Skip to main content
Log in

Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Isoprene is an aviation fuel of high quality and an important polymer building block in the synthetic chemistry industry. In light of high oil prices, sustained availability, and environmental concerns, isoprene from renewable materials is contemplated as a substitute for petroleum-based product. Escherichia coli with advantages over other wild microorganisms, is considered as a powerful host for biofuels and chemicals. Here, we constructed a synthetic pathway of isoprene in E. coli by introducing an isoprene synthase (ispS) gene from Populus nigra, which catalyzes the conversion of dimethylallyl diphosphate (DMAPP) to isoprene. To improve the isoprene production, we overexpressed the native 1-deoxy-d-xylulose-5-phosphate (DXP) synthase gene (dxs) and DXP reductoisomerase gene (dxr) in E. coli, which catalyzed the first step and the second step of MEP pathway, respectively. The fed-batch fermentation results showed that overexpression of DXS is helpful for the improvement of isoprene production. Surprisingly, heterologous expression of dxs and dxr from Bacillus subtilis in the E. coli expressing ispS resulted in a 2.3-fold enhancement of isoprene production (from 94 to 314 mg/L). The promising results showed that dxs and dxr from B. subtilis functioned more efficiently on the enhancement of isoprene production than native ones. This could be caused by the consequence of great difference in protein structures of the two original DXSs. It could be practical to produce isoprene in E. coli via MEP pathway through metabolic engineering. This work provides an alternative way for production of isoprene by engineered E. coli via MEP pathway through metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Berenguer J, Calderon V, Herce M, Sanchez J (1991) Spoilage of a bakery product by isoprene-producing molds. Rev Agroquim Technol Aliment 31:580–583

    CAS  Google Scholar 

  • Bloch K (1992) Sterol molecule: structure, biosynthesis, and function. Steroids 57:378–383

    Article  CAS  PubMed  Google Scholar 

  • Cervin MA, Whited GM, Chotani GK, Valle F, Fioresi C, Sanford KJ, Mcauliffe JC, Feher FJ, Puhala AS, Miasnikov A, Aldor IS (2009) Compositions and methods for producing isoprene. United States patent 12/335,071

  • Clomburg JM, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86:419–434

    Article  CAS  PubMed  Google Scholar 

  • David S, Estramareix B, Fischer JC, Thérisod M (1981) 1-Deoxy-d-threo-2-pentulose: the precursor of the five-carbon chain of the thiazole of thiamine. J Am Chem Soc 103:7341–7342

    Article  CAS  Google Scholar 

  • David S, Estramareix B, Fischer JC, Thérisod M (1982) The biosynthesis of thiamine. Syntheses of [1, 1, 1, 5–2H 4]-1-deoxy-d-threo-2-pentulose and incorporation of this sugar in biosynthesis of thiazole by Escherichia coli cells. J Chem Soc Perkin Trans 1:2131–2137

    Article  Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    Article  CAS  PubMed  Google Scholar 

  • Goldstein J, Brown M (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch M (1997) SWISS–MODEL and the Swiss–Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  • Harker M, Bramley P (1999) Expression of prokaryotic 1-deoxy-d-xylulose-5-phosphatases in Escherichia coli increases carotenoid and ubiquinone biosynthesis. FEBS Lett 448:115–119

    Article  CAS  PubMed  Google Scholar 

  • Hill RE, Sayer BG, Spenser ID (1989) Biosynthesis of vitamin B6: incorporation of d-1-deoxyxylulose. J Am Chem Soc 111:1916–1917

    Article  CAS  Google Scholar 

  • Hill RE, Himmeldirk K, Kennedy IA, Pauloski RM, Sayer BG, Wolf E, Spenser ID (1996) The biogenetic anatomy of vitamin B6. A 13C NMR investigation of the biosynthesis of pyridoxol in Escherichia coli. J Biol Chem 271:30426–30435

    Article  CAS  PubMed  Google Scholar 

  • Himmeldirk K, Kennedy IA, Hill RE, Sayer BG, Spenser ID (1996) Biosynthesis of vitamins B1 and B6 in Escherichia coli: concurrent incorporation of 1-deoxy-d-xylulose into thiamin (B1) and pyridoxol (B6). Chem Commun 1996:1187–1188

    Article  Google Scholar 

  • Hunter WN (2007) The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem 282:21573–21577

    Article  CAS  PubMed  Google Scholar 

  • Julsing MK, Rijpkema M, Woerdenbag HJ, Quax WJ, Kayser O (2007) Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Appl Microbiol Biotechnol 75:1377–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Kim SW, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72:408–415

    Article  CAS  PubMed  Google Scholar 

  • Kuzma J, Nemecek-Marshall M, Pollock WH, Fall R (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30:97–103

    Article  CAS  PubMed  Google Scholar 

  • Kuzuyama T, Takagi M, Takahashi S, Seto H (2000) Cloning and characterization of 1-deoxy-d-xylulose 5-phosphate synthase from Streptomyces sp. strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J Bacteriol 182:891–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehning A, Zimmer I, Steinbrecher R, Brüggemann N, Schnitzler JP (1999) Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves. Plant Cell Environ 22:495–504

    Article  CAS  Google Scholar 

  • Leonard E, Lim KH, Saw PN, Koffas MAG (2007) Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microb 73:3877–3886

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (2000) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc T 28:785–789

    Article  CAS  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    Article  CAS  PubMed  Google Scholar 

  • Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M, Boronat A (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of d-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Pro Natl Acad Sci USA 95:2105–2110

    Article  CAS  Google Scholar 

  • Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant J 22:503–513

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    Article  CAS  PubMed  Google Scholar 

  • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  PubMed  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  • Miller B, Heuser T, Zimmer W (2000) Functional involvement of a deoxy-xylulose 5-phosphate reductoisomerase gene harboring locus of Synechococcus leopoliensis in isoprenoid biosynthesis. FEBS Lett 481:221–226

    Article  CAS  PubMed  Google Scholar 

  • Miller B, Oschinski C, Zimmer W (2001) First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 213:483–487

    Article  CAS  PubMed  Google Scholar 

  • Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  CAS  PubMed  Google Scholar 

  • Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microb 66:3151–3155

    Article  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Rohdich F, Kis K, Bacher A, Eisenreich W (2001) The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Curr Opin Chem Biol 5:535–540

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahms H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  • Sanadze JA (1957) Emission of organic matters by leaves of Robinia pseudoacacia L. Soobshch Akad Nauk Gruz SSR 19:83

    Google Scholar 

  • Sasaki K, Ohara K, Yazaki K (2005) Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett 579:2514–2518

    Article  CAS  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Biol 52:407–436

    Article  CAS  Google Scholar 

  • Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol 137:700–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver GM, Fall R (1991) Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. Plant Physiol 97:1588–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenger GA, Schorken U, Wiegert T, Grolle S, De Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA 94:12857–12862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A (2003) Production of rubber-like polymers by microorganisms. Curr Opin Microbiol 6:261–270

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    Article  CAS  PubMed  Google Scholar 

  • Takagi M, Kuzuyama T, Takahashi S, Seto H (2000) A gene cluster for the mevalonate pathway from Streptomyces sp. strain CL190. J Bacteriol 182:4153–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wattanachaisaereekul S, Lantz AE, Nielsen ML, Nielsen J (2008) Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Metab Eng 10:246–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation (No.20872075) and CAS 100 Talents Program (KGCXZ-YW-801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Xian.

Additional information

Yaru Zhao and Jianming Yang contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Yang, J., Qin, B. et al. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol 90, 1915–1922 (2011). https://doi.org/10.1007/s00253-011-3199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3199-1

Keywords

Navigation