Skip to main content

Advertisement

Log in

Phytoremediation of contaminated soils and groundwater: lessons from the field

  • COST ACTION 859 • PHYTOREMEDIATION • REVIEW ARTICLE
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim, and scope

The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass.

Conclusions and perspectives

It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Anderson T (1997) Development of a phytoremediation handbook: consideration for enhancing microbial degradation in the rhizosphere. http://es.epa.gov/ncerga/ru/index.html

  • Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing (-glutamylcysteine synthetase. Physiol Plant 109:143–149

    Article  CAS  Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid A, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192

    Article  CAS  Google Scholar 

  • Assunçao AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  CAS  Google Scholar 

  • Bagga D, Peterson S (2001) Phytoremediation of arsenic-contaminated soil as affected by the chelating agent EDTA and different levels of soil pH. Remediation Winter, 77–85

  • Baker A, Brooks R (1989) Terrestrial higher plants which hyperaccumulate heavy elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker A, Reeves R, Hajar A (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J & C Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel J-L, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 273:79–89

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  Google Scholar 

  • Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Spliet M, Vangronsveld J (2009) Field note: hydraulic containment of a BTEX plume using poplar trees. Int J Phytoremediat 11:416–424

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C, Lombini A, Llugany M, Bech J, Dinelli E (2001) Mediterranean plant species for phytoremediation. Proceedings of the workshop of COST Action 837, WG2, held in Madrid, 5–7.04. 2001 (http://lbewww.epfl.ch/COST837)

  • Bennett FA, Tyler EK, Brooks RR, Gregg PEH, Stewart RB (1998) Fertilisation of hyperaccumulators to enhance their potential for phytoremediation and phytomining. In: Brooks R (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, UK, pp 249–259

    Google Scholar 

  • Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environ Pollut 156:1128–1138

    Article  CAS  Google Scholar 

  • Bidar G, Garcon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut 147:546–553

    Article  CAS  Google Scholar 

  • Blaylock M, Huang J (2000) Phytoextraction of metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–69

    Google Scholar 

  • Bleeker PA, Assuncao AGL, Teiga PA, de Koe T, Verkleij JAC (2002) Revegetation of the acidic, As contaminated Jales mine spoil tips using a combination of spoil amendments and tolerant grasses. Sci Total Environ 300:1–13

    Article  CAS  Google Scholar 

  • Boisson J, Mench M, Sappin-Didier V, Solda P, Vangronsveld J (1998) Short-term in situ immobilization of Cd and Ni by beringite and steel shots application to long-term sludged plots. Agronomie 18:347–359

    Article  Google Scholar 

  • Boisson J, Ruttens A, Mench M, Vangronsveld J (1999) Immobilization of trace metals and arsenic by different soil additives evaluation by means of chemical extractions. Commun Soil Sci Plant Anal 30:365–387

    Article  CAS  Google Scholar 

  • Bouwman L, Vangronsveld J (2004) Rehabilitation of the nematode fauna in a phytostabilized heavily zinc contaminated sandy. J Soils Sediments 4(1):17–23

    Article  CAS  Google Scholar 

  • Bouwman LJ, Bloem PFAM, Römkens GT, Boon J, Vangronsveld J (2001) Beneficial effect of the growth of metal tolerant grass on biological and chemical parameters in copper- and zinc contaminated sandy soils. Minerva Biotecnol 13:19–26

    Google Scholar 

  • Brewer EP, Sauders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridisation between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99:761–771

    Article  CAS  Google Scholar 

  • Brooks R, Chambers M, Nicks L, Robinson B (1998) Phytomining. Trends Plant Sci 3(9):359–362

    Article  Google Scholar 

  • Brown SL, Henry CL, Compton H, Chaney RL, De Volder P (2000) Using municipal biosolids in combination with other residuals to restore zinc and lead contaminated mining areas. In: Luo Y M et al. (eds) Proc Int Conf Soil Remediation SoilRem2000, October 15–19, Hangzhou, China, pp 285–289

  • Burken JG, Schnoor JL (1999) Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. Int J Phytoremediat 1:139–151

    Article  CAS  Google Scholar 

  • Chandrappa HM (1982) Mutageneiss in sunflower (Helianthus annuus L). Thesis Abstr 8, 256–257. In: Schuster WH, (ed), Die Züchtung der Sonnenblumen (Helianthus annuus L.) Advanced in plant breeding 14, supplements to Journal of Plant Breeding pp 155, Paul Parey, Berlin

  • Chaney RL, Li YM, Brown SL, Angle JS, Baker AJM (1995) Hyperaccumulator based phytoremediation of metal-rich soils. In: Current topics in plant biochemistry, physiology and molecular biology. Will plants have a role in bioremediation? Proceedings of 14th Annual Symposium. April 10–12, 1995. Columbia, Missouri, pp 33–34

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Chaney RL, Li YM, Angle J, Baker A, Reeves R, Brown S, Homer F, Malik M, Chin M (1999) Improving metal-hyperaccumulators wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FL

    Google Scholar 

  • Chaney RL, Angle JS et al (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Zeitschrift Fur Naturforschung C-a. J Biosci 60(3–4):190–198

    CAS  Google Scholar 

  • Chaney R, Angle J, Broadhurst C, Peters C, Tappero R, Sparks D (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1444

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  Google Scholar 

  • Collins C, Laturnus F, Nepovim A (2002) Remediation of BTEX and trichloroethene: current knowledge with special emphasis on phytoremediation. Environ Sci Pollut Res 9:86–94

    Article  CAS  Google Scholar 

  • Crčman H, Velikonja-Bolta Š, Vodnik D, Kos B, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    Article  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    Article  CAS  Google Scholar 

  • Davies RD, Carlton-Smith C (1980) Crops as indicators of the significance of contamination of soil by heavy metals. WCR Water Research Centre. Medmenham Laboratory, UK, p 44

    Google Scholar 

  • De Koe T (1994) Arsenic resistance in submediterranean Agrostis species. Ph.D. thesis, Vrije Universiteit, Amsterdam, NL, 127 pp

  • del Rio M, Font R, Fernandez-Martinez J, Dominguez J, de Haro A (2000) Field trials of Brassica carinata and Brassica juncea in polluted soils of the Guadiamar river area. Fresenius Environ Bull 9:328–332

    Google Scholar 

  • Dickinson NM (2000) Strategies for sustainable woodland on contaminated soils. Chemosphere 41:259–263

    Article  CAS  Google Scholar 

  • Dickinson NM, Baker AJM, Doronilla A, Liadlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediat 11:97–114

    Article  CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Phytotoxicity of chlorinated aliphatics to hybrid poplar (Populus deltoides x nigra DN34). Environ Toxicol Chem 20:389–393

    Article  CAS  Google Scholar 

  • Dimitriou I, Eriksson J, Adler A, Aronsson P, Verwijst I (2006) Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environ Pollut 142:160–169

    Article  CAS  Google Scholar 

  • Dirilgen N (1998) Effects of pH and chelator EDTA on Cr toxicity and accumulation in Lemna minor. Chemosphere 37:771–783

    Article  CAS  Google Scholar 

  • Dominguez MT, Maranon T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59

    Article  CAS  Google Scholar 

  • Doucette WJ, Bugbee B, Hayhurst S, Plaehn WA, Downey DC, Taffinder SA, Edwards R (1998) Phytoremediation of dissolved phase trichloroethylene using mature vegetation. In: Wickramanayake GB, Hinchee RE (eds) Bioremediation and phytoremediation: chlorinated and recalcitrant compounds. Batelle, Columbus, pp 251–256

    Google Scholar 

  • Dunwell JM (1999) Transgenic crops: the next generation, or an example of 2020 vision. Ann Bot 84:269–277

    Article  Google Scholar 

  • Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430

    CAS  Google Scholar 

  • Ernst WHO (1998) The origin and ecology of contaminated, stabilized and non-pristine soils. In: Vangronsveld J, Cunningham S (eds) Metal-contaminated soils: in situ inactivation and phytorestoration. Springer, New York, pp 17–25

    Google Scholar 

  • Ernst WHO (2000) Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol 146:357–358

    Article  Google Scholar 

  • Felix H (1997) Vor-Ort-Reinigung schwermetallbelasteter Böden mit Hilfe von metallakkumulierenden Pflanzen (Hyperakkumulatoren). TerraTech 2:47–49

    Google Scholar 

  • French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    Article  CAS  Google Scholar 

  • Friesl W, Friedl J, Platzer K, Horak O, Gerzabek MH (2006) Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Environ Pollut 144:40–50

    Article  CAS  Google Scholar 

  • Geebelen W (2002) Remediation of Pb contaminated soils by phytoextraction and amendment induced immobilization: biological aspects. Ph.D. thesis, Faculty of Sciences, Limburgs Universitair Centrum, Diepenbeek, Belgium

  • Geebelen W, Adriano DC, van der Lelie D, Mench M, Carleer R, Clijsters H, Vangronsveld J (2003) Selected bioavailability assays to evaluate the efficacy of amendment induced immobilization of lead in contaminated soils. Plant Soil 249:217–228

    Article  CAS  Google Scholar 

  • Geebelen W, Sappin-Didier V, Ruttens A, Carleer R, Yperman J, Bongué-Boma K, Mench M, van der Lelie D, Vangronsveld J (2006) Evaluation of cyclonic ash and commercial Na-silicates for metal immobilisation purposes in contaminated soils in Flanders (Belgium). Environ Pollut 144:32–39

    Article  CAS  Google Scholar 

  • Germaine K, Keogh E, Borremans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Porteus Moore F, Moore ERB, Campbel CD, Ryan D, Dowling D (2004) Colonisation of Poplar trees by gfp expressing endophytes. FEMS Microbiol Ecol 48:109–118

    Article  CAS  Google Scholar 

  • Glass DJ (1999) US and international markets for phytoremediation, 1999–2000. Glass Associates, Needham http://www.channel1.com/dglassassoc

    Google Scholar 

  • Glass D (2000) Economic potential of phytoremediation. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 15–31

    Google Scholar 

  • Goulding KWT, Blake L (1998) Land use, liming and the mobilization of potentially toxic metals. Agric Ecosys Environ 67:135–144

    Article  CAS  Google Scholar 

  • Grant CA, Bailey LD (1997) Effects of phosphorus and zinc fertiliser management on cadmium accumulation in flaxseed. J Sci Food Agric 73:307–314

    Article  CAS  Google Scholar 

  • Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539

    Article  CAS  Google Scholar 

  • Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremediat 1:115–123

    Article  CAS  Google Scholar 

  • Griga M, Bjelkova M, Tejklova E (2003) Potential of flax (Linum usitatissimum) for heavy metal extraction and industrial processing of contaminated biomass – a review. In: Mench M, Mocquot B (eds) Risk assessment and sustainable land management using plants in trace element-contaminated soils. COST Action 837, 4th WG2 Workshop, Bordeaux’2002. INRA Centre Bordeaux-Aquitaine, Villenave d’Ornon, pp 173–179

  • Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144:77–83

    Article  CAS  Google Scholar 

  • Guadagnini M (2000) In vitro-breeding for metal-accumulation in two tobacco (Nicotiana tabacum) cultivars. INAUGURAL-DISSERTATION No. 1288 der Mathematisch Naturwissenschftlichen Fakultät der Universität Freiburg in der Schweiz, p 109

  • Gulz P, Gupta SK. (2001) Is it possible to improve arsenic uptake in sunflower by adding phosphate to As contaminated soils? In: Evans L (ed) Proc 6th ICOBTE Conference. University of Guelph, Ontario, Canada, p 319

  • Hammer D, Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manage 19:144–149

    Article  Google Scholar 

  • Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manage 19:187–192

    Google Scholar 

  • Harris A, Naidoo K, Nokes J, Walker T, Orton F (2009) Indicative assessment of the feasibility of Ni and Au phytomining in Australia. J Clean Prod 17(2):194–200

    Article  CAS  Google Scholar 

  • Herzig R, Guadagnini M, Erismann KH, Müller-Schärer H (1997) Chancen der Phytoextraktion. Sanfte Bodendekontamination von Schwermetallen mit Hilfe biotechnisch verbesserter Akkumulatorpflanzen. TerraTech 2:49–52

    Google Scholar 

  • Herzig R, Guadagnini M, Rehnert A, Erismann KH (2003) Phytoextraction efficiency of in vitro-bred tobacco variants using a non-GMO approach. In: Vanek T, Schwitzguébel JP (eds) Phytoremediation Inventory—COST Action 837 View, Prague, UOCHB AVCR, p 73, ISBN 80-86241-19-X

  • Herzig R, Nehnevajova E, Vangronsveld J, Ruttens A, Mastretta C (2005) In: PHYTAC—development of systems to improve phytoremediation of metal contaminated soils through improved phytoremediation. Final report of the 5th Framework Programme, Projects Nr QLRT-2001-00429 and QLRT-2001-02778 (NAS), December 2005, pp160–190

  • Herzig R, Nehnevajova E, Bourigault C, Schwitzguébel JP (2007) Fast reduction of soluble zinc on a metal contaminated site using selected tobacco plants and appropriate fertilization techniques. COST Action 859 Management Committee Meeting and WG2 & 4 meeting. Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs. 30. May–1. June 2007, Vilnius (Lithuania). Proceedings, pp 67–68

  • Herzig R, Ricci A, Nehnevajova E, Schwitzguébel JP (2008) Assessing of the phytoextraction efficiency for soluble zinc and other heavy metals from a contaminated top soil using biotechnologically improved tobacco and sunflower mutants and appropriate fertilization techniques. COST Action 859 Management Committee and WG4 Meeting. Phytotechnologies in practice—biomass production, agricultural methods, legacy, legal and economic aspects. INERIS 15–17. October 2008 Verneuil-en-Halatte (F). Proceedings, pp 20–2

  • Herzig R et al. (2009) Weiterführung der Phytoremediation 2008 am zinkbelasteten Deponiestandort«Grüenau-Buech-Alpenblick»in Bettwiesenim Auftrag der IMMO-DEVELOPMENT AG. 3. Interner Zwischenbericht 4.2.2009

  • Hinesly T, Alexander D, Ziegler E, Barreti G (1978) Zinc and cadmium accumulation by corn inbreds grown on sludge amended soil. Agron J 70:425–428

    Article  CAS  Google Scholar 

  • Huang J, Chen J, Berti W, Cunningham S (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Jacquemin P (2006) The La Combe du Saut site rehabilitation (Salsigne) the Difpolmine project—application and evaluation of large scale phytostabilisation. Difpolmine Conference, 12–14 December 2006, Montpellier

  • Johansson L, Xydas C, Messios N, Stoltz E, Greger M (2005) Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus. Appl Geochem 20:101–107

    Article  CAS  Google Scholar 

  • Jones CA, Inskeep WP, Neuman DR (1997) Arsenic transport in contaminated mine tailings following liming. J Environ Qual 26:433–439

    CAS  Google Scholar 

  • Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soil. Environ Pollut 107:225–231

    Article  Google Scholar 

  • Karlaganis G (2001) Swiss concept of soil protection. Commentary on the ordinance of 1 July 1998 relating to impacts on the soil (OIS). J Soils Sediments 1:1–16

    Article  Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783

    Article  CAS  Google Scholar 

  • Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81

    Article  CAS  Google Scholar 

  • King RF, Royle A, Putwain PD, Dickinson NM (2006) Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial. Environ Pollut 143:318–326

    Article  CAS  Google Scholar 

  • Klang-Westin E, Eriksson J (2003) Potential of Salix as phytoextractor for Cd moderately contaminated soils. Plant Soil 249:127–13

    Article  CAS  Google Scholar 

  • Knox AS, Kaplan DI, Hinton TG (2001) Remediation of metals and radionuclides by phytoextraction and sequestration. In: Evans L (ed) Proc 6th ICOBTE Conference. University of Guelph, Ontario, Canada, p 314

  • Koehler J, Warrelmann J, Frische T, Behrend P, Walter U (2002) In-situ phytoremediation of TNT-contaminated soil. Acta Biotechnol 22:67–80

    Article  CAS  Google Scholar 

  • Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    Article  Google Scholar 

  • Krebs R, Gupta SK, Furrer G, Schulin R (1999) Gravel sludge as an immobilizing agent in soils contaminated by heavy metals; a field study. Water Air Soil Pollut 115:465–479

    Article  CAS  Google Scholar 

  • Kübler I (1984) Veränderungen verschiedener Inhaltsstoffe in einzelnen Sonnenblumenfrüchten nach mutagener Behandlung in M2 und M3. Fette-Seifen-Anstrichmittel 2:62–70

    Article  Google Scholar 

  • Kuboi T, Noguchi A, Yazaki A (1986) Family–dependent cadmium accumulation characteristics in higher plants. Plant Soil 92:405–415

    Article  CAS  Google Scholar 

  • Landberg T, Greger M (1994) Can heavy metal tolerant clones of Salix be used as vegetation filters on heavy metal contaminated land? In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewaters and sludges. A biological purification system. Report 50. Swedish Univ Agric Sci, Uppsala, pp 133–144

    Google Scholar 

  • Landberg T, Greger M (1996) Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem 11:175–180

    Article  CAS  Google Scholar 

  • Lasat M (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:5–25

    Google Scholar 

  • Lasat M (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    Article  CAS  Google Scholar 

  • Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microb 72:2331–2342

    Article  CAS  Google Scholar 

  • Lepp NW, Alloway B, Penny C, Warren G, Bochereau F (2000) The use of synthetic zeolites as in situ soil amendments to reduce metal transfer from soils to vegetables. In: Luo Y M et al (eds) Proc Int Conf Soil Remediation SoilRem 2000, October 15–19, Hangzhou, China, pp 280–284

  • Li YM, Chaney RL, Angle JS, Chan KY, Kerschner BA, Baker AJM (1996) Genotypical differences in zinc and cadmium hyperaccumulation in Thlaspi caerulescens (abstract). Agronomy Abstracts 27

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediat 3:173–187

    Article  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mergeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Lombi E, Zhao F, Dunham S, McGrath S (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Lothenbach B, Furrer G, Schulin R (1997) Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds. Environ Sci Technol 31:1452–1462

    Article  CAS  Google Scholar 

  • Lothenbach B, Furrer G, Schärli H, Schulin R (1999) Immobilization of zinc and cadmium by montmorillonite compounds: effects of aging and subsequent acidification. Environ Sci Technol 33:2945–2952

    Article  CAS  Google Scholar 

  • Ma LQY (1996) Factors influencing the effectiveness and stability of aqueous lead immobilization by hydroxyapatite. J Environ Qual 25:1420–1429

    CAS  Google Scholar 

  • Ma X, Burken JG (2003) TCE diffusion to the atmosphere in phytoremediation applications. Environ Sci Technol 37:2534–2539

    Article  CAS  Google Scholar 

  • Ma L, Komar K, Tu C, Zhang W, Cai Y, Kennelley E (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • Madejon P, Murillo JM, Maranon T, Cabrera F, Soriano MA (2003) Trace element and nutrient accumulation in sunflower plants two years after the Aznalcollar mine spill. Sci Total Environ 307:239–257

    Article  CAS  Google Scholar 

  • Madejon E, de Mora AP, Felipe E, Burgos P, Cabrera F (2006) Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut 139:40–52

    Article  CAS  Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbjörnsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Article  Google Scholar 

  • Manceau A, Marcus MA, Tamura N (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. In: Fenter PA, Rivers ML, Sturchio NC, Sutton SR (eds) Applications of synchrotron radiation in low-temperature geochemistry and environmental science. Reviews in Mineralogy & Geochemistry, 49, Geochemical society and Mineralogical Society of America, pp 341–428

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889

    Google Scholar 

  • Martins Dias S (2000) Nitroaromatic compounds removal in a vertical flow reed bed case study: industrial wastewater treatment. In: Abstracts of the Inter-COST Workshop on bioremediation, 15–18 November 2000, Sorrento, Italy, pp 117–118

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, van der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. In: Harding SE, Tombs MP (eds) Biotechnology and genetic engineering reviews, vol. 23. Lavoisier, Paris, pp 175–207. ISBN 1-84585003-3

    Google Scholar 

  • Máthé-Gáspár G, Anton A (2005) Phytoremediation study: factors influencing heavy metal uptake of plants. Acta Biol Szeged 49:69–70

    Google Scholar 

  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007a) Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge. Plant Soil 290:157–172

    Article  CAS  Google Scholar 

  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007b) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372

    Article  CAS  Google Scholar 

  • McGowen SL, Basta NT, Brown GO (2001) Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J Environ Qual 30:493–500

    Article  CAS  Google Scholar 

  • McGrath S, Sidoli C, Baker A, Reeves R (1993) The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In: Eijsackers H, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer Academic, Dordrecht, pp 673–676

    Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Nardecchia D, Maier NA, Smart MK, Cozens GD (2000) Remediation of cadmium-contaminated soils. In: Luo YM et al (eds) Proc Int Conf Soil Remediation Soil Rem2000, October 15–19, Hangzhou, China, pp 275–279

  • Meers E, Lamsal S, Vervaeke P, Hopgood M, Lust N, Tack FMG (2005) Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environ Pollut 137:354–364

    Article  CAS  Google Scholar 

  • Mehmannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem 37:955–963

    Article  CAS  Google Scholar 

  • Mejare M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  CAS  Google Scholar 

  • Mench M, Vangronsveld J, Lepp NW, Edwards R (1998) Physicochemical aspects and efficiency of trace element immobilization by soil amendments. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in-situ inactivation and phytorestoration. Springer, Berlin, pp 151–182. ISBN ISBN 1-57059-531-3

    Google Scholar 

  • Mench M, Vangronsveld J, Clijsters H, Lepp NW, Edwards R (2000a) In situ metal immobilisation and phytostabilisation of contaminated soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, USA, pp 323–358

    Google Scholar 

  • Mench MJ, Manceau A, Vangronsveld J, Clijsters H, Mocquot B (2000b) Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc. Agronomie 20:383–397

    Article  Google Scholar 

  • Mench M, Bussiere S, Boisson J, Castaing E, Vangronsveld J, Ruttens A, De Koe T, Bleeker P, Assuncao A, Manceau A (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil 249:187–202

    Article  CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2005) Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int J Phytoremediat 7:337–349

    Article  CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2007) Chemical mutagenesis—an efficient technique to enhance metal accumulation and extraction in sunflowers. Int J Phytoremediat 9:149–165

    Article  CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Bourigault C, Bangerter S, Schwitzguébel JP (2009) Stability of enhanced yield and metal uptake by sunflower mutants for improved phytoremediation. Int J Phytoremediat 11(4):329–346

    Article  CAS  Google Scholar 

  • Neugschwandtner RW, Tlustos P, Komárek M, Száková J (2008) Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma 144:446–454

    Article  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  CAS  Google Scholar 

  • Newman LA, Doty SL, Gery KL, Heilman PE, Muiznieks I, Shang TQ, Siemieniec ST, Strand SE, Wang XP, Wilson AM, Gordon MP (1998) Phytoremediation of organic contaminants: a review of phytoremediation research at the University of Washington. J Soil Contam 7:531–542

    Article  CAS  Google Scholar 

  • Nörtemann B (1999) Biodegradation of EDTA. Appl Microbiol Biotechnol 51:751–759

    Article  Google Scholar 

  • Olson PE, Fletcher JS, Philp PR (2001) Natural attenuation/phytoremediation in the vadose zone of a former industrial sludge basin. Environ Sci Pollut Res 8:243–249

    Article  CAS  Google Scholar 

  • Osorio J, Fernández-Martínez J, Mancha M, Garcés R (1995) Mutant sunflowers with high concentration of saturated fatty acids in the oil. Crop Sci 35:739–742

    CAS  Google Scholar 

  • Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–352

    Article  CAS  Google Scholar 

  • Perez-de-Mora A, Madejon E, Burgos P, Cabrera F (2006) Trace element availability and plant growth in a mine spill-contaminated soil under assisted natural remediation II. Plants. Sci Total Environ 363:38–45

    Article  CAS  Google Scholar 

  • Peryea FJ, Kammereck R (1997) Phosphate-enhanced movement of arsenic out of lead arsenate contaminated topsoil and through uncontaminated subsoil. Water Air Soil Pollut 93:243–254

    CAS  Google Scholar 

  • Pletsch M, Santos de Araujo B, Charlwood BV (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17:679–687

    Article  CAS  Google Scholar 

  • Puschenreiter M, Stoger G, Lombi E, Horak O, Wenzel W (2001) Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulfate. J Plant Nutr Soil Sc 164:615–621

    Article  CAS  Google Scholar 

  • Rebedea I (1997) An investigation into the use of synthetic zeolites for in situ land reclamation. Ph.D. thesis, Liverpool John Moores University, p 244

  • Reeves R, Baker A (2000) Metal accumulating plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescenss for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung L, Green S, Clothier B (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  • Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272

    Article  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sandermann H (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84

    Article  CAS  Google Scholar 

  • Saxena P, Krishnaraj S, Dan T, Perras M, Vettakkorumakankav N (1999) Phytoremediation of heavy metals contaminated and polluted soils. In: Prasad MNV, Hagemaer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 305–329

    Google Scholar 

  • Schroeder P, Scheer C, Belford EJD (2001) Metabolism of organic xenobiotics in plants: conjugation enzymes and metabolic end points. Minerva Biotecnol 13:85–91

    Google Scholar 

  • Schröder P, Herzig R, Bojnov B, Ruttens A, Nehnevajova E, Stamatiadis S, Memon A, Vassilev A, Caviezel M, Vangronsveld J (2008) Bioenergy to save the world. Producing novel energy plants for growth on abandoned land. Environ Sci Pollut Res 15:196–204

    Article  CAS  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  CAS  Google Scholar 

  • Schwitzguébel JP (2001) Hype or hope: the potential of phytoremediation as an emerging green technology. Remediation 11(4):63–78

    Article  Google Scholar 

  • Schwitzguébel JP, van der Lelie D, Glass DJ, Vangonsveld J, Baker AJM (2002) Phytoremediation: European and American trends, successes, obstacles and needs. J Soils Sediments 2:91–99

    Article  Google Scholar 

  • Seaman JC, Arey JS, Bertsch PM (2001a) Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. J Environ Qual 30:460–469

    Article  CAS  Google Scholar 

  • Seaman JC, Meehan T, Bertsch PM (2001b) Immobilization of cesium-137 and uranium in contaminated sediments using soil amendments. J Environ Qual 30:1206–1213

    Article  CAS  Google Scholar 

  • Shang TQ, Doty SL, Wilson AM, Howald WN, Gordon MP (2001) Trichloroethylene oxidative metabolism in plants: the trichloroethanol pathway. Phytochemistry 58:1055–1065

    Article  CAS  Google Scholar 

  • Shilev SI, Ruso J, Puig A, Benlloch M, Jorrin J, Sancho E (2001) Rhizospheric bacteria promote sunflower (Helianthus annuus L.) plant growth and tolerance to heavy metals. Minerva Biotecnol 13:37–39

    Google Scholar 

  • Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    Article  CAS  Google Scholar 

  • Sopper WE (1993) Municipal sludge use for land reclamation. Lewis, Ann Arbor

    Google Scholar 

  • Soriano MIA, Fereres E (2003) Use of crops for in situ phytoremediation of polluted soils following a toxic flood from a mine spill. Plant Soil: 256:253–264

    Article  Google Scholar 

  • Stuczynski T, Siebielec G, Daniels WL, McCarty GW, Chaney RL (2007) Biological aspects of metal waste reclamation with sewage sludge. J Environ Qual 36:1154–1162

    Article  CAS  Google Scholar 

  • Sun B, Zhao FJ, Lombi E, McGrath SP (2001) Leaching of heavy metals in contaminated soils using EDTA. Environ Pollut 113:111–120

    Article  CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  Google Scholar 

  • Thewys T, Kuppens T (2008) Economics of willow pyrolysis after phytoextraction. Int J Phytoremediat 10(6):561–583

    Article  Google Scholar 

  • Thewys T, Witters N, Ruttens A, Van Slycken S, Meers E, Tack F, Vangronsveld J (2009) Economic viability of phytoremediation of an agricultual area using maize: part I, impact on the farmer’s income; part II, extra income for the farmer from anaerobic digestion. Int J Phytoremediat (in press)

  • Tlustoš P, Száková J, Hrub J, Hartman I, Najmanová J, Nedělník J, Pavlíková D, Batysta M (2006) Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ 52:413–423

    Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soils Sediments 1:1–7

    Article  Google Scholar 

  • Trapp S, Zambrano KC, Kusk KC, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39:154–160

    Article  CAS  Google Scholar 

  • Trapp S, Larsen M, Burken J, Karlson U, Machakova J (2006) Monitoring natural attenuation with trees. International Symposium on Environmental Biotechnology, ISEB ESEB JSEB 2006, Leipzig, July 9–13, 2006, Book of abstracts, F&U confirm, Leipzig, Germany, p 409

  • U.S. Environmental Protection Agency (US EPA) (2001) Remediation technology cost compendium—.ear 2000. EPA-542-R-01-009. Washington, DC

  • U.S. Federal Remediation Technologies Roundtable (US FRTR) (2002) Remediation technologies screening matrix and reference guide, Version 3.0

  • Vacha R, Podlesakova J, Nemecek J (2000) The use of organic and inorganic amendments for immobilization of trace elements in agricultural soils. In: Luo YM (ed) Int Conf Soil Remediation. Hangzhou, China

  • van der Lelie D (1998) Biological interactions: the role of soil bacteria in the bioremediation of heavy metal-polluted soils. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils. In situ inactivation and phytorestoration. Springer, Berlin, pp 31–50. ISBN ISBN: 1-57059-531-3

    Google Scholar 

  • van der Lelie D, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M, Taghavi S, Spelmans N, Vangronsveld J (1999) The role of bacteria in the phytoremediation of heavy metals. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and wate. CRC, Boca Raton, pp 265–281. ISBN ISBN 1-56670-450-2

    Google Scholar 

  • van der Lelie D, Schwitzguébel JP, Vangronsveld J, Baker AJM (2001) Assessing phytoremediation’s progress in the United States and Europe. Environ Sci Technol 35:446A–452A

    Article  Google Scholar 

  • van der Lelie D, Barac T, Taghavi S, Vangronsveld J (2005) Response to Newman: new uses of endophytic bacteria to improve phytoremediation. Trends Biotechnol 23:8–9

    Article  CAS  Google Scholar 

  • Van Dillewijn P, Caballero A, Paz JA, Gonzalez-Perez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2, 4, 6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383

    Article  CAS  Google Scholar 

  • Vangronsveld J (1998) Case studies in the field—Zn, Cd, Pb contaminated kitchen gardens. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in-situ inactivation and phytorestoration. Springer, Berlin, pp 219–225. ISBN ISBN 1-57059-531-3

    Google Scholar 

  • Vangronsveld J, Cunningham SD (1998) Introduction to the concepts. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in-situ inactivation and phytorestoration. Springer, Berlin, pp 1–15. ISBN ISBN 1-57059-531-3

    Google Scholar 

  • Vangronsveld J, Van Assche F, Clijsters H (1995a) Reclamation of a bare industrial area contaminated by non ferrous metals—in situ metal immobilization and revegetation. Environ Pollut 87:51–59

    Article  CAS  Google Scholar 

  • Vangronsveld J, Sterckx J, Van Assche F, Clijsters H (1995b) Rehabilitation studies on an old non-ferrous waste dumping ground: effects of revegetation and metal immobilization by beringite. J Geochem Explor 52:221–229

    Article  CAS  Google Scholar 

  • Vangronsveld J, Colpaert J, Van Tichelen K (1996) Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut 94:131–140

    Article  CAS  Google Scholar 

  • Vangronsveld J, Ruttens A, Colpaert J, Van der Lelie D (2000a) In situ fixation and phytostabilization of metals in polluted soils. In: Luo YM et al (eds) Proc Int Conf Soil Remediation SoilRem2000. October 15–19, Hangzhou, China, pp 262–267

  • Vangronsveld J, Ruttens A, Mench M, Boisson J, Lepp NW, Edwards R, Penny C, van der Lelie D (2000b) In situ inactivation and phytoremediation of metal/metalloid contaminated soils: field experiments. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister U (eds) Bioremediation of contaminated soils, 2nd edn. Marcel Dekker, New York, pp 859–884. ISBN ISBN 0-8247-0333-2

    Google Scholar 

  • Vashegyi A, Mezôsi G, Barta K, Farsang A, Dormány G, Bartha B, Pataki S, Erdei L (2005) Phytoremediation of heavy metal pollution: a case study. Acta Biol Szeged 49:77–79

    Google Scholar 

  • Vassilev A, Schwitzguébel JP, Thewys T, van der Lelie D, Vangronsveld J (2004a) The use of plants for remediation of metal contaminated soils. Scientific World J 4:9–34

    CAS  Google Scholar 

  • Vassilev A, Lidon FC, Ramalho JC, Do Céu Matos M, da Graca M (2004b) Cadmium accumulation and photosynthesis performance of cadmium-exposed barley plants. J Plant Nutr 27:775–795

    Article  CAS  Google Scholar 

  • Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut 126:275–282

    Article  CAS  Google Scholar 

  • Watanabe M (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186

    Article  Google Scholar 

  • Warren GP, Alloway BJ, Lepp NW, Singh B, Bochereau FJM, Penny C (2003) Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci Total Environ 311:19–33

    Article  CAS  Google Scholar 

  • Wenzel WW, Unterbruner R, Sommer P, Sacco P (2003) Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96

    Article  CAS  Google Scholar 

  • Westberg M, Gromulski J (1996) Termisk kadmiumrening av trädbränsleaskor. Report 1996, 30, Nutek. Stockholm, Sweden (summary in English)

  • Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Carleer R, Vangronsveld J (2009a) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration. Environ Sci Pollut Res . doi:10.1007/s11356-009-0154-0

    Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  Google Scholar 

  • Yankov B, Tahsin N (2001) Accumulation and distribution of Pb, Cu, Zn and Cd in sunflower (Helianthus annuus L.) grown in an industrially polluted region. Helia 24:131–136

    Google Scholar 

  • Yankov B, Delibaltova V, Bojinov M (2000) Content of Cu, Zn, Cd and Pb in the vegetative organs of cotton cultivars grown in industrially polluted regions. Plant Sci (BG) 37:525–531

    CAS  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

  • Zheljazkov V, Nielsen NE (1996a) Effect of heavy metals on peppermint and cornmint. Plant Soil 178:59–66

    Article  CAS  Google Scholar 

  • Zheljazkov V, Nielsen NE (1996b) Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. J Essent Oil Res 8:259–274

    CAS  Google Scholar 

  • Zheljazkov VD, Jeliazkova EA, Craker LE, Yankov B, Georgieva T, Kolev T, Kovatcheva N, Stanev S, Margina A (1999) Heavy metal uptake by mint. Acta Hort 500:111–117

    CAS  Google Scholar 

  • Zhu Y, Pilon-Smits E, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Zimmer D, Baum C, Leinweber P, Hrynkiewics K, Meissner R (2009) Associated bacteria increase the phytoextraction of cadmium and zinc from a metal-contaminated soil by mycorrhizal willows. Int J Phytoremediat 11:200–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to COST-Action 859 and all the members who contributed to the different meetings and workshops of this COST-Action. This COST-Action was very stimulating for exchange of information and supporting existing and creating new collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaco Vangronsveld.

Additional information

Responsible editors: Peter Schröder • Jean-Paul Schwitzguébel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vangronsveld, J., Herzig, R., Weyens, N. et al. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16, 765–794 (2009). https://doi.org/10.1007/s11356-009-0213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-009-0213-6

Keywords

Navigation