Skip to main content

Advertisement

Log in

Coelomocyte biomarkers in the earthworm Eisenia fetida exposed to 2,4,6-trinitrotoluene (TNT)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Contamination by 2,4,6-trinitrotoluene (TNT) is a global environmental problem at sites of former explosive production, handling, or storage, and could have deleterious consequences for human and ecological health. We investigated its sublethal effects to Eisenia fetida, using two nonspecific biomarkers. In coelomocytes of earthworms exposed 24, 48, or 72 h, we evaluated DNA damage (comet assay) and neutral red retention time (NRRT), using the filter paper contact test. Both percentage of damage (D%) and calculated damage index showed significant DNA damage at almost all concentrations, at all time points assayed. Along exposure time, two different patterns were observed. At the lower TNT concentrations (0.25–0.5 μg/cm2) an increased DNA migration at 48 h, with a decrease close to initial levels after 72 h exposure, was observed. This decrease could be attributed to activation of the DNA repair system. At higher concentrations (1.0–2.0 μg/cm2), the high DNA damage observed remained constant during the 72 h exposure, suggesting that the rate of DNA repair was not enough to compensate such damage. Analysis of NRRT results showed a significant interaction between time and treatment. After 48 h, a significant decrease was observed at 4.0 μg/cm2. After 72 h, NRRT presented a concentration-dependent decrease, significantly different with respect to control at 0.5, 1.0, 2.0, and 4.0 μg/cm2. The two assayed methods, performed on the same sample, showed clear responses to sublethal TNT exposure in E. fetida, providing sensitive unspecific biomarkers of cell injury and DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtnich, C., & Lenke, H. (2001). Stability of immobilized 2,4,6-trinitrotoluene metabolites in soil under long-term leaching conditions. Environmental Toxicology and Chemistry, 20, 280–283.

    Article  CAS  Google Scholar 

  • Ateeq, B., Abul Farah, M., & Ahmad, W. (2005). Detection of DNA damage by alkaline single cell gel electrophoresis in 2,4-dichlorophenoxyacetic-acid- and butachlor-exposed erythrocytes of Clarias batrachus. Ecotoxicology and Environmental Safety, 62, 348–354.

    Article  CAS  Google Scholar 

  • Batzias, F., & Siontorou, C. (2006). A knowledge-based approach to environmental biomonitoring. Environmental Monitoring and Assessment, 123, 167–197.

    Article  CAS  Google Scholar 

  • Belden, J. B., Ownby, D. R., Lotufo, G. R., & Lydy, M. J. (2005). Accumulation of trinitrotoluene (TNT) in aquatic organisms: Part 2—Bioconcentration in aquatic invertebrates and potential for trophic transfer to channel catfish (Ictalurus punctatus). Chemosphere, 58, 1161–1168.

    Article  CAS  Google Scholar 

  • Bolt, H. M., Degen, G. H., Dorn, S. B., Plöttner, S., & Harth, V. (2006). Genotoxicity and potential carcinogenicity of 2,4,6-TNT trinitrotoluene: Structural and toxicological considerations. Reviews on Environmental Health, 21, 217–228.

    CAS  Google Scholar 

  • Burch, S. W., Fitzpatrick, L. C., Goven, A. J., Venables, B. J., & Giggleman, M. A. (1999). In vitro earthworm Lumbricus terrestris coelomocyte assay for use in terrestrial toxicity identification evaluation. Bulletin of Environmental Contamination and Toxicology, 62, 547–554.

    Article  CAS  Google Scholar 

  • Burlinson, B., Tice, R. R., Speit, G., Agurell, E., Brendler-Schwaab, S. Y., Collins, A. R., et al. (2007). Fourth international workgroup on genotoxicity testing: Results of the in vivo Comet assay workgroup. Mutation Research, 627, 31–35.

    CAS  Google Scholar 

  • Bursch, W. (2001). The autophagosomal - lysosomal compartment in programmed cell death. Cell Death and Differentiation, 8, 560–581.

    Article  Google Scholar 

  • Casabé, N. B., Oneto, M. L., Fuchs, J. S., Sánchez-Rivas, C., & Kesten, E. M. (2003). Nitrocompuestos aromáticos explosivos: Biotransformación, toxicidad y remediación. Acta Bioquímica Clínica Latinoamericana, 37, 47–58.

    Google Scholar 

  • Casabé, N. B., Piola, L., Fuchs, J. S., Oneto, M. L., Pamparato, L., Basack, S., et al. (2007). Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. Journal of Soils and Sediments, 7, 232–239.

    Article  Google Scholar 

  • Fuchs, J. S., Oneto, M. L., Casabé, N. B., Gómez Segura, O., Tarulla, R., Vaccarezza, M., et al. (2001). Ecotoxicological characterization of a disposal lagoon from a munition plant. Bulletin of Environmental Contamination and Toxicology, 67, 696–703.

    Article  CAS  Google Scholar 

  • Fugère, N., Brousseau, P., Krzysztof, K., Coderre, D., & Fournier, M. (1996). Heavy metal-specific inhibition of phagocytosis and different in vitro sensitivity of heterogeneous coelomocytes from Lumbricus terrestris. Toxicology, 109, 157–166.

    Article  Google Scholar 

  • Gastaldi, L., Ranzato, E., Caprì, F., Hankard, P., Pérès, G., Canesi, L., et al. (2007). Application of a biomarker battery for the evaluation of the sublethal effects of pollutants in the earthworm Eisenia andrei. Comparative Biochemistry and Physiology C-Pharmacology Toxicology & Endocrinology, 146, 398–405.

    Article  Google Scholar 

  • Gong, P., Guan, X., Inouye, L. S., Pirooznia, M., Indest, K. J., Athow, R. S., et al. (2007). Toxicogenomic analysis provides new insights into molecular mechanisms of the sublethal toxicity of 2,4,6-trinitrotoluene in Eisenia fetida. Environmental Science & Technology, 41, 8195–8202.

    Article  CAS  Google Scholar 

  • Guecheva, T., Henriques, J. A., & Erdtmann, B. (2001). Genotoxic effects of copper sulphate in freshwater planarian in vivo, studied with the single-cell gel test (comet assay). Mutation Research, 497, 19–27.

    CAS  Google Scholar 

  • Hwang, H. M., Wade, T. L., & Sericano, J. L. (2004). Destabilized lysosomes and elimination of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in eastern oysters (Crassostrea virginica). Environmental Toxicology and Chemistry, 23, 1991–1995.

    Article  CAS  Google Scholar 

  • ISO (2008). Soil quality—avoidance test for testing the quality of soils and effects of chemicals on behaviour—Part 1: Test with earthworms (Eisenia fetida and Eisenia andrei). ISO 17512–1. Geneva: International Organization for Standardization.

  • Kumagai, Y., Kikushima, M., Nakai, Y. Y., Shimojo, Z. M., & Kunimoto, M. (2004). Neuronal Nitric Oxide Synthase (NNOS) catalyzes one-electron reduction of 2,4,6-trinitrotoluene, resulting in decreased nitric oxide production and increased nNOS gene expression: Implication for oxidative stress. Free Radical Biology and Medicine, 37, 350–357.

    Article  CAS  Google Scholar 

  • Kumaravel, T., Vilhar, B., Faux, S., & Jha, A. (2009). Comet assay measurements: A perspective. Cell Biology and Toxicology, 25, 53–64.

    Article  CAS  Google Scholar 

  • Lachance, B., Renoux, A. Y., Sarrazin, M., Hawari, J., & Sunahara, G. I. (2004). Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere, 55, 1339–1348.

    Article  CAS  Google Scholar 

  • Lee, R. F., & Steinert, S. (2003). Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutation Research, 544, 43–64.

    Article  CAS  Google Scholar 

  • Lewis, T. A., Newcombe, D. A., & Crawford, R. L. (2004). Bioremediation of soils contaminated with explosives. Journal Environmental Management, 70, 291–307.

    Article  Google Scholar 

  • Maboeta, M. S., Reinecke, S. A., & Reinecke, A. J. (2003). Linking lysosomal biomarker and population responses in a field population of Aporrectodea caliginosa (Oligochaeta) exposed to the fungicide copper oxychloride. Ecotoxicology and Environmental Safety, 56, 411–418.

    Article  CAS  Google Scholar 

  • Maleri, R. A., Fourie, F., Reinecke, A. J., & Reinecke, S. A. (2008). Photometric application of the MTT- and NRR-assays as biomarkers for the evaluation of cytotoxicity ex vivo in Eisenia andrei. Soil Biology & Biochemistry, 40, 1040–1048.

    Article  CAS  Google Scholar 

  • Manerikar, R. S., Apte, A. A., & Ghole, V. S. (2008). In vitro and in vivo genotoxicity assessment of Cr(VI) using comet assay in earthworm coelomocytes. Environmental Toxicology and Pharmacology, 25, 63–68.

    Article  CAS  Google Scholar 

  • Martín-Díaz, M. L., Tuberty, S. R., McKenney, C. L., Blasco, J., Sarasquete, C., & Dellvalls, T. A. (2006). The use of bioaccumulation, biomarkers and histopathology diseases in Procambarus clarkii to establish bioavailability of Cd and Zn after a mining spill. Environmental Monitoring and Assessment, 116, 169–184.

    Article  Google Scholar 

  • Moore, M. N., Allen, J. I., & Mc Veigh, A. (2006). Environmental prognostics: An integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status. Marine Environmental Research, 61, 278–304.

    Article  CAS  Google Scholar 

  • Neuwoehner, J., Schofer, A., Erlenkaemper, B., Steinbach, K., Hund-Rinke, K., & Eisentraeger, A. (2007). Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products, and two nitramine explosives. Environmental Toxicology and Chemistry, 26, 1090–1099.

    Article  CAS  Google Scholar 

  • OECD (1984). Guideline for testing of chemicals N°. 207. Earthworm, acute toxicity tests. Paris: Organization for Economic Cooperation and Development.

  • Ownby, D., Belden, J., Lotufo, G., & Lydy, M. (2005). Accumulation of trinitrotoluene (TNT) in aquatic organisms: Part 1—Bioconcentration and distribution in channel catfish (Ictalurus punctatus). Chemosphere, 58, 1153–1159.

    Article  CAS  Google Scholar 

  • Qiao, M., Chen, Y., Wang, C. X., Wang, Z., & Zhu, Y. G. (2007). DNA damage and repair process in earthworm after in-vivo and in-vitro exposure to soils irrigated by wastewaters. Environmental Pollution, 148, 141–147.

    Article  CAS  Google Scholar 

  • Reinecke, S. A., & Reinecke, A. J. (2004). The comet assay as biomarker of heavy metal genotoxicity in earthworms. Archives of Environmental Contamination and Toxicology, 46, 208–215.

    CAS  Google Scholar 

  • Renoux, A. Y., Sarrazin, M., Hawari, J., & Sunahara, G. I. (2000). Transformation of 2,4,6-trinitrotoluene in soil in the presence of the earthworm Eisenia Andrei. Environmental Toxicology and Chemistry, 19, 1473–1480.

    CAS  Google Scholar 

  • Roberts, B. L., & Dorough, H. W. (1984). Relative toxicities of chemicals to the earthworm Eisenia foetida. Environmental Toxicology and Chemistry, 3, 67–78.

    CAS  Google Scholar 

  • Robidoux, P. Y., Svendsen, C., Sarrazin, M., Hawari, J., Thiboutot, S., Ampleman, G., et al. (2002). Evaluation of tissue and cellular biomarkers to assess 2,4,6-trinitrotoluene (TNT) exposure in earthworms: Effects-based assessment in laboratory studies using Eisenia andrei. Biomarkers, 7, 306–321.

    Article  CAS  Google Scholar 

  • Scott-Fordsmand, J. J., & Weeks, J. M. (2000). Biomarkers in earthworms. Reviews of Environmental Contamination and Toxicology, 165, 117–159.

    CAS  Google Scholar 

  • Sims, J., & Steevens, J. (2008). The role of metabolism in the toxicity of 2,4,6-trinitrotoluene and its degradation products to the aquatic amphipod Hyalella azteca. Ecotoxicology and Environmental Safety, 70, 38–46.

    Article  CAS  Google Scholar 

  • Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 123–130.

    Article  Google Scholar 

  • Sun, L. W., Qu, M. M., Li, Y. Q., Wu, Y. L., Chen, Y. G., Kong, Z. M., et al. (2004). Toxic effects of aminophenols on aquatic life using the zebrafish embryo test and the comet assay. Bulletin of Environmental Contamination and Toxicology, 73, 628–634.

    Article  CAS  Google Scholar 

  • Svendsen, C., & Weeks, J. M. (1997). Relevance and applicability of a simple earthworm Biomarker of copper exposure. I. Links to ecological effects in a laboratory study with Eisenia andrei. Ecotoxicology and Environmental Safety, 36, 72–79.

    Article  CAS  Google Scholar 

  • Svendsen, C., Spurgeon, D., Hankard, P., & Weeks, J. (2004). A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker? Ecotoxicology and Environmental Safety, 57, 20–29.

    Article  CAS  Google Scholar 

  • Weeks, J. M., & Svendsen, C. (1996). Neutral red retention by lysosomes from earthworm (Lumbricus rubellus) coelomocytes: A simple biomarker of exposure to soil copper. Environmental Toxicology and Chemistry, 15, 1801–1805.

    CAS  Google Scholar 

  • Xiao, N. W., Jing, B., Ge, F., & Liu, X. H. (2006). The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions. Chemosphere, 62, 1366–1373.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma Casabé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, J., Piola, L., González, E.P. et al. Coelomocyte biomarkers in the earthworm Eisenia fetida exposed to 2,4,6-trinitrotoluene (TNT). Environ Monit Assess 175, 127–137 (2011). https://doi.org/10.1007/s10661-010-1499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1499-z

Keywords

Navigation