Skip to main content

Role of Quorum Sensing in Nutrient Acquisition and Synergistic Plant-Microbe Association

  • Chapter
  • First Online:
Sustainable Plant Nutrition under Contaminated Environments

Abstract

Bacteria in rhizosphere along with plant roots create an entirely unique interaction between each other and make the soil alive. Rhizobacteria through their multiple metabolic reactions produce different chemicals in different scenarios, which help plant with efficient nutrient acquisition. Rhizobacteria make N, P, and Fe available to plant via nitrogen fixation, phosphate solubilization, and siderophore-Fe chelation. Rhizobacteria communicate with each other via chemical signals (acyl homoserine lactone) and assist the plants to not only improve its vigor but also cope with pollution stress. These chemical signals regulate bacterial assistance in nutrient acquisition and phytoremediation. This chapter details how plant growth promoting traits all work together in a definite and precise manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad I, Husain FM (2017) Biofilms in plant and soil health. Wiley, Hoboken

    Book  Google Scholar 

  • Akram MS, Shahid M, Tahir M, Mehmood F, Ijaz M (2017) Plant-microbe interactions: current perspectives of mechanisms behind symbiotic and pathogenic associations. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 97–126

    Chapter  Google Scholar 

  • Al-Ali A, Deravel J, Krier F, Béchet M, Ongena M, Jacques P (2018) Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ Sci Pollut Res Int 25:29910–29920

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Kim W-C (2018) Plant growth promotion under water: decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. Front Microbiol 9:1096

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali S, Hameed S, Shahid M, Iqbal M, Lazarovits G, Imran A (2020) Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol Res 232:126389

    Article  CAS  PubMed  Google Scholar 

  • Arif MS, Shahzad SM, Yasmeen T, Riaz M, Ashraf M, Ashraf MA, Mubarik MS, Kausar R (2017) Improving plant phosphorus (P) acquisition by phosphate-solubilizing bacteria. In: Essential plant nutrients. Springer, Cham

    Google Scholar 

  • Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN (2019) Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc Natl Acad Sci 116:23163–23168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azri MH, Ismail S, Abdullah R (2018) An endophytic Bacillus strain promotes growth of oil palm seedling by fine root biofilm formation. Rhizosphere 5:1–7

    Article  Google Scholar 

  • Badri DV, Weir TL, Van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171:884–894

    Article  CAS  PubMed  Google Scholar 

  • Basirat M, Mousavi SM, Abbaszadeh S, Ebrahimi M, Zarebanadkouki M (2019) The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant Soil 445(1):565–575

    Article  CAS  Google Scholar 

  • Basu A, Prasad P, Das SN, Sadaf Kalam RZ, Sayyed MSR, El Enshasy H (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13:1140

    Article  CAS  Google Scholar 

  • Bhutani N, Maheshwari R, Negi M, Suneja P (2018) Optimization of IAA production by endophytic Bacillus spp. from Vigna radiata for their potential use as plant growth promoters. Isr J Plant Sci 65:83–96

    Article  Google Scholar 

  • Billah M, Khan M, Bano A, Hassan TU, Munir A, Gurmani AR (2019) Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture. Geomicrobiol J 36:904–916

    Article  CAS  Google Scholar 

  • Borriss R (2020) Phytostimulation and biocontrol by the plant-associated bacillus. In: Phyto-microbiome in stress regulation, vol 1. Springer, Singapore

    Google Scholar 

  • Brígido C, Menéndez E, Paço A, Glick BR, Belo A, Félix MR, Oliveira S, Carvalho M (2019) Mediterranean native leguminous plants: a reservoir of endophytic bacteria with potential to enhance chickpea growth under stress conditions. Microorganisms 7:392

    Article  PubMed Central  Google Scholar 

  • Chen B, Luo S, Wu Y, Ye J, Wang Q, Xu X, Pan F, Khan KY, Feng Y, Yang X (2017) The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front Microbiol 8:2538

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Palta JA, Wu P, Siddique KH (2019) Crop root systems and rhizosphere interactions. Plant Soil 439:1–5

    Article  Google Scholar 

  • Clairmont LK, Stevens KJ, Slawson RM (2019) Site-specific differences in microbial community structure and function within the rhizosphere and rhizoplane of wetland plants is plant species dependent. Rhizosphere 9:56–68

    Article  Google Scholar 

  • de Vries FT, Wallenstein MD (2017) Below-ground connections underlying above-ground food production: a framework for optimising ecological connections in the rhizosphere. J Ecol 105:913–920

    Article  Google Scholar 

  • Deng S, Ke T, Li L, Cai S, Zhou Y, Liu Y, Chen L, Zhang D (2018) Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun. Environ Pollut 237:1088–1097

    Article  CAS  PubMed  Google Scholar 

  • Elias F, Woyessa D, Muleta D (2016) Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. Int J Microbiol 2016(3):1–11

    Article  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Chao W (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Article  Google Scholar 

  • Fernández-González AJ, Villadas PJ, Cabanás CG-L, Valverde-Corredor A, Belaj A, Mercado-Blanco J, Fernández-López M (2019) Defining the root endosphere and rhizosphere microbiomes from the World Olive Germplasm Collection. Sci Rep 9:1–13

    Article  Google Scholar 

  • Ferreira MJ, Silva H, Cunha A (2019) Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere 29:409–420

    Article  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan MK, McInroy JA, Kloepper JW (2019) The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: a review. Agriculture 9(7):142

    Article  CAS  Google Scholar 

  • Hayat S, Faraz A, Faizan M (2017) Root exudates: composition and impact on plant–microbe interaction. In: Biofilms in plant and soil health. Wiley, Chichester, pp 179–193

    Chapter  Google Scholar 

  • Helliwell JR, Sturrock CJ, Miller AJ, Whalley WR, Mooney SJ (2019) The role of plant species and soil condition in the structural development of the rhizosphere. Plant Cell Environ 42(6):1974–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho Y-N, Mathew DC, Huang C-C (2017) Plant-microbe ecology: interactions of plants and symbiotic microbial communities. In: Plant ecology–traditional approaches to recent trends. IntechOpen Limited, London, pp 93–119

    Google Scholar 

  • Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int J Environ Res Public Health 15:574

    Article  PubMed Central  Google Scholar 

  • Ijaz M, Shahzadi R, Rahman M-u, Iqbal M (2019) Molecular approaches to study plant growth-promoting rhizobacteria (PGPRs). In: Plant growth promoting rhizobacteria for agricultural sustainability. Springer, Singapore

    Google Scholar 

  • Jayaprakashvel M, Chitra C, Mathivanan N (2019) Metabolites of plant growth-promoting rhizobacteria for the management of soilborne pathogenic fungi in crops. In: Secondary metabolites of plant growth promoting rhizomicroorganisms. Springer, Singapore

    Google Scholar 

  • Jha P, Panwar J, Jha PN (2018) Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture. Environ Sustain 1:25–38

    Article  Google Scholar 

  • Jiao X, Takishita Y, Zhou G, Smith DL (2021) Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci 12:420

    Article  Google Scholar 

  • Kafle A, Cope KR, Raths R, Krishna Yakha J, Subramanian S, Bücking H, Garcia K (2019) Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agronomy 9(3):127

    Article  CAS  Google Scholar 

  • Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:7

    Article  Google Scholar 

  • Kang Y, Shen M, Yang X, Cheng D, Zhao Q (2014) A plant growth-promoting rhizobacteria (PGPR) mixture does not display synergistic effects, likely by biofilm but not growth inhibition. J Microbiol 83:666–673

    Article  CAS  Google Scholar 

  • Kannojia P, Choudhary KK, Srivastava AK, Singh AK (2019) PGPR bioelicitors: induced systemic resistance (ISR) and proteomic perspective on biocontrol. In: PGPR amelioration in sustainable agriculture. Elsevier, Amsterdam

    Google Scholar 

  • Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KHN, Sayyed RZ, El Enshasy HA (2019) Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases. In: Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore

    Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator–Siderophore: a review. Microbiol Res 212:103–111

    Article  PubMed  Google Scholar 

  • Korenblum E, Dong Y, Szymanski J, Panda S, Jozwiak A, Massalha H, Meir S, Rogachev I, Aharoni A (2020) Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci 117:3874–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer J, Özkaya Ö, Kümmerli R (2020) Bacterial siderophores in community and host interactions. Nat Rev Microbiol 18:152–163

    Article  CAS  PubMed  Google Scholar 

  • Kumar A (2016) Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mechanism and their role in plant growth and crop yield. Int J Adv Res 4:116–124

    Article  Google Scholar 

  • Laliberté E (2017) Below-ground frontiers in trait-based plant ecology. New Phytol 213(4):1597–1603

    Article  PubMed  Google Scholar 

  • Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC (2020) The concept and future prospects of soil health. Nat Rev Earth Environ 1(10):544–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehnert N, Dong HT, Harland JB, Hunt AP, White CJ (2018) Reversing nitrogen fixation. Nat Rev Chem 2:278–289

    Article  CAS  Google Scholar 

  • Maheshwari DK, Saraf M, Dheeman S (2019) Plant growth-promoting rhizobacteria (PGPR) as protagonists of ever-sustained agriculture: an introduction. In: Field crops: sustainable management by PGPR. Springer, Cham

    Chapter  Google Scholar 

  • Majeed A, Kaleem Abbasi M, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Manter DK, Delgado JA, Blackburn HD, Harmel D, de León AAP, Honeycutt CW (2017) Opinion: why we need a national living soil repository. Proc Natl Acad Sci 114(52):13587–13590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzoor M, Kaleem Abbasi M, Sultan T (2017) Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization–mineralization and plant growth promotion. Geomicrobiol J 34:81–95

    Article  CAS  Google Scholar 

  • Marasco R, Mosqueira MJ, Fusi M, Ramond JB, Merlino G, Booth JM, Maggs-Kölling G, Cowan DA, Daffonchio D (2018) Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome 6(1):1–18

    Article  Google Scholar 

  • Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90(4):788–807. Wiley Online Library

    Article  CAS  PubMed  Google Scholar 

  • Meena M, Swapnil P, Divyanshu K, Kumar S, Tripathi YN, Zehra A, Marwal A, Upadhyay RS (2020) PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. J Basic Microbiol 60:828–861

    CAS  PubMed  Google Scholar 

  • Meliani A, Bensoltane AJ (2016) Biofilm-mediated heavy metals bioremediation in PGPR pseudomonas. J Bioremed Biodegr 7:2

    Article  Google Scholar 

  • Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) 'The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. J Front Plant Sci 9:112

    Article  Google Scholar 

  • Mhlongo MI, Piater LA, Steenkamp PA, Labuschagne N, Dubery IA (2021) Metabolomic evaluation of tissue-specific defense responses in tomato plants modulated by PGPR-priming against Phytophthora capsici infection. Plants 10:1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogal C, Jha S, Suthar H, Parekh V, Rajkumar BK (2020) Efficiency of Plant Growth Promoting Rhizobacteria (PGPR) consortia for modulation of phytohormone and better nutrient acquisition. Plant Sci 3:20–29

    Google Scholar 

  • Mohammed AF (2018) Effectiveness of exopolysaccharides and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). Afr J Microbiol Res 12:399–404

    Article  CAS  Google Scholar 

  • Mohanram S, Kumar P (2019) Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Ann Microbiol 69:307–320

    Article  Google Scholar 

  • Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13:638–649

    Google Scholar 

  • Mukherjee R, Sen S (2021) Agricultural sustainability through nitrogen fixation: approaches and techniques. Harvest 6:48–55

    Google Scholar 

  • Niehus R, Picot A, Oliveira NM, Mitri S, Foster KR (2017) The evolution of siderophore production as a competitive trait. Evolution 71:1443–1455

    Article  CAS  PubMed  Google Scholar 

  • Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ 743:140682

    Article  PubMed  Google Scholar 

  • Ortiz-Castro R, López-Bucio J (2019) Phytostimulation and root architectural responses to quorum-sensing signals and related molecules from rhizobacteria. Plant Sci 284:135–142

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, López-Bucio JS, López-Bucio J (2017) Physiological and molecular mechanisms of bacterial phytostimulation. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR research. CABI, São Paulo, pp 16–28

    Chapter  Google Scholar 

  • Pang J, Ryan MH, Siddique KH, Simpson RJ (2017) Unwrapping the rhizosheath. Plant Soil 418(1):129–139

    Article  CAS  Google Scholar 

  • Paraszkiewicz K, Bernat P, Siewiera P, Moryl M, Paszt LS, Trzciński P, Jałowiecki Ł, Płaza G (2017) Agricultural potential of rhizospheric Bacillus subtilis strains exhibiting varied efficiency of surfactin production. Sci Hortic 225:802–809

    Article  CAS  Google Scholar 

  • Parewa HP, Meena VS, Jain LK, Choudhary A (2018) Sustainable crop production and soil health management through plant growth-promoting Rhizobacteria. In: Role of rhizospheric microbes in soil. Springer, Singapore

    Google Scholar 

  • Patel T, Saraf M (2017) Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J Plant Interact 12:480–487

    Article  CAS  Google Scholar 

  • Patel D, Patel S, Thakar P, Saraf M (2017) Siderophore producing Aspergillus spp as bioinoculant for enhanced growth of mung bean. Int J Adv Agric Sci Technol 6:111–120

    Google Scholar 

  • Patel P, Trivedi G, Saraf M (2018) Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environ Sustain 1:357–365

    Article  Google Scholar 

  • Pathak J, Maurya PK, Singh SP, Häder DP, Sinha RP (2018) Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Front Environ Sci 6:7

    Article  Google Scholar 

  • Paz A, Gagen EJ, Levett A, Zhao Y, Kopittke PM, Southam G (2020) Biogeochemical cycling of iron oxides in the rhizosphere of plants grown on ferruginous duricrust (canga). Sci Total Environ 713:136637

    Article  CAS  PubMed  Google Scholar 

  • Pii Y, Borruso L, Brusetti L, Crecchio C, Cesco S, Mimmo T (2016) The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem 99:39–48

    Article  CAS  PubMed  Google Scholar 

  • Podile AR, Vukanti RVNR, Sravani A, Kalam S, Dutta S, Durgeshwar P, Papa Rao V (2014) Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion. Proc Indian Natl Sci Acad 80:407–413

    Article  Google Scholar 

  • Priya P, Aneesh B, Harikrishnan K (2021) Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 185:106215

    Article  CAS  PubMed  Google Scholar 

  • Purwaningsih S, Agustiyani D, Antonius S (2021) Diversity, activity, and effectiveness of Rhizobium bacteria as plant growth promoting rhizobacteria (PGPR) isolated from Dieng, central Java. Iran J Microbiol 13:130

    PubMed  PubMed Central  Google Scholar 

  • Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B, Chen J, Chen J, Lin Z, Qian H (2020) Rhizosphere microbiome assembly and its impact on plant growth. J Agric Food Chem 68(18):5024–5038

    Article  CAS  PubMed  Google Scholar 

  • Rafique M, Hayat K, Mukhtar T, Khan AA, Afridi MS, Hussain T, Sultan T, Munis MFH, Imran M, Chaudhary HJ (2015) The battle against microbial pathogens: basic science technological advances and educational programs. In: Méndez-Vilas A (ed) Bacterial biofilm formation and its role against agricultural pathogens. Formatex, Badajoz, pp 373–382

    Google Scholar 

  • Rafique M, Sultan T, Ortas I, Chaudhary HJ (2017) Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. Soil Sci Plant Nutr 63:460–469

    Article  CAS  Google Scholar 

  • Ravanbakhsh M, Sasidharan R, Voesenek LACJ, Kowalchuk GA, Jousset A (2018) Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome 6:1–10

    Article  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24

    Article  Google Scholar 

  • Saha I, Datta S, Biswas D (2020) Exploring the role of bacterial extracellular polymeric substances for sustainable development in agriculture. Curr Microbiol 77:1–16

    Article  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda M, Glick BR (2021) Rhizosphere colonization determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology 10:475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seneviratne G, Weerasekara MLMAW, Seneviratne KACN, Zavahir JS, Kecskés ML, Kennedy IR (2010) Importance of biofilm formation in plant growth promoting rhizobacterial action. In: Plant growth and health promoting bacteria. Springer, Berlin

    Google Scholar 

  • Sharon JA, Hathwaik LT, Glenn GM, Imam SH, Lee CC (2016) Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. J Soil Sci Plant Nutr 16:525–536

    CAS  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937

    PubMed  PubMed Central  Google Scholar 

  • Singh AD, Kour J, Dhiman S, Khanna K, Kumar P, Kaur R, Kapoor N, Bhardwaj R (2021) Prospects of PGPR-mediated antioxidants and S and P metabolism in plants under drought stress. In: Antioxidants in plant-microbe interaction. Springer, Singapore

    Chapter  Google Scholar 

  • Soni R, Keharia H (2021) Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. Planta 254:1–24

    Article  Google Scholar 

  • Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E, Mapelli F, Ouzari HI, Daffonchio D, Cherif A (2016) Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil 405:357–370

    Article  CAS  Google Scholar 

  • Srivastava V, Sarkar A, Singh S, Singh P, de Araujo AS, Singh RP (2017) Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front Environ Sci 5:64

    Article  Google Scholar 

  • Stringlis IA, De Jonge R, Pieterse CMJ (2019) The age of coumarins in plant–microbe interactions. Plant Cell Physiol 60:1405–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subair H (2015) Isolation and Screening Bacterial Exopolysaccharide (EPS) from potato rhizosphere in highland and the potential as a producer Indole Acetic Acid (IAA). Proc Food Sci 3:74–81

    Article  Google Scholar 

  • Ur Rehman F, Kalsoom M, Nasir TA, Adnan M, Anwar S, Zahra A (2020) Chemistry of plant–microbe interactions in rhizosphere and rhizoplane. Indian J Pure App Biosci 8(5):11–19

    Article  Google Scholar 

  • Valverde JR, Gullón S, Mellado RP (2016) Looking for rhizobacterial ecological indicators in agricultural soils using 16S rRNA metagenomic amplicon data. PLoS One 11:e0165204

    Article  PubMed  PubMed Central  Google Scholar 

  • Vamerali T, Panozzo A, Visioli G, Dal Cortivo C (2021) Root–microbe interactions influencing water and nutrient acquisition efficiency. In: The root systems in sustainable agricultural intensification. Wiley, Hoboken, pp 159–192

    Chapter  Google Scholar 

  • Van Nguyen T, Pawlowski K (2017) Frankia and actinorhizal plants: symbiotic nitrogen fixation. In: Rhizotrophs: plant growth promotion to bioremediation. Springer, Singapore

    Google Scholar 

  • Verma RK, Sachan M, Vishwakarma K, Upadhyay N, Mishra RK, Tripathi DK, Sharma S (2018) Role of PGPR in sustainable agriculture: molecular approach toward disease suppression and growth promotion. In: Role of rhizospheric microbes in soil. Springer, Singapore

    Google Scholar 

  • Verma M, Mishra J, Arora NK (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Environmental biotechnology: for sustainable future. Springer, Singapore

    Google Scholar 

  • Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39:3–17

    Article  CAS  PubMed  Google Scholar 

  • Wagi S, Ahmed A (2019) Bacillus spp.: potent microfactories of bacterial IAA. Peer J 7:e7258

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber NF, Herrmann I, Hochholdinger F, Ludewig U, Neumann G (2018) PGPR-induced growth stimulation and nutrient acquisition in maize: do root hairs matter. Sci Agric Bohem 49:164–172

    Google Scholar 

  • Wei Y, Zhao Y, Shi M, Cao Z, Qian L, Yang T, Fan Y, Wei Z (2018) Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresour Technol 247:190–199

    Article  CAS  PubMed  Google Scholar 

  • Wołejko E, Jabłońska-Trypuć A, Wydro U, Butarewicz A, Łozowicka B (2020) Soil biological activity as an indicator of soil pollution with pesticides–a review. Appl Soil Ecol 147:103356

    Article  Google Scholar 

  • Xu Z, Zhang H, Sun X, Liu Y, Yan W, Xun W, Shen Q, Zhang R (2019) Bacillus velezensis wall teichoic acids are required for biofilm formation and root colonization. Appl Environ Microbiol 85:e02116–e02118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Sugitha TCK, Singh BP, Saxena AK, Dhaliwal HS (2018) Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam

    Google Scholar 

  • Yates CF, Guo J, Bell TH, Fleishman SM, Bock HW, Trexler RV, Eissenstat DM, Centinari M (2021) Tree-induced alterations to soil properties and rhizoplane-associated bacteria following 23 years in a common garden. Plant Soil 461(1):591–602

    Article  CAS  Google Scholar 

  • Yousef NMH (2018) Capability of plant growth-promoting rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditions. Eur J Biol Res 8:174–182

    CAS  Google Scholar 

  • Yu K, Pieterse CMJ, Bakker PAHM, Berendsen RL (2019) Beneficial microbes going underground of root immunity. Plant Cell Environ 42:2860–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700

    Article  CAS  Google Scholar 

  • Zhang R, Vivanco JM, Shen Q (2017) The unseen rhizosphere root–soil–microbe interactions for crop production. Curr Opin Microbiol 37:8–14

    Article  PubMed  Google Scholar 

  • Zheng BX, Hao XL, Ding K, Zhou GW, Chen QL, Zhang JB, Zhu YG (2017) Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil. Sci Rep 7(1):1–10

    Google Scholar 

  • Zhu D, Wei Y, Zhao Y, Wang Q, Han J (2018) Heavy metal pollution and ecological risk assessment of the agriculture soil in Xunyang mining area, Shaanxi Province, Northwestern China. Bull Environ Contam Toxicol 101(2):178–184

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meryem, S.S., Pervez, A., Ebadi, A.G. (2022). Role of Quorum Sensing in Nutrient Acquisition and Synergistic Plant-Microbe Association. In: Mahmood, Q. (eds) Sustainable Plant Nutrition under Contaminated Environments. Sustainable Plant Nutrition in a Changing World. Springer, Cham. https://doi.org/10.1007/978-3-030-91499-8_14

Download citation

Publish with us

Policies and ethics