Skip to main content
Log in

Unwrapping the rhizosheath

  • Commentary
  • Published:
Plant and Soil Aims and scope Submit manuscript

The Original Article was published on 21 March 2017

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahmed MA, Kroener E, Benard P, Zarebanadkouki M, Kaestner A, Carminati A (2016) Drying of mucilage causes water repellency in the rhizosphere of maize: measurements and modelling. Plant Soil 407:161–171. doi:10.1007/s11104-015-2749-1

    Article  CAS  Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability: a mechanistic approach. John Wiley and Sons, New York

    Google Scholar 

  • Benard P, Kroener E, Vontobel P, Kaestner A, Carminati A (2016) Water percolation through the root-soil interface. Adv Water Resour 95:190–198. doi:10.1016/j.advwatres.2015.09.014

    Article  Google Scholar 

  • Brown LK, George TS, Thompson JA, Wright G, Lyon J, Dupuy L, Hubbard SF, White PJ (2012) What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Ann Bot 110:319–328. doi:10.1093/aob/mcs085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown LK, George TS, Neugebauer K, White PJ (2017) The rhizosheath – a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil. doi:10.1007/s11104-017-3220-2

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. doi:10.1007/s11104-008-9877-9

    Article  CAS  Google Scholar 

  • Carminati A, Kroener E, Ahmed MA, Zarebanadkouki M, Holz M, Ghezzehei T (2016) Water for carbon, carbon for water. Vadose Zone J 15. doi:10.2136/vzj2015.04.0060

  • Carminati A, Passioura JB, Zarebanakauki M, Ahmed MA, Ryam PR, Watt M, Delhaize E (2017) Root hairs enable high transpiration rates in drying soils. New Phytologist. doi:10.1111/nph.14715

  • Danin A (1996) Plant adaptations to environmental stresses in desert dunes. In: Danin A (ed) Plants of desert dunes. Springer, Berlin, pp 133–152

    Chapter  Google Scholar 

  • Delhaize E, Taylor P, Hocking PJ, Simpson RJ, Ryan PR, Richardson AE (2009) Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnol J 7:391–400. doi:10.1111/j.1467-7652.2009.00403.x

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, James RA, Ryan PR (2012) Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. New Phytol 195:609–619. doi:10.1111/j.1469-8137.2012.04183.x

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, Rathjen TM, Cavanagh CR (2015) The genetics of rhizosheath size in a multiparent mapping population of wheat. J Exp Bot 66:4527–4536. doi:10.1093/jxb/erv223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denton MD, Sasse C, Tibbett M, Ryan MH (2006) Root distributions of Australian herbaceous perennial legumes in response to phosphorus placement. Funct Plant Biol 33:1091–1102. doi:10.1071/FP06176

    Article  CAS  Google Scholar 

  • Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA (2015) Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant Cell Environ 38:1213–1232. doi:10.1111/pce.12448

    Article  CAS  PubMed  Google Scholar 

  • Fernández Bidondo L, Bompadre J, Pergola M, Silvani V, Colombo R, Bracamonte F, Godeas A (2012) Differential interaction between two Glomus intraradices strains and a phosphate solubilizing bacterium in maize rhizosphere. Pedobiologia 55:227–232. doi:10.1016/j.pedobi.2012.04.001

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (1997) Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica 98:177–182. doi:10.1023/a:1003113131989

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262:55–62. doi:10.1023/B:PLSO.0000037020.58002.ac

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE, Joshi PA, Jahoor A (2001) A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant Soil 235:211–219. doi:10.1023/a:1011993322286

    Article  CAS  Google Scholar 

  • George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, Russell J, Thomas WT (2014) Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol 203:195–205. doi:10.1111/nph.12786

    Article  CAS  PubMed  Google Scholar 

  • Ghezzehei TA, Albalasmeh AA (2015) Spatial distribution of rhizodeposits provides built-in water potential gradient in the rhizosphere. Ecol Model 298:53–63. doi:10.1016/j.ecolmodel.2014.10.028

    Article  CAS  Google Scholar 

  • Haling RE, Richardson AE, Culvenor RA, Lambers H, Simpson RJ (2010a) Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. Plant Soil 335:457–468. doi:10.1007/s11104-010-0433-z

    Article  CAS  Google Scholar 

  • Haling RE, Simpson RJ, Delhaize E, Hocking PJ, Richardson AE (2010b) Effect of lime on root growth, morphology and the rhizosheath of cereal seedlings growing in an acid soil. Plant Soil 327:199–212. doi:10.1007/s11104-009-0047-5

    Article  CAS  Google Scholar 

  • Haling RE, Brown LK, Bengough AG, Valentine TA, White PJ, Young IM, George TS (2014) Root hair length and rhizosheath mass depend on soil porosity, strength and water content in barley genotypes. Planta 239:643–651. doi:10.1007/s00425-013-2002-1

    Article  CAS  PubMed  Google Scholar 

  • Haling RE, Yang Z, Shadwell N, Culvenor RA, Stefanski A, Ryan MH, Sandral GA, Kidd DR, Lambers H, Simpson RJ (2016) Root morphological traits that determine phosphorus-acquisition efficiency and critical external phosphorus requirement in pasture species. Funct Plant Biol 43:815–826

    CAS  Google Scholar 

  • Hartnett DC, Wilson GWT, Ott JP, Setshogo M (2013) Variation in root system traits among African semi-arid savanna grasses: implications for drought tolerance. Austral Ecol 38:383–392. doi:10.1111/j.1442-9993.2012.02422.x

    Article  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Hilton S, Bennett AJ, Keane G, Bending GD, Chandler D, Stobart R, Mills P (2013) Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline. PLoS One 8:e59859. doi:10.1371/journal.pone.0059859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd DR, Ryan MH, Haling RE, Lambers H, Sandral GA, Yang Z, Culvenor RA, Cawthray GR, Stefanski A, Simpson RJ (2016) Rhizosphere carboxylates and morphological root traits in pasture legumes and grasses. Plant Soil 402:77–89. doi:10.1007/s11104-015-2770-4

    Article  CAS  Google Scholar 

  • Kroener E, Zarebanadkouki M, Kaestner A, Carminati A (2014) Nonequilibrium water dynamics in the rhizosphere: how mucilage affects water flow in soils. Water Resour Res 50:6479–6495. doi:10.1002/2013wr014756

    Article  Google Scholar 

  • Li L, Li S-M, Sun J-H, Zhou L-L, Bao X-G, Zhang H-G, Zhang F-S (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci U S A 104:11192–11196. doi:10.1073/pnas.0704591104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathesius U (2015) Soil:root interface. In: Munns R, Schmidt S, Beveridge C (eds) plants in action, 2nd ed. Australian Society of Plant Scientists and New Zealand Society of Plant Biologists, Australia and New Zealand. http://plantsinaction.Science.Uq.Edu.Au/. Accessed 01062017

  • McCully ME (1995) Water efflux from the surface of field-grown grass roots. Observations by cryo-scanning electron microscopy. Physiol Plant 95:217–224. doi:10.1111/j.1399-3054.1995.tb00830.x

    Article  CAS  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718. doi:10.1146/annurev.arplant.50.1.695

    Article  CAS  PubMed  Google Scholar 

  • Miguel MA, Postma JA, Lynch J (2015) Phene synergism between root hair length and basal root growth angle for phosphorus acquisition. Plant Physiol 167:1430–1439. doi:10.1104/pp.15.00145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Espíndola IP, Rivera-Becerril F, de Jesús F-GM, De León-González F (2007) Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem 39:2520–2526. doi:10.1016/j.soilbio.2007.04.021

    Article  Google Scholar 

  • Nambiar EKS (1976) Uptake of Zn65 from dry soil by plants. Plant Soil 44:267–271. doi:10.1007/BF00016978

    Article  CAS  Google Scholar 

  • North GB, Nobel PS (1997) Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths. Plant Soil 191:249–258. doi:10.1023/a:1004213728734

    Article  CAS  Google Scholar 

  • Pang J, Ryan MH, Tibbett M, Cawthray GR, Siddique KHM, Bolland MDA, Denton MD, Lambers H (2010) Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant Soil 331:241–255. doi:10.1007/s11104-009-0249-x

    Article  CAS  Google Scholar 

  • Pang J, Yang J, Lambers H, Tibbett M, Siddique KHM, Ryan MH (2015) Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Physiol Plant 154:511–525. doi:10.1111/ppl.12297

    Article  CAS  PubMed  Google Scholar 

  • Pausch J, Loeppmann S, Kühnel A, Forbush K, Kuzyakov Y, Cheng W (2016) Rhizosphere priming of barley with and without root hairs. Soil Biol Biochem 100:74–82. doi:10.1016/j.soilbio.2016.05.009

    Article  CAS  Google Scholar 

  • Prendergast-Miller MT, Duvall M, Sohi SP (2014) Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur J Soil Sci 65:173–185. doi:10.1111/ejss.12079

    Article  CAS  Google Scholar 

  • Price SR (1911) The roots of some north African desert-grasses. New Phytol 10:328–340. doi:10.1111/j.1469-8137.1911.tb06524.x

    Article  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann AC (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388. doi:10.1111/nph.13045

    Article  CAS  PubMed  Google Scholar 

  • Rose TJ, Hardiputra B, Rengel Z (2010) Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant Soil 326:159–170. doi:10.1007/s11104-009-9990-4

    Article  CAS  Google Scholar 

  • Ryan MH, Kirkegaard JA (2012) The agronomic relevance of arbuscular mycorrhizas in the fertility of Australian extensive cropping systems. Agric Ecosyst Environ 163:37–53. doi:10.1016/j.agee.2012.03.011

    Article  Google Scholar 

  • Ryan MH, Tibbett M, Edmonds-Tibbett T, Suriyagoda LDB, Lambers H, Cawthray GR, Pang J (2012) Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant Cell Environ 35:2170–2180. doi:10.1111/j.1365-3040.2012.02547.x

    Article  CAS  PubMed  Google Scholar 

  • Ryan MH, Kidd DR, Sandral GA, Yang Z, Lambers H, Culvenor RA, Stefanski A, Nichols PGH, Haling RE, Simpson RJ (2016) High variation in the percentage of root length colonised by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum). Appl Soil Ecol 98:221–232. doi:10.1016/j.apsoil.2015.10.019

    Article  Google Scholar 

  • Shane MW, McCully ME, Canny MJ, Pate JS, Huang C, Ngo H, Lambers H (2010) Seasonal water relations of Lyginia barbata (southern rush) in relation to root xylem development and summer dormancy of root apices. New Phytol 185:1025–1037. doi:10.1111/j.1469-8137.2009.03143.x

    Article  PubMed  Google Scholar 

  • Smith RJ, Hopper SD, Shane MW (2011) Sand-binding roots in Haemodoraceae: global survey and morphology in a phylogenetic context. Plant Soil 348:453–470. doi:10.1007/s11104-011-0874-z

    Article  CAS  Google Scholar 

  • Swanson MM, Fraser G, Daniell TJ, Torrance L, Gregory PJ, Taliansky M (2009) Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann Appl Biol 155:51–60. doi:10.1111/j.1744-7348.2009.00319.x

    Article  Google Scholar 

  • Thompson JP, Wildermuth GB (1989) Colonization of crop and pasture species with vesicular–arbuscular mycorrhizal fungi and a negative correlation with root infection by Bipolaris sorokiniana. Can J Bot 67:687–693. doi:10.1139/b89-092

    Article  Google Scholar 

  • Tibbett M, Ryan M, Kertesz MA (2012) Rhizosphere 3: where plants meet soils down-under. Plant Soil 358:1–5. doi:10.1007/s11104-012-1415-0

    Article  CAS  Google Scholar 

  • Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197. doi:10.1023/a:1022367312851

    Article  CAS  Google Scholar 

  • Vermeer J, McCully ME (1982) The rhizosphere in Zea: new insight into its structure and development. Planta 156:45–61. doi:10.1007/bf00393442

    Article  CAS  PubMed  Google Scholar 

  • Vincent C, Rowland D, Na C, Schaffer B (2017) A high-throughput method to quantify root hair area in digital images taken in situ. Plant Soil 412:61–80. doi:10.1007/s11104-016-3016-9

    Article  CAS  Google Scholar 

  • Volkens G (1887) Die Flora der Aegyptisch-arabischen Wuste auf Grundlage anatomisch-physiologischer Forschungen. Gerbruger Borntraeger, Berlin

    Google Scholar 

  • Walley FL, Gillespie AW, Adetona AB, Germida JJ, Farrell RE (2013) Manipulation of rhizosphere organisms to enhance glomalin production and C sequestration: pitfalls and promises. Can J Plant Sci 94:1025–1032. doi:10.4141/cjps2013-146

    Article  Google Scholar 

  • Watt M, McCully ME, Jeffree CE (1993) Plant and bacterial mucilages of the maize rhizosphere: comparison of their soil binding properties and histochemistry in a model system. Plant Soil 151:151–165. doi:10.1007/bf00016280

    Article  CAS  Google Scholar 

  • Watt M, McCully ME, Canny MJ (1994) Formation and stabilization of rhizosheaths of Zea mays L. - effect of soil water content. Plant Physiol 106:179–186. doi:10.1104/pp.106.1.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen T-J, Schnable PS (1994) Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am J Bot 81:833–842. doi:10.2307/2445764

    Article  Google Scholar 

  • Wullstein LH (1980) Nitrogen fixation (acetylene reduction) associated with rhizosheaths of Indian ricegrass used in stabilization of the slick rock, Colorado tailings pile. J Range Manag 33:204–206. doi:10.2307/3898285

    Article  Google Scholar 

  • Yang Z, Culvenor RA, Haling RE, Stefanski A, Ryan MH, Sandral GA, Kidd DR, Lambers H, Simpson RJ (2017) Variation in root traits associated with nutrient foraging among temperate pasture legumes and grasses. Grass Forage Sci 72:93–103. doi:10.1111/gfs.12199

    Article  Google Scholar 

  • York LM, Carminati A, Mooney SJ, Ritz K, Bennett MJ (2016) The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. J Exp Bot 67:3629–3643. doi:10.1093/jxb/erw108

    Article  CAS  PubMed  Google Scholar 

  • Young IM (1995) Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley). New Phytol 130:135–139. doi:10.1111/j.1469-8137.1995.tb01823.x

    Article  Google Scholar 

  • Zimmermann J, Musyoki MK, Cadisch G, Rasche F (2016) Proliferation of the biocontrol agent Fusarium oxysporum f. Sp. strigae and its impact on indigenous rhizosphere fungal communities in maize under different agro-ecologies. Rhizosphere 1:17–25. doi:10.1016/j.rhisph.2016.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou Y-N, Chen X, Srivastava AK, Wang P, Xiang L, Wu Q-S (2016) Changes in rhizosphere properties of trifoliate orange in response to mycorrhization and sod culture. Appl Soil Ecol 107:307–312. doi:10.1016/j.apsoil.2016.07.004

    Article  Google Scholar 

Download references

Acknowledgements

Megan Ryan is funded by an ARC Future Fellowship (FT140100103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayin Pang.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, J., Ryan, M.H., Siddique, K.H.M. et al. Unwrapping the rhizosheath. Plant Soil 418, 129–139 (2017). https://doi.org/10.1007/s11104-017-3358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3358-y

Keywords

Navigation