Skip to main content

Metabolic Engineering for the Biosynthesis of Terpenoids from Microbial Cell Factories

  • Chapter
  • First Online:
Microbial Bioactive Compounds

Abstract

Terpenes, terpenoids, or isoprenoids are the largest class of secondary metabolites produced by the natural system. Since ages the plants are being utilized as a source of flavor, fragrance, and therapeutics. Due to their higher energy density and other superior fuel properties, terpenoids are also foreseen as potential alternative to petroleum-derived fuels. The current market demand of terpenoids is fulfilled either by their plant-based extraction or by chemical synthesis. However, both the mythologies have their own set of limitations. Therefore, from the past two decades, the global research interest on terpenoid production has been shifted toward their biosynthesis from microbial routes. Microbes have provided an excellent platform for the biosynthesis of commodity chemicals due to their several advantages over plants, such as fastidious growth, low space and seasonal requirements, and simple growth medium. Moreover, the genetic modification in microbes can be done with a high success rate as compared to plants. However, microbes are not the natural producers of the majority of industrially important terpenoids. Therefore, they need to be engineered for the non-natural production of terpenoids. Advancement of synthetic and metabolic engineering approaches has enabled researchers to incorporate entire novel pathways and silence native pathways of the host microbes at the same time. Thus, provided an excellent platform not only for the non-native production of terpenoids but also improving the titers of the desired metabolites from engineered microbes. In this present chapter, we have summarized the metabolic engineering approaches for the sustainable production of terpenoid-based metabolites for microbial sources, with an emphasis on prokaryotic host organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajikumar PK, Tyo K, Carlsen S et al (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5:167–190

    Article  CAS  PubMed  Google Scholar 

  2. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97:13172–13177. https://doi.org/10.1073/pnas.240454797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paduch R, Kandefer-Szerszeń M, Trytek M, Fiedurek J (2007) Terpenes: substances useful in human healthcare. Arch Immunol Ther Exp 55:315–327. https://doi.org/10.1007/s00005-007-0039-1

    Article  CAS  Google Scholar 

  4. George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals-artemisinin, farnesene, and beyond. In: Advances in biochemical engineering/biotechnology, pp 355–389

    Google Scholar 

  5. Ludwiczuk A, Skalicka-Woźniak K, Georgiev MI (2017) Terpenoids. In: Badal S, Delgoda R (eds) Pharmacognosy. Elsevier, pp 233–266

    Chapter  Google Scholar 

  6. Tippmann S, Chen Y, Siewers V, Nielsen J (2013) From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae. Biotechnol J 8:1435–1444. https://doi.org/10.1002/biot.201300028

    Article  CAS  PubMed  Google Scholar 

  7. Gupta P, Phulara SC (2015) Metabolic engineering for isoprenoid-based biofuel production. J Appl Microbiol 119:605–619. https://doi.org/10.1111/jam.12871

    Article  CAS  PubMed  Google Scholar 

  8. Gupta P, Phulara S (2021) Homologous and heterologous expression strategies in microbes. In: Gupta P, Phulara S (eds) Biotechnology of terpenoid production from microbial cell factories. Academic Press, US, pp 103–132

    Chapter  Google Scholar 

  9. Zhou X, Zhu H, Liu L et al (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717. https://doi.org/10.1007/s00253-010-2546-y

    Article  CAS  PubMed  Google Scholar 

  10. Thomas P, Farjon A (2011) Taxus wallichiana. IUCN Red List Threat. Species e.T46171879A9730085

    Google Scholar 

  11. Phulara SC, Chaturvedi P, Gupta P (2016) Isoprenoid-based biofuels: homologous expression and heterologous expression in prokaryotes. Appl Environ Microbiol 82:5730–5740. https://doi.org/10.1128/AEM.01192-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kusari S, Singh S, Jayabaskaran C (2014) Rethinking production of Taxol W ( paclitaxel ) using endophyte. Trends Biotechnol 32:304–311

    Article  CAS  PubMed  Google Scholar 

  13. Guan Z, Xue D, Abdallah II et al (2015) Metabolic engineering of Bacillus subtilis for terpenoid production. Appl Microbiol Biotechnol 99:9395–9406. https://doi.org/10.1007/s00253-015-6950-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin PC, Pakrasi HB (2019) Engineering cyanobacteria for production of terpenoids. Planta 249:145–154. https://doi.org/10.1007/s00425-018-3047-y

    Article  CAS  PubMed  Google Scholar 

  15. Vickers CE, Williams TC, Peng B, Cherry J (2017) Recent advances in synthetic biology for engineering isoprenoid production in yeast. Curr Opin Chem Biol 40:47–56. https://doi.org/10.1016/j.cbpa.2017.05.017

    Article  CAS  PubMed  Google Scholar 

  16. Ward VCA, Chatzivasileiou AO, Stephanopoulos G (2018) Metabolic engineering of Escherichia coli for the production of isoprenoids. FEMS Microbiol Lett 365:fny079. https://doi.org/10.1093/femsle/fny079

    Article  CAS  Google Scholar 

  17. Bian G, Deng Z, Liu T (2017) Strategies for terpenoid overproduction and new terpenoid discovery. Curr Opin Biotechnol 48:234–241. https://doi.org/10.1016/j.copbio.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  18. Schempp FM, Drummond L, Buchhaupt M, Schrader J (2018) Microbial cell factories for the production of terpenoid flavor and fragrance compounds. J Agric Food Chem 66:2247–2258. https://doi.org/10.1021/acs.jafc.7b00473

    Article  CAS  PubMed  Google Scholar 

  19. Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley, Weinheim

    Book  Google Scholar 

  20. Wilding EI, Brown JR, Bryant AP et al (2000) Identification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in gram-positive cocci. J Bacteriol 182:4319–4327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodríguez-Concepción M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5:1–15. https://doi.org/10.1007/s11101-005-3130-4

    Article  CAS  Google Scholar 

  22. Schwender R, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/27.1.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:109–114. https://doi.org/10.1093/nar/gkr988

    Article  CAS  Google Scholar 

  25. Zada B, Wang C, Park J-B et al (2018) Metabolic engineering of Escherichia coli for production of mixed isoprenoid alcohols and their derivatives. Biotechnol Biofuels 11:210. https://doi.org/10.1186/s13068-018-1210-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daletos G, Stephanopoulos G (2020) Protein engineering strategies for microbial production of isoprenoids. Metab Eng Commun 11:e00129

    Article  PubMed  PubMed Central  Google Scholar 

  27. Phulara SC, Chaurasia D, Diwan B et al (2018) In-situ isopentenol production from Bacillus subtilis through genetic and culture condition modulation. Process Biochem 72:47–54. https://doi.org/10.1016/j.procbio.2018.06.019

    Article  CAS  Google Scholar 

  28. Banerjee A, Wu Y, Banerjee R et al (2013) Feedback inhibition of deoxy- D -xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. J Biol Chem 288:16926–16936. https://doi.org/10.1074/jbc.M113.464636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Withers ST, Gottlieb SS, Lieu B et al (2007) Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol 73:6277–6283. https://doi.org/10.1128/AEM.00861-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou K, Zou R, Stephanopoulos G, Too H-P (2012a) Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production. PLoS One 7:e47513. https://doi.org/10.1371/journal.pone.0047513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7:71–86. https://doi.org/10.1093/mp/sst134

    Article  CAS  PubMed  Google Scholar 

  32. Sasaki Y, Eng T, Herbert RA et al (2019) Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. Biotechnol Biofuels 12:1–15. https://doi.org/10.1186/s13068-019-1381-3

    Article  Google Scholar 

  33. Martin VJJ, Pitera DJ, Withers ST et al (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802. https://doi.org/10.1038/nbt833

    Article  CAS  PubMed  Google Scholar 

  34. Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14:189–195. https://doi.org/10.1016/j.ymben.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  35. Wang C, Liwei M, Bin PJ et al (2018) Microbial platform for terpenoid production: Escherichia coli and Yeast. Front Microbiol 9:2460. https://doi.org/10.3389/fmicb.2018.02460

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang C, Zada B, Wei G, Kim S-W (2017) Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli. Bioresour Technol 241:430–438. https://doi.org/10.1016/J.BIORTECH.2017.05.168

    Article  CAS  PubMed  Google Scholar 

  37. Peralta-Yahya PP, Ouellet M, Chan R et al (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483. https://doi.org/10.1038/ncomms1494

    Article  CAS  PubMed  Google Scholar 

  38. Harada H, Yu F, Okamoto S et al (2009) Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli. Appl Microbiol Biotechnol 81:915–925. https://doi.org/10.1007/s00253-008-1724-7

    Article  CAS  PubMed  Google Scholar 

  39. Okamura E, Tomita T, Sawa R et al (2010) Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proc Natl Acad Sci U S A 107:11265–11270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alonso-Gutierrez J, Chan R, Batth TS et al (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41. https://doi.org/10.1016/J.YMBEN.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  41. Tsuruta H, Paddon CJ, Eng D et al (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4:e4489. https://doi.org/10.1371/journal.pone.0004489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng Y, Liu Q, Li L et al (2013) Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels. Biotechnol Biofuels 6:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dueber JE, Wu GC, Malmirchegini GR et al (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759. https://doi.org/10.1038/nbt.1557

    Article  CAS  PubMed  Google Scholar 

  44. George KW, Thompson MG, Kang A et al (2015) Metabolic engineering for the high-yield production of isoprenoid-based C 5 alcohols in E. coli. Sci Rep 5:11128. https://doi.org/10.1038/srep11128

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kazieva E, Yamamoto Y, Tajima Y et al (2017) Characterization of feedback-resistant mevalonate kinases from the methanogenic archaeons Methanosaeta concilii and Methanocella paludicola. Microbiol (United Kingdom) 163:1283–1291. https://doi.org/10.1099/mic.0.000510

    Article  CAS  Google Scholar 

  46. Yoon S-H, Lee Y-M, Kim J-E et al (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 94:1025–1032. https://doi.org/10.1002/bit.20912

    Article  CAS  PubMed  Google Scholar 

  47. Yoon SH, Lee SH, Das A et al (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotechnol 140:218–226. https://doi.org/10.1016/j.jbiotec.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  48. Redding-Johanson AM, Batth TS, Chan R et al (2011) Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab Eng 13:194–203. https://doi.org/10.1016/j.ymben.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  49. Rohdich F, Hecht S, Gärtner K et al (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci U S A 99:1158–1163. https://doi.org/10.1073/pnas.032658999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Henke NA, Frohwitter J, Peters-Wendisch P, Wendisch VF (2018) Carotenoid production by recombinant Corynebacterium glutamicum: strain construction, cultivation, extraction, and quantification of carotenoids and terpenes. In: Barreiro C, Barredo J-L (eds) Microbial carotenoids: methods and protocols, methods in molecular biology. Springer Science+Business Media, LLC, part of Springer Nature 2018, New York, pp 127–141

    Google Scholar 

  51. Beuttler H, Hoffmann J, Jeske M et al (2011) Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. Appl Microbiol Biotechnol 89:1137–1147. https://doi.org/10.1007/s00253-010-2961-0

    Article  CAS  PubMed  Google Scholar 

  52. Mi J, Becher D, Lubuta P et al (2014) De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida. Microb Cell Factories 13:170. https://doi.org/10.1186/s12934-014-0170-8

    Article  CAS  Google Scholar 

  53. Phelan RM, Sekurova ON, Keasling JD, Zotchev SB (2014) Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth Biol 4:393–399. https://doi.org/10.1021/sb5002517

    Article  CAS  PubMed  Google Scholar 

  54. Gao X, Gao F, Liu D et al (2016) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci 9:1400–1411. https://doi.org/10.1039/c5ee03102h

    Article  CAS  Google Scholar 

  55. Kang M-K, Eom J-H, Kim Y et al (2014) Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnol Lett 36:2069–2077. https://doi.org/10.1007/s10529-014-1578-2

    Article  CAS  PubMed  Google Scholar 

  56. Kudoh K, Kawano Y, Hotta S et al (2014) Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-D-xylulose 5-phosphate synthase and carbon allocation analysis. J Biosci Bioeng 118:20–28. https://doi.org/10.1016/j.jbiosc.2013.12.018

    Article  CAS  PubMed  Google Scholar 

  57. Xue J, Ahring BK (2011) Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol 77:2399–2405. https://doi.org/10.1128/AEM.02341-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boghigian BA, Armando J, Salas D, Pfeifer BA (2012) Computational identification of gene over-expression targets for metabolic engineering of taxadiene production. Appl Microbiol Biotechnol 93:2063–2073. https://doi.org/10.1007/s00253-011-3725-1

    Article  CAS  PubMed  Google Scholar 

  59. Kudoh K, Kubota G, Fujii R et al (2017) Exploration of the 1-deoxy-D-xylulose 5-phosphate synthases suitable for the creation of a robust isoprenoid biosynthesis system. J Biosci Bioeng 123:300–307. https://doi.org/10.1016/j.jbiosc.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  60. Zhou K, Zou R, Stephanopoulos G, Too H-P (2012b) Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production. Microb Cell Factories 11:148. https://doi.org/10.1186/1475-2859-11-148

    Article  CAS  Google Scholar 

  61. Han X, Ning W, Ma X et al (2020) Improving protein solubility and activity by introducing small peptide tags designed with machine learning models. Metab Eng Commun 11:e00138. https://doi.org/10.1016/j.mec.2020.e00138

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nguyen TKM, Ki MR, Son RG, Pack SP (2019) The NT11, a novel fusion tag for enhancing protein expression in Escherichia coli. Biotechnol Isoprenoids Adv Biochem Eng 103:2205–2216. https://doi.org/10.1007/s00253-018-09595-w

    Article  CAS  Google Scholar 

  63. Han X, Wang X, Zhou K, Valencia A (2019) Develop machine learning-based regression predictive models for engineering protein solubility. Bioinformatics 35:4640–4646. https://doi.org/10.1093/bioinformatics/btz294

    Article  CAS  PubMed  Google Scholar 

  64. Zhao Y, Yang J, Qin B et al (2011) Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol 90:1915–1922. https://doi.org/10.1007/s00253-011-3199-1

    Article  CAS  PubMed  Google Scholar 

  65. Soliman SSM, Tsao R, Raizada MN (2011) Chemical inhibitors suggest endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J Nat Prod 74:2497–2504. https://doi.org/10.1021/np200303v

    Article  CAS  PubMed  Google Scholar 

  66. Xue D, Abdallah II, de Haan IEM et al (2015) Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes. Appl Microbiol Biotechnol 99:5907–5915. https://doi.org/10.1007/s00253-015-6531-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim S, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72:408–415

    Article  CAS  PubMed  Google Scholar 

  68. Lv X, Xu H, Yu H (2013) Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol 97:2357–2365. https://doi.org/10.1007/s00253-012-4485-2

    Article  CAS  PubMed  Google Scholar 

  69. Englund E, Shabestary K, Hudson EP, Lindberg P (2018) Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound. Metab Eng 49:164–177. https://doi.org/10.1016/j.ymben.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  70. Haiyuan L, Shu H, Liping X et al (2018) Overexpression of key enzymes of the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway for improving squalene production in Escherichia coli. African J Biotechnol 16:2307–2316. https://doi.org/10.5897/ajb2017.16235

    Article  Google Scholar 

  71. Zhou K, Zou R, Zhang C et al (2013) Optimization of amorphadiene synthesis in Bacillus subtilis via transcriptional, translational, and media modulation. Biotechnol Bioeng 110:2556–2561. https://doi.org/10.1002/bit.24900

    Article  CAS  PubMed  Google Scholar 

  72. Frank A, Groll M (2017) The methylerythritol phosphate pathway to isoprenoids. Chem Rev 117:5675–5703. https://doi.org/10.1021/acs.chemrev.6b00537

    Article  CAS  PubMed  Google Scholar 

  73. Boghigian BA, Salas D, Ajikumar PK et al (2011) Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli. Appl Microbiol Biotechnol 93:1651–1661. https://doi.org/10.1007/s00253-011-3528-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang C, Zhou J, Jang H et al (2013) Engineered heterologous FPP synthases-mediated Z,E -FPP synthesis in E. coli. Metab Eng 18:53–59. https://doi.org/10.1016/j.ymben.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  75. Kang A, George KW, Wang G et al (2016) Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab Eng 34:25–35. https://doi.org/10.1016/j.ymben.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  76. Yang J, Nie Q, Liu H et al (2016) A novel MVA-mediated pathway for isoprene production in engineered E. coli. BMC Biotechnol 16:1. https://doi.org/10.1186/s12896-016-0236-2

    Article  CAS  Google Scholar 

  77. Ilmén M, Oja M, Huuskonen A et al (2015) Identification of novel isoprene synthases through genome mining and expression in Escherichia coli. Metab Eng 31:153–162. https://doi.org/10.1016/j.ymben.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  78. Li M, Nian R, Xian M, Zhang H (2018) Metabolic engineering for the production of isoprene and isopentenol by Escherichia coli. Appl Microbiol Biotechnol 102:7725–7738. https://doi.org/10.1007/s00253-018-9200-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chou HH, Keasling JD (2012) Synthetic pathway for production of five-carbon alcohols from isopentenyl diphosphate. Appl Environ Microbiol 78:7849–7855. https://doi.org/10.1128/AEM.01175-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim JH, Wang C, Jang HJ et al (2016) Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts. Microb Cell Factories 15:214. https://doi.org/10.1186/s12934-016-0612-6

    Article  CAS  Google Scholar 

  81. Lange BM (2015) Biosynthesis and biotechnology of high-value p-menthane monoterpenes, including menthol, carvone, and limonene. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids. Advances in biochemical engineering/biotechnology. Springer International Publishing, Switzerland 2015 Biosynthesis, pp 319–353

    Google Scholar 

  82. Mendez-Perez D, Alonso-Gutierrez J, Hu Q et al (2017) Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol Bioeng 114:1703–1712. https://doi.org/10.1002/bit.26296

    Article  CAS  PubMed  Google Scholar 

  83. Sarria S, Wong B, Martín HG et al (2014) Microbial synthesis of pinene. ACS Synth Biol 3:466–475. https://doi.org/10.1021/sb4001382

    Article  CAS  PubMed  Google Scholar 

  84. Zhou J, Wang C, Yang L et al (2015) Geranyl diphosphate synthase: an important regulation point in balancing a recombinant monoterpene pathway in Escherichia coli. Enzym Microb Technol 68:50–55. https://doi.org/10.1016/j.enzmictec.2014.10.005

    Article  CAS  Google Scholar 

  85. Tashiro M, Kiyota H, Kawai-Noma S et al (2016) Bacterial production of pinene by a laboratory-evolved pinene-synthase. ACS Synth Biol 5:1011–1020. https://doi.org/10.1021/acssynbio.6b00140

    Article  CAS  PubMed  Google Scholar 

  86. Awouafack MD, Tane P, Kuete V, Eloff JN (2013) Sesquiterpenes from the medicinal plants of Africa. In: Kuete V (ed) Medicinal plant research in Africa: pharmacology and chemistry. Elsevier Inc., pp 33–103

    Chapter  Google Scholar 

  87. Buckle J (2015) Basic plant taxonomy, basic essential oil chemistry, extraction, biosynthesis, and analysis. In: Clinical aromatherapy. Churchill Livingstone, pp 37–72

    Chapter  Google Scholar 

  88. Wang C, Park J, Choi E, Kim S (2016) Farnesol production in Escherichia coli through the construction of a farnesol biosynthesis pathway- application of PgpB and YbjG phosphatases. Biotechnol J 11:1291–1297. https://doi.org/10.1002/biot.201600250.Submitted

    Article  CAS  PubMed  Google Scholar 

  89. Wang C, Yoon SH, Jang HJ et al (2011) Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 13:648–655. https://doi.org/10.1016/j.ymben.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  90. Zhu F, Zhong X, Hu M et al (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405. https://doi.org/10.1002/bit.25198

    Article  CAS  PubMed  Google Scholar 

  91. Abdallah II, Pramastya H, van Merkerk R et al (2019) Metabolic engineering of Bacillus subtilis toward taxadiene biosynthesis as the first committed step for taxol production. Front Microbiol 10:218. https://doi.org/10.3389/fmicb.2019.00218

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kai G, Xu H, Zhou C et al (2011) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13:319–327. https://doi.org/10.1016/j.ymben.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  93. Song Y, Guan Z, Van Merkerk R et al (2020) Production of squalene in Bacillus subtilis by squalene synthase screening and metabolic engineering. J Agric Food Chem 68:4447–4455. https://doi.org/10.1021/acs.jafc.0c00375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Choi SY, Lee HJ, Choi J et al (2016) Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. Biotechnol Biofuels 9:202. https://doi.org/10.1186/s13068-016-0617-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Choi SY, Wang JY, Kwak HS et al (2017) Improvement of squalene production from CO2 in Synechococcus elongatus PCC 7942 by metabolic engineering and scalable production in a photobioreactor. ACS Synth Biol 6:1289–1295. https://doi.org/10.1021/acssynbio.7b00083

    Article  CAS  PubMed  Google Scholar 

  96. Misawa N, Nakagawa M, Kobayashi K et al (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712. https://doi.org/10.1128/jb.172.12.6704-6712.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu N, Liu B, Wang G et al (2020) Lycopene production from glucose, fatty acid and waste cooking oil by metabolically engineered Escherichia coli. Biochem Eng J 155:107488. https://doi.org/10.1016/j.bej.2020.107488

    Article  CAS  Google Scholar 

  98. Wei Y, Mohsin A, Hong Q et al (2018) Enhanced production of biosynthesized lycopene via heterogenous MVA pathway based on chromosomal multiple position integration strategy plus plasmid systems in Escherichia coli. Bioresour Technol 250:382–389. https://doi.org/10.1016/J.BIORTECH.2017.11.035

    Article  CAS  PubMed  Google Scholar 

  99. Lee PC, Mijts BN, Schmidt-Dannert C (2004) Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 65:538–546. https://doi.org/10.1007/s00253-004-1619-1

    Article  CAS  PubMed  Google Scholar 

  100. Henke N, Heider S, Peters-Wendisch P, Wendisch V (2016) Production of the marine, carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Mar Drugs 14:124. https://doi.org/10.3390/md14070124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marliere P, Anissimova M, Chayot R, Delcourt M (2013) Process for the production of isoprenol from mevalonate employing a diphosphomevalonate decarboxylase

    Google Scholar 

  102. Renninger NS, Mcphee DJ (2008) Fuel compositions comprising farnesane and farnesane derivatives and method. 2

    Google Scholar 

  103. Ubersax JA, Platt DM (2010) Genetically modified microbes producing isoprenoids

    Google Scholar 

  104. Dugar D, Stephanopoulos G (2011) Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol 29:1074–1078. https://doi.org/10.1038/nbt.2055

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, V., Gupta, P., Phulara, S.C. (2023). Metabolic Engineering for the Biosynthesis of Terpenoids from Microbial Cell Factories. In: Soni, R., Suyal, D.C., Morales-Oyervides, L. (eds) Microbial Bioactive Compounds. Springer, Cham. https://doi.org/10.1007/978-3-031-40082-7_4

Download citation

Publish with us

Policies and ethics