Skip to main content

Assessment of Bioremediation Strategies for Explosives-Contaminated Sites

  • Chapter
  • First Online:
Biological Remediation of Explosive Residues

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Large amounts of soil and water have been contaminated with energetic compounds as a result of the manufacture, storage, testing, use and disposal of munitions as well as the use of nitroaromatic and nitramines as chemical feedstock for synthesis of pesticides, herbicides, dyes, and pharmaceuticals. Historically, TNT (2 methyl-1,3,5, trinitrobenzene) has been the most widely used military explosive (Nicklin et al. 1999; Kulkarni and Chaudhari 2007b). Since TNT is toxic, mutagenic, and also highly energetic (Rosenblatt et al. 1991), TNT contamination has a serious impact on the environment and also threatens human health (Maeda et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  Google Scholar 

  • Abioye PO, Aziz AA, Agamuthu P (2010) Enhanced biodegradation of used engine oil in soil amended with organic wastes. Water Air Soil Pollut 209:173–179

    Article  Google Scholar 

  • Abouseoud M, Yataghene A, Amrane A, Maachi R (2008) Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens. J Ind Microbiol Biotechnol 35:1303–1308

    Article  Google Scholar 

  • Adrian NR, Arnett CM (2007) Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol. Chemosphere 66:1849–1856

    Article  Google Scholar 

  • Adrian NR, Arnett CM, Hickey RF (2003) Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. Water Res 37:3499–3507

    Article  Google Scholar 

  • Anbeek C (1992) The dependence of dissolution rates on grain size for some fresh and weathered feldspars. Geochim Cosmochim Acta 56:3957–3970

    Article  Google Scholar 

  • Arnett CM, Adrian NR (2009) Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a Desulfovibrio species under anaerobic conditions. Biodegradation 20:15–26

    Article  Google Scholar 

  • Ask K, Décologne N, Asare N, Holme JA, Artur Y, Pelczar H, Camus P (2004) Distribution of nitroreductive activity toward nilutamide in rat. Toxicol Appl Pharmacol 201:1–9

    Article  Google Scholar 

  • Atikovic E, Suidan MT, Maloney SW (2008) Anaerobic treatment of army ammunition production wastewater containing perchlorate and RDX. Chemosphere 72:1643–1648

    Article  Google Scholar 

  • Avidano L, Gamalero E, Cossa GP, Carraro E (2005) Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl Soil Ecol 30:21–33

    Article  Google Scholar 

  • Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: A review. J Haz Mat 178(1–3):10–28

    Article  Google Scholar 

  • Bayman P, Ritchey SD, Bennet JW (1995) Fungal interactions with the explosive RDX (hexahydro-l,3,5-trinitro-1,3,5-triazine). J Ind Microbiol Biotechnol 15:418–423

    Google Scholar 

  • Becanova J, Friedl Z, Simek Z (2010) Identification and determination of trinitrotoluenes and their degradation products using liquid chromatography-electrospray ionization mass spectrometry. Int J Mass Spectrom 291:133–139

    Article  Google Scholar 

  • Belkin F, Bishop RW, Sheely MV (1985) Analysis of explosives in water by capillary gas chromatography. J Chrom Sci 24:532–534

    Article  Google Scholar 

  • Bernstein A, Adar E, Nejidat A, Ronen Z (2011) Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation 22:997–1005

    Article  Google Scholar 

  • Bert V, Seuntjens P, Dejonghe W, Lacherez S, Thuy HT, Vandecasteele B (2009) Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites. Environ Sci Pollut Res Int 6:745–764

    Article  Google Scholar 

  • Berthelot Y, Trottier B, Robidoux PY (2009) Assessment of soil quality using bioaccessibility-based models and a biomarker index. Environ Int 35:83–90

    Article  Google Scholar 

  • Best EP, Zappi ME, Fredrickson HL, Sprecher SL, Larson SL, Ochman M (1997) Screening of aquatic and wetland plant species for phytoremediation of explosives-contaminated groundwater from the Iowa Army Ammunition Plant. Ann NY Acad Sci 829:179–194

    Article  Google Scholar 

  • Best EP, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999) Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments, Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere 38(14):3383–3396

    Article  Google Scholar 

  • Bhattacharyya J, Read D, Amos S, Dooley S, Killham K, Paton GI (2005) Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy. Environ Poll 134:485–492

    Article  Google Scholar 

  • Binks PR, Nicklin S, Bruce NC (1995) Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322

    Google Scholar 

  • Bloem J, Hopkins DW, Benedetti A (eds) (2006) Microbiological methods for assessing soil quality. Oxfordshire. CABI Publishing, UK, p 307

    Google Scholar 

  • Boopathy R (2001) Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition. Biores Technol 76:241–244

    Article  Google Scholar 

  • Boopathy R (2002) Effect of food-grade surfactant on bioremediation of explosives-contaminated soil. J Haz Mat 92:103–114

    Article  Google Scholar 

  • Boopathy R, Kupla CF, Wilson M (1993) Metabolism of 2, 4, 6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Appl Microbiol Biotechnol 39:270–275

    Article  Google Scholar 

  • Boopathy R, Manning J, Kulpa CF (1997) Optimization of environmental factors for the biological treatment of trinitrotoluene-contaminated soil. Arch Environ Contam Toxicol 32:94–98

    Article  Google Scholar 

  • Boopathy R, Manning J, Kulpa CF (1998) A laboratory study of the bioremediation of 2, 4, 6-trinitrotoluene-contaminated soil using aerobic/anoxic soil slurry reactor. Water Environ Res 70(1):80–86

    Article  Google Scholar 

  • Boparai HK, Comfort SD, Shea PJ, Sze JE (2008) Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments. Chemosphere 71:933–941

    Article  Google Scholar 

  • Boparai HK, Comfort SD, Satapanajaru T, Szecsody JE, Grossl PR, Shea PJ (2010) A biotic transformation of high explosives by freshly precipitated iron minerals in aqueous FeII solutions. Chemosphere 79:865–872

    Article  Google Scholar 

  • Brannon JM, Price CB, Hayes C, Yost SL (2002) Aquifer soil cation substitution and adsorption of TNT, RDX, and HMX. Soil Sediment Contam 11:327–338

    Article  Google Scholar 

  • Brulle F, Morgan AJ, Cocquerelle C, Vandenbulcke F (2010) Transcriptomic underpinning of toxicant-mediated physiological function alterations in three terrestrial invertebrate taxa: A review. Environ Poll 158:2793–2808

    Article  Google Scholar 

  • Ceccani B, Masciandaro G, Garcia C, Macci C, Doni S (2006) Soil bioremediation: combination of earthworms and compost for the ecological remediation of a hydrocarbon polluted soil. Water Air Soil Poll 177:383–397

    Article  Google Scholar 

  • Cenas N, Prast S, Nivinskas H, Sarlauskas J, Arnér ESJ (2006) Interactions of nitro aromatic compounds with the mammalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. J Biol Chem 281:5593–5603

    Article  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  Google Scholar 

  • Chen D, Liu ZL, Banwart W (2011) Concentration-dependent RDX uptake and remediation by crop plants. Environ Sci Pollut Res 18:908–917

    Article  Google Scholar 

  • Cheng JY, Suidan MT, Venosa AD (1996) Abiotic reduction of 2,4-dinitrotoluene in the presence of sulfide minerals under anoxic conditions. Water Sci Technol 34:25–33

    Google Scholar 

  • Cho Y-S, Lee B-U, Kahng H-Y, Oh K-H (2009) Comparative analysis of 2,4,6-trinitrotoluene (TNT)-induced cellular responses and proteomes in Pseudomonas sp. HK-6 in two types of media. J Microbiol 47:220–224

    Article  Google Scholar 

  • Clark B, Boopathy R (2007) Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana army ammunition plant, Minden, Louisiana. J Haz Mat 143:643–648

    Article  Google Scholar 

  • Claus H, Bausinger T, Lehmler I, Perret N, Fels G, Dehner U, Preuß J, König H (2007) Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Biodegradation 18:27–35

    Article  Google Scholar 

  • Conte P, Agretto A, Spaccini R, Piccolo A (2005) Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Poll 135:515–522

    Article  Google Scholar 

  • Cruz-Uribe O, Cheney DP, Rorrer GL (2007) Comparison of TNT removal from seawater by three marine macroalgae. Chemosphere 67:1469–1476

    Article  Google Scholar 

  • Cserháti T, Forgács E, Oros G (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28:337–348

    Article  Google Scholar 

  • Cyplik P, Marecik R, Piotrowska-Cyplik A, Olejnik A, Drożdżyńska A, Chrzanowski Ł (2011) Biological denitrification of high nitrate processing wastewaters from explosives production plant. Water Air Soil Pollut. doi:10.1007/s11270-011-0984-5

    Google Scholar 

  • Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Poll 158:1980–1983

    Article  Google Scholar 

  • De Lorme M (2008) Biotransformation of 2,4,6-trinitrotoluene by ruminal organisms. Dissertation, Oregon State University, April 25, pp 94

    Google Scholar 

  • De Oliveira IM, Bonatto D, Henriques JAP (2010) Nitroreductases: enzymes with environmental, biotechnological and clinical importance. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Spain, Formatex, pp 1008–1019

    Google Scholar 

  • De-Bashan LE, Hernandez J-P, Bashan Y (2011) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol. doi:10.1016/j.apsoil.2011.09.003

    Google Scholar 

  • Dodard SG, Powlowski J, Sunahara GI (2004) Biotransformation of 2,4,6-trinitrotoluene (TNT) by enchytraeids (Enchytraeus albidus) in vivo and in vitro. Environ Poll 131:263–273

    Article  Google Scholar 

  • Doran JW (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Douglas TA, Walsh ME, McGrath CJ, Weiss CA, Jones AM, Trainor TP (2008) The fate of nitro aromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and weathered soils. Proceedings of the army science conference (26th), Orlando, Florida

    Google Scholar 

  • Dowling DN, Doty SL (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:204–206

    Article  Google Scholar 

  • Dubova L, Dz Zariņa (2004) Application of Toxkit microbiotests for toxicity assessment in soil and compost. Environ Toxicol 19:274–279

    Article  Google Scholar 

  • Dubova L, Limane B, Muter O, Versilovskis A, Zariņa D, Alsina I (2009) Effect of nitro aromatic compounds on the growth of potted plants. In: Mendez-Vilas A (ed) Current research topics in applied microbiology and microbial biotechnology. World Scientific Publishing Co., Spain, pp 24–28

    Google Scholar 

  • Ek H, Nilsson E, Dave G (2008) Effects of TNT leakage from dumped ammunition on fish and invertebrates in static brackish water systems. Ecotoxicol Environ Saf 69:104–111

    Article  Google Scholar 

  • Eriksson J, Frankki S, Shchukarev A, Skyllberg U (2004) Binding of 2,4,6-trinitrotoluene, aniline and nitrobenzene to dissolved and particulate soil organic matter. Environ Sci Technol 38:3074–3080

    Article  Google Scholar 

  • Erkelens M, Adetutu EM, Taha M, Tudararo-Aherobo L, Antiabong J, Provatas A, Ball AS (2012) Sustainable remediation—The application of bioremediated soil for use in the degradation of TNT chips. J Environ Manage 110(15):69–76

    Article  Google Scholar 

  • Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-Trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  Google Scholar 

  • Eyers L, Stenuit B, Agathos SN (2008) Denitration of 2,4,6-trinitrotoluene by Pseudomonas aeruginosa ESA-5 in the presence of ferrihydrite. Appl Microbiol Biotechnol 79:489–497

    Article  Google Scholar 

  • Fellows RJ, Driver CR, Cataldo DA, Harvey SD (2006) Bioavailability of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the prairie vole (Microtus ochrogaster). Environ Toxicol Chem 25:1881–1886

    Article  Google Scholar 

  • Fernández M, Duque E, Pizarro-Tobías P, Van Dillewijn P, Wittich RM, Ramos JL (2009) Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6-trinitrotoluene. Microb Biotechnol 2:287–294

    Article  Google Scholar 

  • Flokstra BR, Van Aken B, Schnoor JL (2008) Microtox® toxicity test: detoxification of TNT and RDX contaminated solutions by poplar tissue cultures. Chemosphere 71:1970–1976

    Article  Google Scholar 

  • Franzle O (2006) Complex bioindication and environmental stress assessment. Ecol Indic 6:114–136

    Article  Google Scholar 

  • Freedman DL, Cashwell JM, Kim BJ (2002) Biotransformation of explosive-grade nitrocellulose under denitrifying and sulfidogenic conditions. Waste Manage 22:283–292

    Article  Google Scholar 

  • Frische T (2002) Screening for soil toxicity and mutagenicity using luminescent acteria—a case study of the explosive 2,4,6-trinitrotoluene (TNT). Ecotoxicol Environ Saf 51:133–144

    Article  Google Scholar 

  • Fritsche W, Hofrichter M (2000) Aerobic degradation by microorganisms. Biotechnology 11b:145–167

    Google Scholar 

  • Fuchs L, Piola L, González EP, Oneto ML, Basack S, Kesten E, Casabé N (2011) Coelomocyte biomarkers in the earthworm Eisenia fetida exposed to 2,4,6-trinitrotoluene (TNT). Environ Monit Assess 175:127–137

    Article  Google Scholar 

  • Fuller ME, Manning JF (1997) Aerobic gram-positive and gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-trinitrotoluene (TNT). Curr Microbiol 35:77–83

    Article  Google Scholar 

  • Fuller ME, Hatzinger PB, Rungmakol D, Schuster RL, Steffan RJ (2004) Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation. Environ Toxicol Chem 23(2):313–324

    Article  Google Scholar 

  • Gabriel J (2010) Development of soil microbiology methods: from respirometry to molecular approaches. J Ind Microbiol Biotechnol 37:1289–1297

    Article  Google Scholar 

  • Gallagher EM, Young LY, McGuinness LM, Kerkhof LJ (2010) Detection of 2,4,6-trinitrotoluene-utilizing anaerobic bacteria by 15N and 13C incorporation. Appl Environ Microbiol 76:1695–1698

    Article  Google Scholar 

  • Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, Bruce NC (2008) Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. Plant J 56:963–974

    Article  Google Scholar 

  • George I, Eyers L, Stenuit B, Agathos SN (2008) Effect of 2,4,6-trinitrotoluene on soil bacterial communities. J Ind Microbiol Biotechnol 35:225–236

    Article  Google Scholar 

  • George IF, Liles MR, Hartmann M, Ludwig W, Goodman RM, Agathos SN (2009) Changes in soil Acidobacteria communities after 2,4,6-trinitrotoluene contamination. FEMS Microbiol Lett 296:159–166

    Article  Google Scholar 

  • Gerth A, Hebner A, Thomas H (2003) Natural remediation of TNT-contaminated water and soil. Acta Biotech 23:143–150

    Article  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  Google Scholar 

  • Gong P, Wilke B-M, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157

    Article  Google Scholar 

  • Gong P, Basu N, Scheuhammer AM, Perkins EJ (2010) Neurochemical and electrophysiological diagnosis of reversible neurotoxicity in earthworms exposed to sublethal concentrations of CL-20. Environ Sci Pollut Res 17:181–186

    Article  Google Scholar 

  • Grube M, Muter O, Strikauska S, Gavare M, Limane B (2008) Application of FT-IR spectroscopy for control of the medium composition during biodegradation of nitro aromatic compounds. J Ind Microbiol Biotechol 35:1545–1549

    Article  Google Scholar 

  • Guimarães BCM, Arends JBA, van der Ha D, Van de Wiele T, Boon N, Verstraete W (2010) Microbial services and their management: Recent progresses in soil bioremediation technology. Appl Soil Ecol 46:157–167

    Article  Google Scholar 

  • Guo X, Xin B, Ma X, Xia Y, Chen S, Yang Y (2009) Biodegradation of trinitrotoluene by a bacterial consortium containing Klebsiella sp. and Burkholderia sp. Cuihua Xuebao/Chinese J Catalysis 30:1261–1268

    Google Scholar 

  • Gustavsson L, Engwall M (2012) Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms—Water, BOD, carbon and nutrient removal. Waste Man 32:104–109

    Article  Google Scholar 

  • Gwenin CD, Kalaji M, Williams PA, Kay CM (2011) A kinetic analysis of three modified novel nitroreductases. Biodegradation 22:463–474

    Article  Google Scholar 

  • Haberl R, Grego S, Langergraber G, Kadlec RH, Cicalini A-R, Dias SM, Novais JM, Aubert S, Gerth A, Thomas H, Hebner A (2003) Constructed wetlands for the treatment of organic pollutants. J Soils Sed 3:109–124

    Article  Google Scholar 

  • Han S, Mukherji ST, Rice A, Hughes JB (2011) Determination of 2,4- and 2,6-dinitrotoluene biodegradation limits. Chemosphere 85:848–853

    Article  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54(5):605–618

    Article  Google Scholar 

  • Herrera-Melián JA, Martín-Rodríguez AJ, Ortega-Méndez A, Araña J, Doña-Rodríguez JM, Pérez-Peña J (2012) Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands. J Environ Manage 105(30):53–60

    Article  Google Scholar 

  • Hewitt AD, Jenkins TF, Ranney TA (2001) Field gas chromatography/thermionic detector system for the analysis of explosives in soils. U.S. Army cold regions research and engineering laboratory, Hanover, NH, ERDC/CRREL TR-01-9

    Google Scholar 

  • Hickman ZA, Reid BJ (2008) Earthworm assisted bioremediation of organic contaminants. Environ Int 34:1072–1081

    Article  Google Scholar 

  • Hilber I, Wyss GS, Mäder P, Bucheli TD, Meier I, Vogt L, Schulin R (2009) Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers. Environ Poll 157:2224–2230

    Article  Google Scholar 

  • Ho E-M, Chang H-W, Kim S-I, Kahng H-Y, Oh K-H (2004) Analysis of TNT (2,4,6-trinitrotoluene)-inducible cellular responses and stress shock proteome in Stenotrophomonas sp. OK-5. Curr Microbiol 49:346–352

    Article  Google Scholar 

  • Hodgson J, Rho D, Guiot SR, Ampleman G, Thiboutot S, Hawari J (2000) Tween 80 enhanced TNT mineralization by Phanerochaete chrysosporium. Can J Microbiol 46:110–118

    Google Scholar 

  • Hund-Rinke K, Simon M (2008) Bioavailability assessment of contaminants in soils via respiration and nitrification tests. Environ Poll 153:468–475

    Article  Google Scholar 

  • Jenkins TF, Walsh ME, Schumacher PW, Miyares PH, Bauer CF, Grant CL (1989) Liquid chromatographic method for determination of extractable nitroaromatic and nitramine residues in soil. J-Assoc Off Anal Chem 72:890–899

    Google Scholar 

  • Jenkins TF, Schumacher PW, Mason JG, Thorne PT (1996) On-site analysis for high concentrations of explosives in soil: extraction kinetics and dilution procedures. CRREL Special Report 96–10

    Google Scholar 

  • Johnson MS, McFarland CA, Bazar MA, Quinn MJ Jr, LaFiandra EM, Talent LG (2010) Toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in three vertebrate species. Arch Environ Contam Toxicol 58:836–843

    Article  Google Scholar 

  • Jones AM, Greer CW, Ampleman G, Thiboutot S, Lavigne J, Hawari J (1995) Biodegradability of selected highly energetic pollutants under aerobic conditions. In: Hinchee E, Hoeppel RE, Anderson DB (eds) Bioremediation of recalcitrant organics. Battelle Press, Columbus, pp 251–257

    Google Scholar 

  • Juhasz AL, Naidu R (2007) Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments. Rev Environ Contam Toxicol 191:163–215

    Article  Google Scholar 

  • Jung CM, Newcombe DA, Crawford DL, Crawford RL (2004) Detection and decontamination of residual energetics from ordnance and explosives scrap. Biodegradation 15:41–48

    Article  Google Scholar 

  • Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54

    Article  Google Scholar 

  • Kanekar SP, Kanekar PP, Sarnaik SS, Gujrathi NP, Shede PN, Kedargol MR, Reardon KF (2009) Bioremediation of nitro explosive wastewater by an yeast isolate Pichia sydowiorum MCM Y-3 in fixed film bioreactor. J Ind Microbiol Biotechnol 36:253–260

    Article  Google Scholar 

  • Karim K, Gupta SK (2002) Effects of alternative carbon sources on biological transformation of nitrophenols. Biodegradation 13:353–360

    Article  Google Scholar 

  • Kästner M, Cassiani G (2009) ModelPROBE: model driven soil probing, site assessment and evaluation. Rev Environ Sci Biotechnol 8:131–136

    Article  Google Scholar 

  • Kim Y, Webster DA, Stark BC (2005) Improvement of bioremediation by Pseudomonas and Burkholderia by mutants of the Vitreoscilla hemoglobin gene (vgb) integrated into their chromosomes. J Ind Microbiol Biotechnol 32:148–154

    Article  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Meth 58:169–188

    Article  Google Scholar 

  • Koutsospyros A, Pavlov J, Fawcett J, Strickland D, Smolinski B, Braida W (2012) Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction. J Haz Mat 219–220:75–81

    Article  Google Scholar 

  • Kröger M, Fels G (2007) Combined biological-chemical procedure for the mineralization of TNT. Biodegradation 18:413–425

    Article  Google Scholar 

  • Kröger M, Schumacher ME, Risse H, Fels G (2004) Biological reduction of TNT as part of a combined biological-chemical procedure for mineralization. Biodegradation 15:241–248

    Article  Google Scholar 

  • Kulkarni M, Chaudhari A (2007a) Biodegradation of p-nitrophenol by P. putida. Biores Technol 97:982–988

    Article  Google Scholar 

  • Kulkarni M, Chaudhari A (2007b) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manage 85:496–512

    Article  Google Scholar 

  • Kumagai Y, Kikushima M, Nakai Y, Shimojo N, Kunimoto M (2004) Neuronal nitric oxide synthase (NNOS) catalyzes one-electron reduction of 2,4,6-trinitrotoluene, resulting in decreased nitric oxide production and increased nNOS gene expression: Implication for oxidative stress. Free Radical Biol Med 37:350–357

    Article  Google Scholar 

  • Kuncova G, Pazlarova J, Hlavata A, Ripp S, Sayler GS (2011) Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution, operational conditions and selectivity of free cells sensor. Ecol Indic 11:882–887

    Article  Google Scholar 

  • Kwon MJ, Finneran KT (2008) Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens. Biodegradation 19:705–715

    Article  Google Scholar 

  • Kwon MJ, Finneran KT (2010) Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material. Biodegradation 21:923–937

    Article  Google Scholar 

  • Labidi M, Ahmad D, Halasz A, Hawari J (2001) Biotransformation and partial mineralization of the explosive 2,4,6-trinitrotoluene (TNT) by rhizobia. Can J Microbiol 47:559–566

    Article  Google Scholar 

  • Lachance B, Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2004) Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 55:1339–1348

    Article  Google Scholar 

  • Lamichhane KM, Babcock RW Jr, Turnbull SJ, Schenck S (2012) Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. J Haz Mat 243:334–339

    Article  Google Scholar 

  • Lavoie BL, Mayes MA, McKay LD (2012) Transport of explosive residue surrogates in saturated porous media. Water Air Soil Pollut 223(5):1983–1993

    Article  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Poll 153:497–522

    Article  Google Scholar 

  • Lejbølle KB (2000) Risk assessment of genetically modified derivatives of Pseudomonas fluorescens F 113 for use in bioremediation of PCB contaminated soil. National Forest and Nature Agency, Denmark

    Google Scholar 

  • Li H, Teppen BJ, Johnston CT, Boyd SA (2004) Thermodynamics of nitroaromatic compound adsorption from water by smectite clay. Environ Sci Technol 38:5433–5442

    Article  Google Scholar 

  • Li Y, Hsieh WP, Mahmudov R, Wei X, Huang CP (2013) Combined ultrasound and Fenton (US-Fenton) process for the treatment of ammunition wastewater. J Haz Mat 244–245:403–411

    Article  Google Scholar 

  • Limane B, Juhanson J, Truu J, Truu M, Muter O, Dubova L, Zarina D (2009) Changes in microbial population affected by physico-chemical conditions of soils contaminated by explosives. In: Méndez-Vilas A (ed) Current research topics in applied microbiology and microbial biotechnology. Badajoz, Spain, Formatex, pp 637–640

    Google Scholar 

  • Limane B, Muter O, Juhanson J, Truu M, Truu J, Nolvak H (2011) Characterization of microbial community structure after application of different bioremediation approaches in TNT contaminated soil. Environmental Engineering, the 8th international conference, May 19–20, 2011, Vilnius, Lithuania, Selected papers. Vilnius Gediminas Technical University, pp 188-194

    Google Scholar 

  • Lin H-Y, Yu C-P, Chen Z-L (2012) Aerobic and anaerobic biodegradation of TNT by newly isolated Bacillus mycoides. Ecol Eng http://dx.doi.org/10.1016/j.ecoleng.2012.11.004

  • Liu Z, He Y, Li F, Liu Y (2006) Photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide. Environ Sci Pollut Res 13:328–332

    Article  Google Scholar 

  • Low D, Tan K, Anderson T, Cobb GP, Liu J, Jackson WA (2008) Treatment of RDX using down-flow constructed wetland mesocosms. Ecol Eng 32:72–80

    Article  Google Scholar 

  • Luan F, Xie L, Sheng J, Li J, Zhou Q, Zhai G (2012) Reduction of nitrobenzene by steel convert slag with Fe (II) system: The role of calcium in steel slag. J Haz Mat 217–218:416–421

    Article  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  Google Scholar 

  • Maeda T, Nakamura R, Kadokami K, Ogawa HI (2007) Relationship between mutagenicity and reactivity or biodegradability for nitroaromatic compounds. Environ Toxicol Chem 26:237–241

    Article  Google Scholar 

  • Mahidol C (2005) Environmental biotechnology for developing countries: needs and priorities. J Ind Microbiol Biotechnol 32:492–495

    Article  Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007a) Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanioides. Environ Pollut 148:101–106

    Article  Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007b) High uptake of 2,4,6-trinitrotoluene by vetiver grass—potential for phytoremediation? Environ Pollut 146:1–4

    Article  Google Scholar 

  • Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34:265–276

    Article  Google Scholar 

  • Mankiewicz-Boczek J, Nalęcz-Jawecki G, Drobniewska A, Kaza M, Sumorok B, Izydorczyk K, Zalewski M, Sawicki J (2008) Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicol Environ Saf 71:830–836

    Article  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  Google Scholar 

  • McGuinnes M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  Google Scholar 

  • Medina VF, Larson SL, Agwaramgbo L, Perez W (2002) Treatment of munitions in soils using phytoslurries. Int J Phytorem 4:143–156

    Article  Google Scholar 

  • Medina VF, Larson SL, Agwaramgbo L, Perez W, Escalon L (2004) Treatment of trinitrotoluene by crude plant extracts. Chemosphere 55:725–732

    Article  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  Google Scholar 

  • Mench M, Schwitzguébel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  Google Scholar 

  • Meyns B, Van de Wiele T, Doulami F, Marlé C, De Sloovere A, Van de Wiele K, Fant F, Verstraete W (2002) Remediation of TNT-contaminated soils by anaerobic proteinaceous immobilisation. Water Air Soil Poll 138:37–49

    Article  Google Scholar 

  • Mohan SV, Ramakrishna M, Shailaja S, Sarma PN (1997) Influence of soil-water ratio on the performance of slurry phase bioreactor treating herbicide contaminated soil. Biores Technol 98:2584–2589

    Google Scholar 

  • Mondragon-Parada ME, Ruiz-Ordaz N, Tafoya-Garnica A, Juarez-Ramırez C, Curiel-Quesada E, Galındez-Mayer J (2008) Chemostat selection of a bacterial community able to degrade s-triazinic compounds: continuous simazine biodegradation in a multi-stage packed bed biofilm reactor. J Ind Microbiol Biotechnol 35:767–776

    Article  Google Scholar 

  • Moreira MT, Feijoo G, Lema JM (2003) Fungal bioreactors: applications to white-rot fungi. Rev Environ Sci Biotechnol 2:247–259

    Article  Google Scholar 

  • Moshe SSB, Ronen Z, Dahan O, Weisbrod N, Groisman L, Adar E, Nativ R (2009) Sequential biodegradation of TNT, RDX and HMX in a mixture. Environ Pollut 157:2231–2238

    Article  Google Scholar 

  • Mulla SI, Hoskeri RS, Shouche YS, Ninnekar HZ (2011) Biodegradation of 2-Nitrotoluene by Micrococcus sp. strain SMN-1. Biodegradation 22:95–102

    Article  Google Scholar 

  • Mulla SI, Talwar MP, Bagewadi ZK, Hoskeri RS, Ninnekar HZ (2012) Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1. Chemosphere.http://dx.doi.org/10.1016/j.chemosphere.2012.10.030

  • Muter O, Versilovskis A, Scherbaka R, Grube M, Zarina D (2008) Effect of plant extract on the degradation of nitro aromatic compounds by soil microorganisms. J Ind Microbiol Biotechol 35:1539–1543

    Article  Google Scholar 

  • Muter O, Potapova K, Limane B, Sproge K, Jakobsone I, Cepurnieks G, Bartkevics V (2012) The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. J Environ Manage 98:51–55

    Article  Google Scholar 

  • MWH Americas, Inc (2004) Five-year review report, first five-year review report for Joliet Army Ammunition plant, soils operable unit. Will County, MWH Americas, Inc., Illinois, p 126

    Google Scholar 

  • Naja G, Apiratikul R, Pavasant P, Volesky B, Hawari J (2009) Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles. Environ Poll 157:2405–2412

    Article  Google Scholar 

  • Naseby DC, Lynch JM (1997) Functional impact of genetically modified micro-organisms on the soil ecosystem. In: Zelikoff JT, Schepers J, Lynch JM (eds) Ecotoxicology: responses, biomarkers and risk assessment. SOS Publications, Fair Haven, pp 419–442

    Google Scholar 

  • Naumova RP, Selivanovskaya S, Mingatina FA (1988) Possibilities for the deep bacterial destruction of 2, 4, 6-trinitrotoluene. Mikrobiologia 57:218–222

    Google Scholar 

  • Nejidat A, Kafka L, Tekoah Y, Ronen Z (2008) Effect of organic and inorganic nitrogenous compounds on RDX degradation and cytochrome P-450 expression in Rhodococcus strain YH1. Biodegradation 19:313–320

    Article  Google Scholar 

  • Neuwoehner J, Schofer A, Erlenkaemper B, Steinbach K, Hund-Rinke TK, Eisentraeger A (2007) Toxicological characterization of 2, 4, 6-trinitrotoluene, its transformation products, and two nitramine explosives. Environ Toxicol Chem 26:1090–1099

    Article  Google Scholar 

  • Newcombe DA, Crawford RL (2007) Transformation and fate of 2, 4, 6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils. Biodegradation 18:741–754

    Article  Google Scholar 

  • Nicklin S, Bruce NC, French CE (1999) Biodegradation of explosives. WO/1999/032636 international application no.: PCT/GB1998/003646

    Google Scholar 

  • Nõlvak H, Truu J, Truu M, Juhanson J, Cepurnieks G, Bartkevics V, Limane B, Muter O (2013) Microbial community changes in TNT spiked soil bioremediation trial using biostimulation, phytoremediation and bioaugmentation. doi: 10.3846/16486897.2012.721784

  • Oh B-T, Alvarez PJJ (2002) Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) degradation in biologically-active iron columns. Water Air Soil Poll 141:325–335

    Article  Google Scholar 

  • Oh KH, Kim YJ (1998) Degradation of explosive 2, 4, 6-trinitrotoluene by s-triazine degrading bacterium isolated from contaminated soil. Bull Environ Contam Toxicol 61:702–708

    Article  Google Scholar 

  • Oh B-T, Shea PJ, Drijber RA, Vasilyeva GK, Sarath G (2003) TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodegradation 14:309–319

    Article  Google Scholar 

  • Olbrich H (2006) The molasses. Biotechnologie-Kempe GmbH, Berlin, p 131

    Google Scholar 

  • Ouyang Y, Huang CH, Huang DY, Lin D, Cui L (2007) Simulating uptake and transport of TNT by plants using STELLA. Chemosphere 69:1245–1252

    Article  Google Scholar 

  • Páca J, Halecký M, T Hudcová, Bajpaix B (2008) Aerobic biodegradation of dinitrotoluenes in batch systems by pure and mixed cultures. Folia Microbiol 53:105–109

    Article  Google Scholar 

  • Panikov NS, Sizova MV, Ros D, Christodoulatos C, Balas W, Nicolich S (2007) Biodegradation kinetics of the nitramine explosive CL-20 in soil and microbial cultures. Biodegradation 18:317–332

    Article  Google Scholar 

  • Panz K, Miksch K (2012) Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. J Environ Manage 113(30):85–92

    Article  Google Scholar 

  • Parales RE, Bruce NC, Schmid A, Wackett LP (2002) Biodegradation, biotransformation, and biocatalysis (B3). Appl Environ Microbiol 68:4699–4709

    Article  Google Scholar 

  • Park C, Kim T-H, Kim S, Kim S-W, Lee J, Kim S-H (2003) Optimization for biodegradation of 2, 4, 6-trinitrotoluene (TNT) by Pseudomonas putida. J Biosci Bioeng 95:567–571

    Google Scholar 

  • Paul P, Ghosh U (2011) Influence of activated carbon amendment on the accumulation and elimination of PCBs in the earthworm Eisenia fetida. Environ Poll 159:3763–3768

    Article  Google Scholar 

  • Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998) Transformaton of 2, 4, 6-trinitrotoluene by the aquatic plant Myriophyllum spicatum. Environ Toxicol Chem 17:2266–2273

    Google Scholar 

  • Pennington JC, Brannon JM (2002) Environmental fate of explosives. Thermochim Acta 384:163–172

    Article  Google Scholar 

  • Peres CM, Agathos SN (2000) Biodegradation of nitroaromatic pollutants: from pathways to remediation. Biotechnol Ann Rev 6:197–220

    Article  Google Scholar 

  • Perreault NN, Manno D, Halasz A, Thiboutot S, Ampelman G, Hawari J (2012) Aerobic biotransformation of 2,4-dinitroanisole in soil and soil Bacillus sp. Biodegradation. doi:10.1007/s10532-011-9508-7

    Google Scholar 

  • Persoone G, Chial B (2003) Low-cost microbiotests for toxicity monitoring during bioremediation of contaminated soils. In: Šašek V, Glaser JA, Baveye P (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academic Publishers, Netherlands, pp 155–163

    Chapter  Google Scholar 

  • Persoone G, Wadhia K (2009) Comparison between Toxkit microbiotests and standard tests. In: Moser H, Römbke J (eds) Ecotoxicological characterization of waste. Springer Science + Business Media, LLC., New York, pp 213–221

    Chapter  Google Scholar 

  • Peterson FJ, Mason RP, Hovsepian J, Holtzman IL (1979) Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem 254:4009–4014

    Google Scholar 

  • Pokorný J, Květ J, Rejšková A, Brom J (2010) Wetlands as energy-dissipating systems. J Ind Microbiol Biotechnol 37:1299–1305

    Article  Google Scholar 

  • Popesku JT, Zhao SA, Hawari JS, Ward J (2003) High TNT-transforming activity by a mixed culture acclimated and maintained on crude-oil-containing media. Can J Microbiol 49:362–366

    Article  Google Scholar 

  • Prak DJL (2007) Solubilization of nitrotoluenes in micellar nonionic surfactant solutions. Chemosphere 68:1961–1967

    Article  Google Scholar 

  • Priestley JT, Coleman NV, Duxbury T (2006) Growth rate and nutrient limitation affect the transport of Rhodococcus sp. strain DN22 through sand. Biodegradation 17:571–576

    Article  Google Scholar 

  • Qadir LR, Osburn-Atkinson EJ, Swider-Lyons KE, Cepak VM, Rolison DR (2003) Sonochemically induced decomposition of energetic materials in aqueous media. Chemosphere 50:1107–1114

    Article  Google Scholar 

  • Qiu X, Wu P, Zhang H, Li M, Yan Z (2009) Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol. Biores Technol 100:5243–5248

    Article  Google Scholar 

  • Radtke CW, Gianotto D, Roberto FF (2002) Effects of particulate explosives on estimating contamination at a historical explosives testing area. Chemosphere 46:3–9

    Article  Google Scholar 

  • Ramos JL, González-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281

    Article  Google Scholar 

  • Rho D, Hodgson J, Thiboutot S, Ampleman G, Hawari J (2001) Transformation of 2, 4, 6-Trinitrotoluene (TNT) by immobilized Phanerochaete chrysosporium under fed-batch and continuous TNT feeding conditions. Biotechnol Bioeng 73(4):271–281

    Article  Google Scholar 

  • Robertson BK, Jjemba PK (2005) Enhanced bioavailability of sorbed 2, 4, 6-trinitrotoluene (TNT) by a bacterial consortium. Chemosphere 58:263–270

    Article  Google Scholar 

  • Robidoux PY, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2001) Chronic toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in soil determined using the earthworm (Eisenia andrei) reproduction test. Environ Poll 111:283–292

    Article  Google Scholar 

  • Robidoux PY, Hawari J, Bardai G, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2002) TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil. Arch Environ Contam Toxicol 43:379–388

    Article  Google Scholar 

  • Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (2003) Phytotoxicity of 2, 4, 6-trinitrotoluene (TNT) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in spiked artificial and natural forest soils. Arch Environ Contam Toxicol 44:198–209

    Article  Google Scholar 

  • Robidoux PY, Gong P, Sarrazin M, Bardai G, Paquet L, Hawari J, Dubois C, Sunahara GI (2004a) Toxicity assessment of contaminated soils from an antitank firing range. Ecotoxicol Environ Saf 58:300–313

    Article  Google Scholar 

  • Robidoux PY, Svendsen C, Sarrazin M, Thiboutot S, Ampleman G, Hawari J, Weeks JM, Sunahara GI (2004b) Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms. Arch Environ Contam Toxicol 48:56–67

    Article  Google Scholar 

  • Robles-González IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Fact 7:5

    Article  Google Scholar 

  • Rocheleau S, Lachance B, Kuperman RG, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2008) Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne. Environ Poll 156:199–206

    Article  Google Scholar 

  • Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Wat Res 35:2101–2111

    Article  Google Scholar 

  • Rosenblatt DH, Burrows EP, Mitchell WR, Parmer DL (1991) Organic explosives and related compounds. In: Hutzinger O (ed) The handbook of environmental chemistry. Springer-Verlag, Berlin, Vol. 3(G)

    Google Scholar 

  • Šarlauskas J, Nemeikaitė-Čėnienė A, Anusevičius Z, Misevičienė L, Marozienė A, Markevičius A, Čėnas N (2004) Enzymatic redox properties of novel nitrotriazole explosives implications for their toxicity. Z Naturforsch C59:399–404

    Google Scholar 

  • Savard K, Berthelot Y, Auroy A, Spear PA, Trottier B, Robidoux PY (2007) Effects of HMX-lead mixtures on reproduction of the earthworm Eisenia andrei. Arch Environ Contam Toxicol 53:351–358

    Article  Google Scholar 

  • Schaefer M (2004) Assessing 2, 4, 6-trinitrotoluene (TNT)-contaminated soil using three different earthworm test methods. Ecotoxicol Environ Saf 57:74–80

    Article  Google Scholar 

  • Schaefer M, Juliane F (2007) The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. App Soil Ecol 36:53–62

    Article  Google Scholar 

  • Schäfer R, Achazi RK (1999) The toxicity of soil samples containing TNT and other ammunition derived compounds in the enchytraeid and collembola-biotest. Environ Sci Pollut Res 6:213–219

    Article  Google Scholar 

  • Schnoor JL, Van Aken B (2004) Methods and compositions for degradation of nitroaromatic and nitramine pollutants. USPTO patent application 20080032382

    Google Scholar 

  • Schoenmuth BW, Pestemer W (2004a) Dendroremediation of trinitrotoluene. Part 1: Literature overview and research concept. Environ Sci Pollut Res 11:273–278

    Article  Google Scholar 

  • Schoenmuth BW, Pestemer W (2004b) Dendroremediation of trinitrotoluene. Part 2: Fate of radio-labelled TNT in trees. Environ Sci Pollut Res 11(5):331–339

    Google Scholar 

  • She Z, Xie T, Zhu Y, Li L, Tang G, Huang J (2012) Study on the aerobic biodegradability and degradation kinetics of 3-NP; 2,4-DNP and 2,6-DNP. J Haz Mat 241–242:478–485

    Article  Google Scholar 

  • Sheibani G, Naeimpoor F, Hejazi P (2011a) Screening effective factors in slurry phase bioremediation of 2,4,6-trinitrotoluene (TNT) contaminated soil. Iranian J Chem Eng 8:29–40

    Google Scholar 

  • Sheibani G, Naeimpoor F, Hejazi P (2011b) Statistical factor-screening and optimization in slurry phase bioremediation of 2,4,6-trinitrotoluene contaminated soil. J Haz Mat 188:1–9

    Article  Google Scholar 

  • Shen CF, Guiot SR, Thiboutot S, Ampleman G, Hawari J (1998) Fate of explosives and their metabolites in bioslurry treatment processes. Biodegradation 8:339–347

    Article  Google Scholar 

  • Shen CF, Hawari JA, Ampleman G, Thiboutot S, Guiot SR (2000) Origin of p-cresol in the anaerobic degradation of trinitrotoluene. Can J Microbiol 46(2):119–124

    Google Scholar 

  • Shen J, He R, Yu H, Wang L, Zhang J, Sun X, Li J, Han W, Xu L (2009) Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF). Biores Technol 100:1922–1930

    Article  Google Scholar 

  • Sherburne LA, Shrout JD, Alvarez PJJ (2005) Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation 16:539–547

    Article  Google Scholar 

  • Sheremata T, Hawari J (2000) Cyclodextrins for desorption and solubilization of 2,4,6-trinitrotoluene and its metabolites from soil. Environ Sci Technol 34:3462–3468

    Article  Google Scholar 

  • Shin K-H, Lim Y, Ahn J-H, Khil J, Cha C-J, Hur H-G (2005) Anaerobic biotransformation of dinitrotoluene isomers by Lactococcus lactis subsp. lactis strain 27 isolated from earthworm intestine. Chemosphere 61:30–39

    Article  Google Scholar 

  • Siciliano SD, Greer CW (2000) Plant-bacterial combinations to phytoremediate soil contaminated with high concentrations of 2,4,6-trinitrotoluene. J Environ Qual 29:311–316

    Article  Google Scholar 

  • Sikora FJ, Almond RA, Behrends LL, Hoagland JJ, Kelly DA, Phillips WD, Rogers WJ, Summers RK, Thornton FC, Trimm JR, Dader DF (1998) Demonstration results of phytoremediation of explosives-contaminated groundwater using constructed wetlands at the Milan army ammunition plant, Milan, Tennessee Vol 4. Ft. Belvoir defense technical information center DEC, p 394

    Google Scholar 

  • Smets BF, Yin H, Esteve-Nuñez A (2007) TNT biotransformation: when chemistry confronts mineralization. Appl Microbiol Biotechnol 76:267–277

    Article  Google Scholar 

  • Snellinx Z, Nepovím A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D (2002) Biological remediation of explosives and related nitroaromatic compounds. Environ Sci Pollut Res 9(1):48–61

    Article  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Ann Rev Microbiol 49:523–555

    Article  Google Scholar 

  • Stahl JD, Aust SD (1995) Biodegradation of 2,4,6-trinitrotoluene by the white rot fungus Phanerochaete chrysosporium. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 117–134

    Chapter  Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon 2: The influence of geology and weathering environment on the dissolved load. J Geophys Res 88:9671–9688

    Article  Google Scholar 

  • Stenuit B, Agathos SN (2009) Rapid and unbiased colorimetric quantification of nitrite and ammonium ions released from 2,4,6-trinitrotoluene during biodegradation studies: Eliminating interferences. Int Biodeter Biodegr 63:116–122

    Article  Google Scholar 

  • Stenuit BA, Agathos SN (2010) Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 88:1043–1064

    Article  Google Scholar 

  • Stenuit B, Eyers L, El Fantroussi S, Agathos SN (2005) Promising strategies for the mineralisation of 2,4,6-trinitrotoluene. Rev Environ Sci Biotechnol 4:39–60

    Article  Google Scholar 

  • Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26:561–575

    Article  Google Scholar 

  • Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan JL, Matthijs S, Cornelis P, Agathos SN (2009) Denitration of 2,4,6-trinitrotoluene in aqueous solutions using small-molecular-weight catalyst(s) secreted by Pseudomonas aeruginosa ESA-5. Environ Sci Technol 43:2011–2017

    Article  Google Scholar 

  • Sung K, Munster CL, Corapcioglu MY, Drew MC, Park S, Rhykerd R (2004) Phytoremediation and modeling of contaminated soil using eastern gamagrass and annual ryegrass. Water Air Soil Pollut 159:175–195

    Article  Google Scholar 

  • Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23:845–850

    Article  Google Scholar 

  • Taha MR, Soewarto IH, Acar YB, Gale RJ, Zappi ME (1997) Surfactant enhanced desorption of TNT from soil. Water Air Soil Poll 100:33–48

    Article  Google Scholar 

  • Tai H-S, He W-H (2007) A novel model of organic waste composting in Taiwan military community. Waste Manage 27:664–674

    Article  Google Scholar 

  • Tejada M, Benítez C, Parrado J (2011) Application of biostimulants in benzo(a)pyrene polluted soils: Short-time effects on soil biochemical properties. Appl Soil Ecol 50:21–26

    Article  Google Scholar 

  • Torre CD, Corsi I, Arukwe A, Valoti M, Focardi S (2008) Interactions of 2,4,6-trinitrotoluene (TNT) with xenobiotic biotransformation system in European eel Anguilla anguilla (Linnaeus, 1758). Ecotoxicol Environ Saf 71:798–805

    Article  Google Scholar 

  • Travis ER, Hannink NK, Van der Gast CJ, Thompson IP, Rosser SJ, Bruce NC (2007) Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ Sci Technol 41:5854–5861

    Article  Google Scholar 

  • Travis ER, Bruce NC, Rosser SJ (2008a) Short term exposure to elevated trinitrotoluene concentrations induced structural and functional changes in the soil bacterial community. Environ Pollut 153:432–439

    Article  Google Scholar 

  • Travis ER, Bruce NC, Rosser SJ (2008b) Microbial and plant ecology of a long-term TNT-contaminated site. Environ Pollut 153:19–126

    Google Scholar 

  • United States environmental protection agency (1993) Approaches for the remediation of federal facility sites contaminated with explosive or radioactive wastes. EPA/625/R-93/013. USEPA, Washington

    Google Scholar 

  • Van Dillewijn P, Wittich R-M, Caballero A, Ramos J-L (2008) Type II hydride transferases from different microorganisms yield nitrite and diarylamines from polynitroaromatic compounds. Appl Environ Microbiol 74:6820–6823

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  Google Scholar 

  • Vasilyeva GK, Kreslavski VD, Shea PJ (2002) Catalytic oxidation of TNT by activated carbon. Chemosphere 47:311–317

    Article  Google Scholar 

  • Vila M, Mehier S, Lorber-Pascal S, Laurent F (2007) Phytotoxicity to and uptake of RDX by rice. Environ Poll 145:813–817

    Article  Google Scholar 

  • Waisner S, Hansen L, Fredrickson H, Nestler C, Zappi M, Banerji S, Bajpai R (2002) Biodegradation of RDX within soil-water slurries using a combination of differing redox incubation conditions. J Haz Mat B95:91–106

    Article  Google Scholar 

  • Wang Z, Ye Z, Zhang M, Bai X (2010) Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter. Proc Biochem 45:993–1001

    Article  Google Scholar 

  • Ward OP (2004) The industrial sustainability of bioremediation processes. J Ind Microbiol Biotechnol 31:1–4

    Article  Google Scholar 

  • Weidhaas JL, Chang DPY, Schroeder ED (2009) Biodegradation of nitroaromatics and RDX by isolated Rhodococcus opacus. J Environ Eng 135:1025–1031

    Article  Google Scholar 

  • Williams RT, Zieganfuss PS, Sisk WE (1992) Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions. J Ind Microbiol 9:137–144

    Article  Google Scholar 

  • Wu Z, Guo L, Qin S, Li C (2011) Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J Ind Microbiol Biotechnol Published online: 31 Aug 2011. doi: 10.1007/s10295-011-1028-2

  • Wythes JR, Wainwright DH, Blight GW (1978) Nutrient composition of Queensland molasses. Aust J Exp Agric Anim Husb 18:629–634

    Article  Google Scholar 

  • Yadav A, Garg VK (2011) Industrial wastes and sludges management by vermicomposting. Rev Environ Sci Biotechnol 10:243–276

    Article  Google Scholar 

  • Yin H, Wood TK, Smets BF (2005) Reductive transformation of TNT by Escherichia coli: Pathway description. Appl Microbiol Biotechnol 67:397–404

    Article  Google Scholar 

  • Yoon JM, Oliver DJ, Shanks JV (2007) Phytotoxicity and phytoremediation of 2,6-dinitrotoluene using a model plant, Arabidopsis thaliana. Chemosphere 68:1050–1057

    Article  Google Scholar 

  • Zeng K, Hwang HM, Zhang Y, Cook S (2004) Assessing cytotoxicity of photosensitized transformation products of 2,4,6-trinitrotoluene (TNT) and atrazine with freshwater microbial assemblages. Environ Toxicol 19:490–496

    Article  Google Scholar 

  • Zhang C, Hughes JB (2003) Biodegradation pathways of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Clostridium acetobutylicum cell-free extract. Chemosphere 50:665–671

    Article  Google Scholar 

  • Zhang J, Xin Y, Liu H, Wang S, Zhou N (2008) Metabolism-independent chemotaxis of Pseudomonas sp. strain WBC-3 toward aromatic compounds. J Environ Sci 20:1238–1242

    Article  Google Scholar 

  • Zhao Q, Ye Z, Zhang M (2010) Treatment of 2,4,6-trinitrotoluene (TNT) red water by vacuum distillation. Chemosphere 80:947–950

    Article  Google Scholar 

  • Zheng Y, Liu D, Liu S, Xu S, Yuan Y, Xiong L (2009) Kinetics and mechanisms of p-nitrophenol biodegradation by Pseudomonas aeruginosa HS-D38. J Environ Sci 21:1194–1199

    Article  Google Scholar 

  • Zhuang L, Gui L, Gillham RW (2012) Biodegradation of pentaerythritol tetranitrate (PETN) by anaerobic consortia from a contaminated site. Chemosphere 89(7):810–816

    Article  Google Scholar 

  • Ziganshin AM, Gerlach R, Borch T, Naumov AV, Naumova RP (2007) Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica. Appl Environ Microbiol 73:7898–7905

    Article  Google Scholar 

  • Ziganshin AM, Naumova RP, Pannier AJ, Gerlach R (2010) Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica. Chemosphere 79:426–433

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Ministry of Defence, the Republic of Latvia (Project AĪVA 2008/220), Latvian Council of Sciences (Project 09.1177), as well as the State Research program Nr. 2010.10-4/VPP-5 NatRes. Author is grateful to Konnie Andrews for her suggested manuscript revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Muter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muter, O. (2014). Assessment of Bioremediation Strategies for Explosives-Contaminated Sites. In: Singh, S. (eds) Biological Remediation of Explosive Residues. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-01083-0_6

Download citation

Publish with us

Policies and ethics