Skip to main content

Advertisement

Log in

Biosynthesis of zeaxanthin in recombinant Pseudomonas putida

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas putida KT2440 strain was investigated for biosynthesis of the valuable xanthophyll zeaxanthin. A new plasmid was constructed harboring five carotenogenic genes from Pantoea ananatis and three genes from Escherichia coli under control of an l-rhamnose-inducible promoter. Pseudomonas putida KT2440 wild type hardly tolerated the plasmids for carotenoid production. Mating experiments with E. coli S17-1 strains revealed that the carotenoid products are toxic to the Pseudomonas putida cells. Several carotenoid-tolerant transposon mutants could be isolated, and different gene targets for relief of carotenoid toxicity were identified. After optimization of cultivation conditions and product processing, 51 mg/l zeaxanthin could be produced, corresponding to a product yield of 7 mg zeaxanthin per gram cell dry weight. The effect of various additives on production of hydrophobic zeaxanthin was investigated as well. Particularly, the addition of lecithin during cell cultivation increased volumetric productivity of Pseudomonas putida by a factor of 4.7 (51 mg/l vs. 239 mg/l).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aasen AJ, Borch G, Liaaen-Jensen S (1972) Carotenoids of flexibacteria V. chirality of zeaxanthin from different natural sources. Acta Chem Scand 26:404–405

    Article  CAS  Google Scholar 

  • Bartlett L, Klyne W, Mose WP, Scopes PM, Galasko G, Mallams AK, Weedon BCL, Szabolcs J, Toth G (1969) Optical rotatory dispersion of carotenoids. J Chem Soc Perkin 1:2527–2544

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids today and challenges for the future. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids 1A: isolation and analysis, 1st edn. Birkhäuser Verlag Basel, Berlin, pp 13–26

    Google Scholar 

  • BVL (2007) Zusatzstoffe zugelassen nach Richtlinie 70/524/EWG und Übergangsregelung Verordnung EG 1831/2003. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit.

  • Choi SK, Matsuda S, Hoshino T, Peng X, Misawa N (2006) Characterization of bacterial beta-carotene 3, 3′-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli. Appl Microbiol Biotechnol 72:1238–1246

    Article  CAS  Google Scholar 

  • Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 77:505–512

    Article  CAS  Google Scholar 

  • De Ville TE, Hursthouse MB, Russell SW, Weedon BCL (1969) Absolute configuration of carotenoids. J Chem Soc Chem Commun 1311–1312

  • Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3:649–657

    Article  CAS  Google Scholar 

  • Eugster CH (1995) Chemical derivatization: microscale tests for the presence of common functional groups in carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids 1A: isolation and analysis. Birkhäuser Verlag Basel, Berlin, pp 71–80

    Google Scholar 

  • Gerster H (1993) Anticarcinogenic effect of common carotenoids. Int J Vitam Nutr Res 63:93–121

    CAS  Google Scholar 

  • Han K, Lim HC, Hong J (1992) Acetic acid formation in Escherichia coli fermentation. Biotechnol Bioeng 39:663–671

    Article  CAS  Google Scholar 

  • Jeske M, Altenbuchner J (2010) The Escherichia coli rhamnose promoter rhaP (BAD) is in pseudomonas putida KT2440 independent of Crp-cAMP activation. Appl Microbiol Biotechnol 85:1923–1933

    Article  CAS  Google Scholar 

  • Kang MJ, Lee YM, Yoon SH, Kim JH, Ock SW, Jung KH, Shin YC, Keasling JD, Kim SW (2005) Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnol Bioeng 91:636–642

    Article  CAS  Google Scholar 

  • Karrer P, Eugster CH (1950) Synthese von carotinoiden II. Totalsynthese des beta-carotins I. Helv Chim Acta 33:1172–1174

    Article  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  Google Scholar 

  • Lindsay S (1996) Einführung in die HPLC, 1st edn. Friedr. Viehweg & Sohn Braunschweig, Wiesbaden, pp 187–191

    Google Scholar 

  • Maoka T, Arai A, Shimizu M, Matsuno T (1986) The 1st isolation of enantiomeric and meso-zeaxanthin in nature. Comp Biochem Physiol B Biochem Mol Biol 83:121–124

    Article  CAS  Google Scholar 

  • Matthews PD, Wurtzel ET (2000) Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol 53:396–400

    Article  CAS  Google Scholar 

  • Meyer K (2002) Farbenfrohe antioxidantien–carotinoide: bedeutung und technische synthesen. Chem unserer Zeit 36:178–192

    CAS  Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic-pathway by functional-analysis of gene-products expressed in Escherichia coli. J Bacteriol 172:6704–6712

    CAS  Google Scholar 

  • Molina L, Ramos C, Duque E, Ronchel MC, Garcia JM, Wyke L, Ramos JL (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem 32:315–321

    Article  CAS  Google Scholar 

  • Nishino H, Murakoshi M, Ii T, Takemura M, Kuchide M, Kanazawa M, Mou XY, Wada S, Masuda M, Ohsaka Y, Yogosawa S, Satomi Y, Jinno K (2002) Carotenoids in cancer chemoprevention. Cancer Metastasis Rev 21:257–264

    Article  CAS  Google Scholar 

  • Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 73:1355–1361

    Article  CAS  Google Scholar 

  • Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment zeaxanthin—a review. Compr Rev Food Sci Food Saf 7:29–49

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Woodbury

    Google Scholar 

  • Schiedt K, Mayer H, Vecchi M, Glinz E, Storebakken T (1988) Metabolism of carotenoids in salmonids. Part II. Distribution and absolute-configuration of idoxanthin in various organs and tissues of one Atlantic salmon (Salmo salar, L) fed with Astaxanthin. Helv Chim Acta 71:881–886

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 9:784–791

    Article  Google Scholar 

  • Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62:1448 S–1461 S

    Google Scholar 

  • Stumpp T, Wilms B, Altenbuchner J (2000) Ein neues, L-Rhamnoseinduzierbares Expressionssystem für Escherichia coli. Biospektrum 1:33–36

    Google Scholar 

  • Sun Z, Yao HY (2007) The influence of di-acetylation of the hydroxyl groups on the anti-tumor-proliferation activity of lutein and zeaxanthin. Asia Pac J Clin Nutr 16:447–452

    CAS  Google Scholar 

  • Tsushima M, Maoka T, Katsuyama M, Kozuka M, Matsuno T, Tokuda H, Nishino H, Iwashima A (1995) Inhibitory effect of natural carotenoids on Epstein–Barr virus activation activity of a tumor promoter in Raji cells—a screening study for antitumor promoters. Biol Pharm Bull 18:227–233

    CAS  Google Scholar 

  • Vaz B, Alvarez R, de Lera AR (2002) Synthesis of symmetrical carotenoids by a two-fold Stille reaction. J Org Chem 67:5040–5043

    Article  CAS  Google Scholar 

  • Vilchez S, Manzanera M, Ramos JL (2000) Control of expression of divergent Pseudomonas putida put promoters for proline catabolism. Appl Environ Microbiol 66:5221–5225

    Article  CAS  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  CAS  Google Scholar 

  • Wang CW, Oh MK, Liao JC (1999) Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol Bioeng 62:235–241

    Article  CAS  Google Scholar 

  • Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW (2007a) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139

    Article  CAS  Google Scholar 

  • Yoon SH, Park HM, Kim JE, Lee SH, Choi MS, Kim JY, Oh DK, Keasling JD, Kim SW (2007b) Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol Prog 23:599–605

    Article  CAS  Google Scholar 

  • Yuan LZ, Rouviere PE, LaRossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors want to thank the Institute of Food Chemistry, Universität Hohenheim for the carotenoids and wolfberries. The authors further thank the Landesstiftung Baden-Württemberg for the financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlada B. Urlacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beuttler, H., Hoffmann, J., Jeske, M. et al. Biosynthesis of zeaxanthin in recombinant Pseudomonas putida . Appl Microbiol Biotechnol 89, 1137–1147 (2011). https://doi.org/10.1007/s00253-010-2961-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2961-0

Keywords

Navigation