Skip to main content

Advertisement

Log in

Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The efficacy of silver generated larvicide with the help of entomopathogenic fungi, Isaria fumosorosea (Ifr) against major vector mosquitoes Culex quinquefasciatus and Aedes aegypti. The Ifr-silver nanoparticles (AgNPs) were characterized structurally and functionally using UV-visible spectrophotometer followed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and Fourier transform infrared (FTIR) spectra. The optimum pH (alkaline), temperature (30 °C) and agitation (150 rpm) for AgNP synthesis and its stability were confirmed through colour change. Ae. aegypti larvae (I–IV instars) were found highly susceptible to synthesized AgNPs than the larvae of Cx. quinquefasciatus. However, the mortality rate was indirectly proportional to the larval instar and the concentration. The lethal concentration that kills 50 % of the exposed larvae (LC50) and lethal concentration that kills 90 % of the exposed larvae (LC90) values of the tested concentration are 0.240, 0 0.075.337, 0.430, 0.652 and 1.219, 2.210, 2.453, 2.916; 0.065, 0.075, 0.098, 0.137 and 0.558, 0.709, 0.949, 1.278 ppm with respect to 0.03 to 1.00 ppm of Ifr-AgNPs against first, second, third and fourth instars of Cx. quinquefasciatus and Ae. aegypti, respectively. This is the first report for synthesis of AgNPs using Ifr against human vector mosquitoes. Hence, Ifr-AgNPs would be significantly used as a potent mosquito larvicide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anil Kumar S, Abyaneh MK, Gosavi Sulabha SW, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  PubMed  CAS  Google Scholar 

  • Banu N, Balasubramanian (2014) Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae) doi:10.1007/s00436-014-3948-z

  • Berdy J (2005) Bioactive microbial metabolites—a personal view. J Antibiot 58(1):1–26

    Article  PubMed  CAS  Google Scholar 

  • Bhainsa CK, D’Souza FS (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Usha RP, Mandal S, Epidi TT (2010) Nano-particles—a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493

    CAS  Google Scholar 

  • Braga IA, Lima JBP, Soares SS, Valle D (2004) Aedes aegypti resistance to temephos during 2001 in several municipalities in the states of Rio de Janerio, Sergipe and Alagoas, Brazil. Mem Inst Oswaldo Cruz 99:199–203

    Article  PubMed  Google Scholar 

  • Cadavid-Restrepo G, Sahaza J, Orduz S (2012) Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance. Mem Inst Oswaldo Cruz 107:74–79

    Article  PubMed  CAS  Google Scholar 

  • Chenniappan K, Ayyadurai N (2012) Synergistic activity of Cyt1A from Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110:381–388

    Article  PubMed  Google Scholar 

  • Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading, p 102

    Google Scholar 

  • Das VL, Thomas R, Radhakrishna EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area 3. Biotech 4(2):121–126

    Google Scholar 

  • Dhanasekaran D, Thangaraj R (2013) Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asian Pac J Trop Dis 3(3):174–179

    Article  CAS  PubMed Central  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W (2007) Preparation and antibacterial activity of Fe3O4 Ag nanoparticles. Nanotechnology 18:285604

    Article  Google Scholar 

  • Halstead SB (2007) Dengue. Lancet 370:1644–1652

    Article  PubMed  Google Scholar 

  • Haraprasad N, Niranjans SR, Prakash HS, Shetty HS, Seema W (2001) Beauveria bassiana—a potential mycopesticide for the efficient control of coffee Berry Borer, Hypothenemus hampei (Ferrari). Biocontrol Sci Tech 11:251–260

    Article  Google Scholar 

  • Ingle AP, Gade AK, Pierrat S, Sconnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    Google Scholar 

  • Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Ind J Exp Biol 48:1152–1156

    CAS  Google Scholar 

  • Kalimuthu K, Babu SR, Venkataraman DM, Bilal Gurunathan S (2008) Biosynthesis of silver nanoparticles by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Lengke FM, Fleet EM, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria a from a silver(I) nitrate complex. Langmuir 23:2694–2699

    Article  PubMed  CAS  Google Scholar 

  • Macdonald IDG, Smith W (1996) Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12:706

    Article  CAS  Google Scholar 

  • Melo-Santos MAV, Varjal-Melo JJM, Araujo AP, Gomes TCS, Paiva MHS (2010) Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop 113:180–189

    Article  PubMed  CAS  Google Scholar 

  • Minaein S, Shahvedrdi AR, Nohi AS, Shahverdi HR (2008) Extracellular biosynthesis of silver nanoparticles by some bacteria. J Sci I A U 17(66):1–4

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D (2001) Bioreduction of AuCl4–ions by the fungus, Verticillium sp and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40(19):3585–3588

    Article  PubMed  CAS  Google Scholar 

  • Najitha Banu A, Balasubramanian C, Vinayaga Moorthi P (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:311–316

    Article  PubMed  Google Scholar 

  • National Vector Borne Disease Control Programme (NVBDCP) (2011) Dengue cases and deaths in the country since 2007

  • Pialoux G, Gauzere B, Jaureguiberry S (2007) Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7:319–327

    Article  PubMed  Google Scholar 

  • Salunkhe RB, Patil SV, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus, Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technol 100:501–504

    Article  CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajkumar G, Marimuthu S, Bagavan A, Jayaseelan C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vector. Parasitol Res 108:693–702

    Article  PubMed  Google Scholar 

  • Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B 88:325–331

    Article  CAS  Google Scholar 

  • Shahverdi RA, Minaeian S, Shahverdi H, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807

    Article  CAS  Google Scholar 

  • Siddhardha B, Ramakrishna V, Anil Kumar KK, Gupta RC (2012) Dubey and Basaveswara Rao MV. In vitro antimicrobial and larvicidal spectrum of certain bioactive fungal extracts. Int J Res Pharm Biomed Sci 3(1):115–155

    Google Scholar 

  • Sonal BS, Swapnil C, Gaikwad K, Aniket GK, Mahendra R (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 1–12

  • Soni N, Prakash S (2011) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110(1):175–184

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanopart 2:125–132

    Article  Google Scholar 

  • Sourisseau M, Schitle G, Casartelli N (2007) Characterization of re-emerging chikungunya virus. Plos Pathog 3:89

    Article  Google Scholar 

  • Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499

    Article  PubMed  Google Scholar 

  • Surendran A, Vennison SJ (2011) Occurrence and distribution of mosquitocidal Bacillus sphaericus in soil. Acad J Entomol 4:17–22

    Google Scholar 

  • Vigneshwaran N, Ashtaputrea NM, Varadarajana PV, Nachanea RP, Paralikaraand KM, Balasubramanyaa RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • WHO (2002) Lymphatic filariasis—the disease and its control. Technical report no. 71. World Health Organization, Geneva.

  • WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides WHO/CDS/WHOPES/GCDPP/13.

  • WHO (2007) Global plan to combat neglected tropical diseases 2008–2015. WHO/CDS/NTD/2007.40. World Health Organization, Geneva.

  • WHO/UNICEF, NNDP/World Bank/WHO/TDR. (1997) Research on rapid geographical assessment of Bancroftian filariasis. World Health Organization, Geneva.

  • World Health Organization (2010) Global program to eliminate lymphatic filariasis.

  • World Health Organization (2012) Dengue and severe dengue. http://www.who.int/mediacemtre/factsheets/fs117/en/

  • Yang T, Lu L, Fu G, Zhong S, Ding G (2009) Epidemiology and vector efficiency during a dengue fever outbreak in Cixi, Zhejiang Province, China. J Vector Ecol 34:148–154

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the Management, Thiagarajar College (Autonomous), Madurai, for providing the facilities to perform the research works in the PG and Research Department of Zoology and Microbiology. Author ANB thank UGC-MANF, India, for the financial support and CRME (ICMR), Madurai, who kindly supplied eggs and larvae required during our work. We thank the Department of Chemistry, Madras University and Karunya University, Coimbatore, for the instrumental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Najitha Banu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, A.N., Balasubramanian, C. Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res 113, 3843–3851 (2014). https://doi.org/10.1007/s00436-014-4052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4052-0

Keywords

Navigation