    Article  Google Scholar 

  • Bhanumathi P, Ganesan M, Jayabalan N (2005) A simple and improved protocol for direct and indirect somatic embryogenesis of peanut (Arachis hypogaea L.) J Agr Tech 1:327–344

    Google Scholar 

  • Chen C (2003) Development of a heat transfer model for plant tissue culture vessels. Biosyst Eng 85:67–77

    Article  Google Scholar 

  • Chengalrayan K, Hazra S, Gallo-Meagher M, (2001) Histological analysis of somatic embryogenesis and organogenesis induced from mature zygotic embryo-derived leaflets of peanut (Arachis hypogaea L.). Plant Sci 161:415-421

    Article  CAS  Google Scholar 

  • Chengalrayan K, Mhaske VB, Hazra S (1997) High-frequency conversion of abnormal peanut somatic embryos. Plant Cell Rep 16:783–786

    Article  CAS  Google Scholar 

  • Chengalrayan K, Mhaske VB, Hazra S (1998) Genotypic control of peanut somatic embryogenesis. Plant Cell Rep 17:522–525

    Article  CAS  Google Scholar 

  • Chengalrayan K, Sathaye SS, Hazra S (1994) Somatic embryogenesis from mature embryo-derived leaflets of peanut (Arachis Hypogaea L.) Plant Cell Rep 13:578–581

    Article  CAS  PubMed  Google Scholar 

  • Durham RE, Parrott WA (1992) Repetitive somatic embryogenesis from peanut cultures in liquid medium. Plant Cell Rep 11:122–125

    Article  CAS  PubMed  Google Scholar 

  • Eapen S, George L (1993) Somatic embryogenesis in peanut: influence of growth regulators and sugars. Plant Cell Tissue Organ Cult 35:151–156

    Article  CAS  Google Scholar 

  • Eapen S, George L, Rao PS (1993) Plant regeneration through somatic embryogenesis in peanut (Arachis hypogaea L.) Biol Plant 35:499–504

    Article  Google Scholar 

  • FAO (2007) Quarterly bulletin of statistics, vol. 8(3/4). FAO, Rome

    Google Scholar 

  • Gamborg OL, Murashige T, Thorpe TA, Vasil IK (1976) Plant tissue culture media. In Vitro 12:473–478

    Article  CAS  PubMed  Google Scholar 

  • Gantait S, Das A, Mandal N (2015) Stevia: a comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech 17:95–106

    Article  Google Scholar 

  • Gantait S, Kundu S, Das PK (2016) Acacia: an exclusive survey on in vitro propagation. J Saudi Soc Agric Sci (Published Online). https://doi.org/10.1016/j.jssas.2016.03.004

    Google Scholar 

  • Gantait S, Sinniah UR, Das PK (2014) Aloe vera: a review update on advancement of in vitro culture. Acta Agric Scand Sect B Soil Plant Sci 64:1–12

    CAS  Google Scholar 

  • Gantait S, Vahedi M (2015) In vitro regeneration of high value spice Crocus sativus L.: a concise appraisal. J Appl Res Med Aromatic Plant 2:124–133

    Article  Google Scholar 

  • Gill R, Ozias-akins P (1999) Thidiazuron-induced highly morphogenic callus and high frequency regeneration of fertile peanut (Arachis hypogaea L.) plants. In Vitro Cell Dev Biol-Plant 35:445–450

    Article  Google Scholar 

  • Gill R, Saxena PK (1992) Direct somatic embryogenesis and regeneration of plants from seedling explants of peanut (Arachis hypogaea): promotive role thidiazuron. Can J Bot 70:1186–1192

    Article  CAS  Google Scholar 

  • Iqbal MM, Nazir F, Iqbal J, Tehrim S, Zafar Y (2011) In vitro micropropagation of peanut (Arachis hypogaea) through direct somatic embryogenesis and callus culture. Int J Agric Biol 13:811–814

    Google Scholar 

  • Jiang J, Xiong F, Tang X, Zhong R, He L, Li Z, Han Z, Tang R (2013) Effect of gibberellin, light and genotype on somatic embryogenesis and plantlet regeneration of peanut. Agric Biotechnol 2:12–16

    CAS  Google Scholar 

  • Joshi M, Sujatha K, Hazra S (2008) Effect of TDZ and 2, 4-D on peanut somatic embryogenesis and in vitro bud development. Plant Cell Tissue Organ Cult 94:85–90

    Article  CAS  Google Scholar 

  • Joshi MV, Sahasrabudhe NA, Hazra S (2003) Responses of peanut somatic embryos to thidiazuron. Biol Plant 46:187–192

    Article  CAS  Google Scholar 

  • Kaparakis G, Alderson PG (2002) Influence of high concentrations of cytokinins on the production of somatic embryos by germinating seeds of tomato, aubergine and pepper. J Hortic Sci Biotechnol 77:186–190

    Article  CAS  Google Scholar 

  • Kumar AS, Gamborg OL, Nabors MW (1988) Plant regeneration from cell suspension cultures of Vigna aconitifolia. Plant Cell Rep 7:138–141

    Article  CAS  PubMed  Google Scholar 

  • Little EL, Magbanua ZV, Parrott WA (2000) A protocol for repetitive somatic embryogenesis from mature peanut epicotyls. Plant Cell Rep 19:351–357

    Article  CAS  Google Scholar 

  • Livingstone DM, Birch RG (1999) Efficient transformation and regeneration of diverse cultivars of peanut (Arachis hypogaea L.) by particle bombardment into embryogenic callus produced from mature seeds. Mol Breed 5:43–51

    Article  Google Scholar 

  • McKently AH (1991) Direct somatic embryogenesis from axes of mature peanut embryos. In Vitro Cell Dev Biol-Plant 27:197–200

    Article  Google Scholar 

  • McKently AH (1995) Effect of genotype on somatic embryogenesis from axes of mature peanut embryos. Plant Cell Tissue Organ Cult 42:251–254

    Article  Google Scholar 

  • Mhaske VB, Chengalrayan K, Hazra S (1998) Influence of osmotica and abscisic acid on triglyceride accumulation in peanut somatic embryos. Plant Cell Rep 17:742–746

    Article  CAS  Google Scholar 

  • Mhaske VB, Hazra S (1994) Appearance of storage lipid (triglycerides) in somatic embryos of peanut (Arachis hypogaea L.) In Vitro Cell Dev Biol-Plant 30:113–116

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–495

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (1997) Modulation of mineral and free fatty acid profiles during thidiazuron mediated somatic embryogenesis in peanuts (Arachis hypogeae L.) J Plant Physiol WlL 151:358–361

    Article  CAS  Google Scholar 

  • Murch SJ, Victor JMR, Krishnaraj S, Saxena PK (1999) The role of proline in thidiazuron-induced somatic embryogenesis of peanut. In Vitro Cell Dev Biol-Plant 35:102–105

    Article  CAS  Google Scholar 

  • Murthy BNS, Saxena PK (1994) Somatic embryogenesis in peanut (Arachis hypogaea L.): stimulation of direct differentiation of somatic embryos by for chlorfenuron (CPPU). Plant Cell Rep 14:145–150

    PubMed  CAS  Google Scholar 

  • Muthusamy A, Vasanth K, Sivasankari D, Chandrasekar BR, Jayabalan N (2007) Effects of mutagens on somatic embryogenesis and plant regeneration in groundnut. Biol Plant 51:430–435

    Article  CAS  Google Scholar 

  • Okello DK, Akello LB, Tukamuhabwa P, Ochwo SM, Odong TL, Adriko J, Mwami C, Deom CM (2015) Regeneration procedure for three Arachis hypogaea L. botanicals in Uganda through embryogenesis. Br Biotechnol J 7:122–133

    Article  Google Scholar 

  • Ozias-Akins P (1989) Plant regeneration from immature embryos of peanut. Plant Cell Rep 8:217–218

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, Anderson WF, Holbrook CC (1992) Somatic embryogenesis in Arachis hypogaea L.: genotype comparison. Plant Sci 83:103–111

    Article  Google Scholar 

  • Ozias-Akins P, Schnall JA, Anderson WF, Singsit C, Clemente TE, Adang MJ, Weissingert AK (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 93:185–194

    Article  CAS  Google Scholar 

  • Pacheco G, Gagliardi RF, Carneiro LA, Callado CH, Valls JFM, Mansur E (2007) The role of BAP in somatic embryogenesis induction from seed explants of Arachis species from sections Erectoides and Procumbentes. Plant Cell Tissue Organ Cult 88:121–126

    Article  CAS  Google Scholar 

  • Radhakrishnan T, Murthy TGK, Chandran K, Bandyopadhyay A (2001) Somatic embryogenesis in Arachis hypogaea: revisited. Aust J Bot 49:735–759

    Article  Google Scholar 

  • Roja Rani A, Padmaja G (2005) A protocol for high frequency plant conversion from somatic embryos of peanut (Arachis hypogaea L. cv. DRG-12). J Plant Biotechnol 7:187–193

    Google Scholar 

  • Roja Rani A, Reddy VD, Prakash Babu P, Padmaja G (2005) Changes in protein profiles associated with somatic embryogenesis in peanut. Biol Plant 49:347–354

    Article  Google Scholar 

  • Roja Rani A, Venkateswarlu P, Padmaja G, Venkatesh K, Baburao N (2009) Changes in protein composition and protein phosphorylation during somatic embryogenesis and plant regeneration in peanut (Arachis hypogaea L.) Afr J Biotechnol 8:3472–3478

    CAS  Google Scholar 

  • Saxena PK, Malik KA, Gill R (1992) Induction by thidiazuron of somatic embryogenesis in intact seedlings of peanut. Planta 187:421–424

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK, Vanamala A (2000) An efficient method for the production of transgenic plants of peanut through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Hazra S (2009) Somatic embryogenesis from the axillary meristems of peanut (Arachis hypogaea L.) Plant Biotechnol Rep 3:333–340

    Article  Google Scholar 

  • Slater A, Scott NW, Fowler MR (2003) Plant biotechnology: the genetic manipulation of plants. Oxford University Press, Oxford

    Google Scholar 

  • Stefaniak B (1994) Somatic embryogenesis and plant regeneration of gladiolus (Gladiolus hort). Plant Cell Rep 13:386–389

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam P, Geetha N, Jayabalan N (1998) Induction of somatic embryos and plantlet development in cell suspension cultures of Arachis hypogaea L. Breed Sci 48:231–236

    Google Scholar 

  • Venkatachalam P, Geetha N, Khandelwal A, Shaila MS, Lakshmi Sita G (1999a) Induction of direct somatic embryogenesis and plant regeneration from mature cotyledon explants of Arachis hypogaea L. Curr Sci 77:269–273

    Google Scholar 

  • Venkatachalam P, Geetha N, Khandelwal A, Shaila MS, Lakshmi Sita G (2000) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants from cotyledon explants of groundnut (Arachis hypogaea L.) via somatic embryogenesis. Curr Sci 78:1130–1136

    CAS  Google Scholar 

  • Venkatachalam P, Kavi kishor PB, Geetha N, Thangavelu M, Jayabalan N (1999b) A rapid protocol for somatic embryogenesis from immature leaflets of groundnut (Arachis hypogaea L.) In Vitro Cell Dev Biol-Plant 35:409–412

    Article  Google Scholar 

  • Venkatesh K, Roja Rani A, Baburao N, Padmaja G (2009) Effect of auxins and auxin polar transport inhibitor (TIBA) on somatic embryogenesis in groundnut (Arachis hypogaea L.) African J Plant Sci 3:288–293

    CAS  Google Scholar 

  • Victor JMR, Murch SJ, KrishnaRaj S, Saxena PK (1999a) Somatic embryogenesis and organogenesis in peanut: the role of thidiazuron and N6-benzylaminopurine in the induction of plant morphogenesis. Plant Growth Regul 28:9–15

    Article  CAS  Google Scholar 

  • Victor JMR, Murthy BNS, Murch SJ, KrishnaRaj S, Saxena PK (1999b) Role of endogenous purine metabolism in thidiazuron-induced somatic embryogenesis of peanut (Arachis hypogaea L.) Plant Growth Regul 28:41–47

    Article  CAS  Google Scholar 

  • Wetzstein HY, Baker CM (1993) The relationship between somatic embryo morphology and conversion in peanut (Arachis hypogaea L.) Plant Sci 92:81–89

    Article  Google Scholar 

  • Xu K, Huang B, Liu K, Qi F, Tan G, Li C, Zhang X (2016) Peanut regeneration by somatic embryogenesis (SE), involving bulbil-like body (BLB), a new type of SE structure. Plant Cell Tissue Organ Cult 125:321–328

    Article  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the e-library assistance from the Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, West Bengal, India. We further are thankful to the anonymous reviewers and the editor of this chapter for their critical comments and suggestions on the manuscript.

Conflict of Interest

The authors of this article declare that there is no conflict of interest and no financial gain from it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Gantait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, S., Gantait, S. (2018). Fundamental Facets of Somatic Embryogenesis and Its Applications for Advancement of Peanut Biotechnology. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_8

Download citation

Publish with us

Policies and ethics