Skip to main content

Genetic and Physical Mapping of the Apple Genome

  • Chapter
  • First Online:
The Apple Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

In apple genome mapping, two distinctive types of maps have been developed—a genetic map, also known as a linkage map, and a physical map. Linkage maps have been established for many important horticultural traits in apple. This involves identifying molecular markers linked to major genes and quantitative trait loci (QTL). Such genetic maps have been developed for various desirable economic traits for the apple, including those for disease resistance, pest resistance, growth habit, flowering, and budbreak, as well as for various fruit quality traits. In addition, genome-wide physical maps have also been developed for the apple. Such maps not only serve as platforms for large-scale genome sequencing efforts, but are also essential for studying the genetic basis of complex traits, as well as for pursuing genomics research studies. Strategies for establishing genetic and physical maps of the apple genome along with the details of these findings will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldwinkle HS, Way RD, Livermore KG, Preczewski JL, Beer SV (1976) Fire blight in the Geneva apple collection. Fruit Var J 30:42–55

    Google Scholar 

  • Allard A, Bink MC, Martinez S, Kelner JJ, Legave JM, di Guardo M, Di Pierro EA, Laurens F, van de Weg EW, Costes E (2016) Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. J Exp Bot 67:2875–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alston FH, Briggs JB (1968) Resistance to Sappaphis devecta (Wlk.) in apple. Euphytica 17:468–472

    Article  Google Scholar 

  • Alston FH, Briggs JB (1977) Resistance genes in apple and biotypes of Dysaphis devecta. Ann Appl Biol 87:75–81

    Article  Google Scholar 

  • Alston FH, Watkins R (1975) Apple breeding at East Malling. In: Brown AG, Watkins R, Alston F (eds) Proceedings Eucarpia symposium on tree fruit breeding: 11–14 September 1973; Canterbury, pp 14–29

    Google Scholar 

  • Alston FH, Phillips KL, Evans KM (2000) A Malus gene list. Acta Hortic 538:561–570

    Article  CAS  Google Scholar 

  • Amyotte B, Bowen AJ, Banks T, Rajcan I, Somers DJ (2017) Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study. PLoS ONE 12:

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antanaviciute L, Fernández-Fernández F, Jansen J, Banchi E, Evans KM, Viola R, Velasco R, Dunwell JM, Troggio M, Sargent DJ (2012) Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array. BMC Genom 13:203. https://doi.org/10.1186/1471-2164-13-203

    Article  CAS  Google Scholar 

  • Bai T, Zhu Y, Fernández-Fernández F, Keulemans J, Brown S, Xu K (2012a) Fine genetic mapping of the Co locus controlling columnar growth habit in apple. Mol Genet Genomics 287:437–450

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K (2012b) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287:663–678

    Article  CAS  PubMed  Google Scholar 

  • Baldi P, Wolters PJ, Komjanc M, Viola R, Velasco R, Salvi S (2013) Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.). Mol Breed 31:429–440

    Article  CAS  Google Scholar 

  • Baldo A, Norelli JL, Farrell RE Jr, Bassett CL, Aldwinckle HS, Malnoy M (2010) Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora. BMC Plant Biol 10:1. https://doi.org/10.1186/1471-2229-10-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:58–970

    Article  CAS  Google Scholar 

  • Bastiaanse H, Bassett HC, Kirk C, Gardiner SE, Deng C, Groenworld R, Chagné D, Bus VG (2016) Scab resistance in ‘Geneva’ apple is conditioned by a resistance gene cluster with complex genetic control. Mol Plant Pathol 17:159–172

    Article  CAS  PubMed  Google Scholar 

  • Bénaouf G, Parisi L (2000) Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90:236–242

    Article  PubMed  Google Scholar 

  • Bénaouf G, Parisi L, Laurens F (1997) Inheritance of Malus floribunda clone 821 resistance to Venturia inaequalis. IOBC/WPRS Bull 20:1–7

    Google Scholar 

  • Bianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Di Guardo M, Salvi S, Jansen J, Viola R, Gut I, Laurens F, Chagné D, Velasco R, van de Weg E, Troggio M (2014) Development and validation of a 20 K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh.). PLoS ONE 9: e110377

    Google Scholar 

  • Bianco L, Cestaro A, Linsmith G, Muranty H, Denancé C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, Van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M (2016) Development and validation of the Axiom(®) Apple480K SNP genotyping array. Plant J 86:62–74

    Article  CAS  PubMed  Google Scholar 

  • Bonn WG, van der Zwet T (2000) Distribution and economic importance of fire blight. In: Vanneste JL (ed) Fire Blight: the disease and its causative agent, Erwinia amylovora. CABI Publish, Wallingford, UK, pp 37–55

    Chapter  Google Scholar 

  • Boudichevskaia A, Fischer C, Flachowsky H, Hanke V, Dunemann F (2004) Development of molecular markers for Vr1, a scab resistance factor from R12740-7A apple. Acta Hortic 663:171–176

    Article  CAS  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Peil A, Fischer C, Dunemann F (2006) Development of a multiallelic SCAR marker for the scab resistance gene Vr1/Vh4/Vx from R12740-7A apple and its utility for molecular breeding. Tree Genet Genomes 2:186–195

    Article  Google Scholar 

  • Broggini GA, Wöhner T, Fahrentrapp J, Kost TD, Flachowsky H, Peil A, Hanke MV, Richter K, Patocchi A, Gessler C (2014) Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Plant Biotechnol J 12:728–733

    Article  CAS  PubMed  Google Scholar 

  • Bus VGM, Rikkerink EHA, van de Weg WE, Rusholme RL, Gardiner SE, Bassett HCM, Kodde LP, Parisi L, Laurens FND, Meulenbroek EJ, Plummer KM (2005a) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Mol Breed 15:103–116

    Article  CAS  Google Scholar 

  • Bus VGM, Laurens FND, van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, Plummer KM (2005b) The Vh8 locus of a new gene-for gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytol 166:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Bus VGM, Chagné D, Bassett HCM, Bowatte D, Calenge F, Celton J-M, Durel CE, Malone MT, Patocchi A, Ranatunga AC, Rikkerink EHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm). Tree Genet Genomes 4: 233–236

    Google Scholar 

  • Bus VGM, Rikkerink EHA, Caffier V, Durel CE, Plummer KM (2011) Revision of the nomenclature of the differential host–pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–413

    Article  CAS  PubMed  Google Scholar 

  • Busatto N, Matsumoto D, Tadiello A, Vrhovsek U, Costa F (2019) Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple. PLoS ONE 14(7): https://doi.org/10.1371/journal.pone.0219354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calenge F, Durel CE (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple afler four years of field assessments. Mol Breed 17:329–339

    Article  Google Scholar 

  • Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denancé C, Durel CE (2005a) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668

    Article  CAS  PubMed  Google Scholar 

  • Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset MN, Paulin JP, Durel CE (2005b) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135

    Article  CAS  PubMed  Google Scholar 

  • Celton JM, Chagné D, Tustin SD, Terakami S, Nishitani C, Yamamoto T, Gardiner SE (2009) Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes 2:182. https://doi.org/10.1186/1756-0500-2-182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cevik V, King J (2002a) High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor Appl Genet 105:346–354

    Article  CAS  PubMed  Google Scholar 

  • Cevik V, King GJ (2002b) Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45:939–945

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genom 8:212. https://doi.org/10.1186/1471-2164-8-212

    Article  CAS  Google Scholar 

  • Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012a) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C (2012b) Genome-wide SNP detection, validation, and development of an 8 K SNP array for apple. PLoS ONE 7:

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chagné D, Lin-Wang K, Espley RV, Volz RK, How NM, Rouse S, Brendolise C, Carlisle CM, Kumar S, De Silva N, Micheletti D, McGhie T, Crowhurst RN, Storey RD, Velasco R, Hellens RP, Gardiner SE, Allan AC (2013) An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol 161:225–239

    Article  PubMed  CAS  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet 93:222–227

    Article  CAS  PubMed  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK, Aldwinckle HS, Gardiner SE, Bus VG (1998) Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome 41:208–214

    Article  CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphicDNA-based genetic linkage maps of three apple cultivars. J Am Soc Hort Sci 122:350–359

    Article  CAS  Google Scholar 

  • Costa F, Van de Weg WE, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4:575–586

    Article  Google Scholar 

  • Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, Van de Weg WE (2010) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus x domestica Borkh.). J Exp Bot 61:3029–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane MB, Greenslade RM, Massee AM, Tydemans HM (1936) Studies on the resistance and immunity of apples to the wooly apple aphid, Eriosoma lanigerum (Hausm.). J Pomol Hort Sci 14:137–163

    Google Scholar 

  • Crosby JA, Janick J, Pecknold PC, Korban SS, O’Connor PA, Ries SM, Goffreda J, Voordeckers A (1992) Breeding apples for scab resistance: 1945–1990. Fruit Var J 46:145–166

    Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Dayton DF (1977) Genetic immunity to apple mildew incited by Podosphaera leucotricha. HortScience 12:225–226

    Article  Google Scholar 

  • Dayton DF, Williams EB (1968) Independent genes in Malus for resistance to Venturia inaequalis. Proc Amer Soc Hort Sci 92:89–94

    Google Scholar 

  • Dayton DF, Williams EB (1970) Additional allelic genes in Malus for scab resistance of two reaction types. J Am Soc Hort Sci 95:735–736

    Article  Google Scholar 

  • Desnoues E, Norelli JL, Aldwinckle HS, Wisniewski ME, Evans KM, Malnoy M, Khan A (2018) Identification of novel strain-specific and environment-dependent minor QTLs linked to fire blight resistance in apples. Plant Mol Biol Rep 36:247–256

    Article  CAS  Google Scholar 

  • Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, Ling TJ, Ross JJ, Hallett IC, Gunaseelan K, Dayatilake GA, Diak R, Breen KC, Tustin DS, Costes E, Chagné D, Schaffer RJ, David KM (2012) A genomics approach to understanding the role of auxin in apple (Malus × domestica) fruit size control. BMC Plant Biol 12:7. https://doi.org/10.1186/1471-2229-12-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Guardo M, Bink MCAM, Guerra W, Letschka T, Lozano L, Busatto N, Poles L, Tadiello A, Bianco L, Visser RGF, van de Weg E, Costa F (2017) Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. J Expt Bot 68:1451–1466

    Article  CAS  Google Scholar 

  • Di Pierro EA, Gianfranceschi L, Di Guardo M, Koehorst-van Putten HJ, Kruisselbrink JW, Longhi S, Troggio M, Bianco L, Muranty H, Pagliarani G, Tartarini S, Letschka T, Lozano Luis L, Garkava-Gustavsson L, Micheletti D, Bink MC, Voorrips RE, Aziz E, Velasco R, Laurens F, van de Weg WE (2016) A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. Hortic Res 3:16057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, Mao Z, Shen X, Chen X, Jiang Y, Wu S, Yin C, Ge S, Yang L, Jiang S, Xu H, Liu J, Wang D, Qu C, Wang Y, Zuo W, Xiang L, Liu C, Zhang D, Gao Y, Xu Y, Xu K, Chao T, Fazio G, Shu H, Zhong GY, Cheng L, Fei Z, Chen X (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun 8:249. https://doi.org/10.1038/s41467-017-00336-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunemann F, Bräcker G, Markussen T, Roche P (1999) Identification of molecular markers for the major mildew resistance gene Pl2 in apple. Acta Hort 484:411–416

    Google Scholar 

  • Dunemann F, Urbanietz A, Gardiner S, Bassett H, Legg W, Rusholme R, Bus V, Ranatunga C (2004) Marker assisted selection for Pl-1 powdery mildew resistance in apple - old markers for a new resistance gene? Acta Hortic 663:757–762

    Article  CAS  Google Scholar 

  • Dunemann F, Peil A, Urbanietz A, Garcia-Libreros T (2007) Mapping of the apple powdery mildew resistance gene Pl1 and its genetic association with an NBS-LRR candidate resistance gene. Plant Breed 126:476–481

    Article  CAS  Google Scholar 

  • Durel CE, Denancé C, Brisset MN (2009) Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 52:139–147

    Article  CAS  PubMed  Google Scholar 

  • Erdin N, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab resistance gene Vb. Genome 49:1238–1245

    Article  CAS  PubMed  Google Scholar 

  • Espley RV, Hellens RP, Puterill J, Kutty-Amma S, Allan AC (2006) Red colouration in apple fruit is due to the activity of a MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans KM, James CM (2003) Identification of SCAR markers linked to PI-w mildew resistance in apple. Theor Appl Genet 106:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C (2013) A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC–NBS–LRR. Tree Genet Genome 9:237–251

    Article  Google Scholar 

  • Falginella L, Cipriani G, Monte C, Gregori R, Testolin R, Velasco R, Troggio M, Tartarini S (2015) A major QTL controlling apple skin russeting maps on the linkage group 12 of ‘Renetta Grigia di Torriana’. BMC Plant Biol 15:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fazio G, Wan Y, Kviklys D, Romero L, Adams R, Strickland D, Robinson T (2014) Dw2, a new dwarfing locus in apple rootstocks and its relationship to induction of early bearing in apple scions. J Am Soc Hortic Sci 139:87–98

    Article  Google Scholar 

  • Fernandez-Fernandez F, Evans KM, Clarke JB, Govan CL, James CM, Maric S, Tobutt KR (2008) Development of an STS map of an interspecific progeny of Malus. Tree Genet Genom 4:469–479

    Article  Google Scholar 

  • Foster TM, Watson AE, van Hooijdonk BM, Schaffer RJ (2014) Key flowering genes including FT-like genes are upregulated in the vasculature of apple dwarfing rootstocks. Tree Genet Genomes 10:189–202

    Article  Google Scholar 

  • Foster TM, Celton J-M, Chagné D, Tustin DS, Gardiner SE (2015) Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Hortic Res 2:15001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli P, Patocchi A, Broggini GA, Gessler C (2010) The Rvi15 (Vr2) apple scab resistance locus contains three TIR-NBS-LRR genes. Mol Plant-Microbe Interact 23:608–617

    Article  CAS  PubMed  Google Scholar 

  • Gallot JC, Lamb RC, Aldwinkle HS (1985) Resistance to powdery mildew from some small fruited Malus cultivars. HortScience 20:1085–1087

    Article  Google Scholar 

  • Gardiner SE, Bassett HCM, Noiton DAM, Bus VG, Hofstee ME, White AG, Ball RD, Forster RL, Rikkerink EHA (1996) A detailed linkage map around an apple scab resistance gene demonstrates that class 3A and 3B progeny both carry the Vf gene. Theor Appl Genet 93:485–493

    Article  CAS  PubMed  Google Scholar 

  • Gardiner S, Bassett H, Murdoch J, Meech S, Cook M, Bus V, Ranatunga C, Rikkerink E (2001) Major pest and disease resistance loci in apple available to breeders. In: Plant & animal Genome IX conferences, San Diego, CA, USA

    Google Scholar 

  • Gardiner S, Murdoch J, Meech S, Rusholme R, Bassett H, Cook M, Bus V, Rikkerink E, Gleave A, Crowhurst R, Ross G, Warrington I (2003) Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Hortic 622:141–151

    Article  CAS  Google Scholar 

  • Gardiner SE, Norelli JL, de Silva N, Fazio G, Peil A, Malnoy M, Horner M, Bowatte D, Carlisle C, Wiedow C, Wan Y, Bassett CL, Baldo AM, Celton JM, Richter K, Aldwinckle HS, Bus VG (2012) Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions. BMC Genet 13:25. https://doi.org/10.1186/1471-2156-13-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner RG, Cummins JN, Aldwinckle HS (1980) Inheritance of fire blight resistance in Malus in relation to rootstock breeding. J Am Soc Hort Sci 105:912–916

    Article  Google Scholar 

  • Gardner KM, Brown P, Cooke TF, Cann S, Costa F, Bustamante C, Velasco R, Troggio M, Myles S (2014) Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 (Bethesda) 4:1681–1687

    Google Scholar 

  • Gessler C, Pertot I (2012) Vf scab resistance of Malus. Trees 26:95–108. https://doi.org/10.1007/s00468-011-0618-y

    Article  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93:199–204

    Article  CAS  PubMed  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    Article  CAS  Google Scholar 

  • Grattapaglia D, Sederoff RR (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Peace C, Rudell D, Verma S, Evans KM (2015) QTLs detected for individual sugars and soluble solids content in apple. Mol Breed 35:135. https://doi.org/10.1007/s11032-015-0334-1

    Article  CAS  Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Gutierrez BL, Zhong G-Y, Brown SK (2018) Increased phloridzin content associated with russeting in apple (Malus domestica (Suckow) Borkh.) fruit. Genet Resour Crop Evol 65:2135–3149

    Article  CAS  Google Scholar 

  • Han Y, Korban SS (2010) Strategies for map-based cloning in apple. Crit Rev Plant Sci 29:265–284

    Article  CAS  Google Scholar 

  • Han Y, Gasic K, Marron B, Beever JE, Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89:630–637

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Chagné D, Gasic K, Rikkerink EH, Beever JE, Gardiner SE, Korban SS (2009) BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics 93:282–288

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS (2011) Integration of physical and genetic maps in apple confirms whole genome and segmental duplications in the apple genome. J Exp Bot 62:5117–5130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison N, Harrison RJ, Barber-Perez N, Cascant-Lopez E, Cobo-Medina M, Lipska M, Conde-Ruíz R, Brain P, Gregory PJ, Fernández-Fernández F (2016) A new three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage. J Exp Bot 67:1871–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Heredity 85:4–11

    CAS  Google Scholar 

  • Hemmat M, Weeden NF, Aldwinckle HS, Brown SK (1998) Molecular markers for the scab resistance (Vf) region in apple. J Am Soc Hort Sci 123:992–996

    Article  CAS  Google Scholar 

  • Hemmat M, Brown SK, Aldwinckle HS, Weeden NF (2003) Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen’s baccata #2’. Acta Hort 622:153–161

    Article  CAS  Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  • Illa E, Sargent DJ, Lopez Girona E, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, van der Knaap E, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagné D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9

    Article  PubMed  PubMed Central  Google Scholar 

  • James CM, Clarke JB, Evans KM (2004) Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor Appl Genet 110:175–181

    Article  CAS  PubMed  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds.) Fruit breeding: tree and tropical fruits,. vol I. Wiley, New York, pp 177

    Google Scholar 

  • Jensen PJ, Fazio G, Altman N, Praul C, McNellis TW (2014) Mapping in an apple (Malus × domestica) F1 segregating population based on physical clustering of differentially expressed genes. BMC Genom 15:261

    Article  CAS  Google Scholar 

  • Jock S, Donat V, Lopez MM, Bazzi C, Geider K (2002) Following spread of fire blight in Western and southern Europe by molecular differentiation of Erwinia amylovora strains with PFGE analysis. Environ Microbiol 4:106–114

    Article  PubMed  Google Scholar 

  • Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton JM, Arús P, Shulaev V, Verde I, Morgante M, Rokhsar D, Velasco R, Sargent DJ (2012) Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genom 13:129

    Article  CAS  Google Scholar 

  • Kellerhals M, Gianfranceschi L, Seglias N, Gessler C (2000) Marker-assisted selection in apple breeding. Acta Hortic 521:255–265

    Article  CAS  Google Scholar 

  • Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus × domestica Borkh.) based on AFLP and microsatellite markers. Mol Breed 15:205–219

    Article  CAS  Google Scholar 

  • Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Mol Breed 19:193–208

    Article  CAS  Google Scholar 

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306

    Article  Google Scholar 

  • Khan MA, Han Y, Zhao YF, Korban SS (2012a) A high-throughput apple SNP genotyping platform using the GoldenGate™ assay. Gene 494:196–201

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Han Y, Zhao YF, Troggio M, Korban SS (2012b) A multipopulation consensus genetic map reveals inconsistent marker order among maps likely attributed to structural variations in the apple genome. PLoS ONE 7:

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Zhao Y, Korban SS (2012c) Molecular mechanisms of fire blight resistance in Rosaceae. Plant Mol Biol Rep 30:247–260

    Article  CAS  Google Scholar 

  • Khan SA, Chibon PY, de Vos RC, Schipper BA, Walraven E, Beekwilder J, van Dijk T, Finkers R, Visser RG, van de Weg EW, Bovy A, Cestaro A, Velasco R, Jacobsen E, Schouten HJ (2012d) Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. J Exp Bot 63:2895–2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Zhao YF, Korban SS (2013) Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping. Physiol Plant 148:344–353

    Article  CAS  PubMed  Google Scholar 

  • Kim MY, Song KJ, Hwang JH, Shin YU, Lee HJ (2003) Development of RAPD and SCAR markers linked to the Co gene conferring columnar growth habit in apple (Malus pumila Mill.). J Hort Sci Bio 78:512–517

    Article  CAS  Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM,·Griffon B, Laurens F, Manganaris AG,·Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084

    Google Scholar 

  • Knight RL, Alston FH (1968) Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Can J Genet Cytol 10:294–298

    Article  Google Scholar 

  • Knight RL, Briggs JB, Massee AM, Tydeman HM (1962) The inheritance of resistance to woolly aphid, Eriosoma lanigerum (Hsmnn.), in the apple. J Hort Sci 37:207–218

    Article  Google Scholar 

  • Knoche M, Lang A (2017) Ongoing growth challenges fruit skin integrity. Crit Rev Plant Sci 36:190–215

    Article  Google Scholar 

  • Koller B, Gianfranceschi L, Seglias N, McDermott J, Gessler C (1994) DNA markers linked to Malus floribunda 821 scab resistance. Plant Mol Biol 26:597–602

    Article  CAS  PubMed  Google Scholar 

  • Korban SS, Dayton DF (1983) Evaluation of Malus germplasm for resistance to powdery mildew. HortScience 18:219–220

    Article  Google Scholar 

  • Korban SS, Ries SM, Klopmeyer MJ, Morissey JF, Hattermann DR (1988) Genotypic responses of scab-resistant apple cultivar/selections to two strains of Erwinia amylovora and the inheritance of resistance to fire blight. Ann Appl Biol 113:101–105

    Article  Google Scholar 

  • Larsen B, Migicovsky Z, Jeppesen AA, Gardner KM, Toldam-Andersen TB, Myles S, Ørgaard M, Mikael Petersen MA, Pedersen C (2019) Genome-wide association studies in apple reveal loci for aroma volatiles, sugar composition, and harvest date. Plant Genome 12: https://doi.org/10.3835/plantgenome2018.12.0104

    Article  CAS  Google Scholar 

  • Lashbrooke J, Aharoni A, Costa F (2015) Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development. J Exp Bot 66:6579–6589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Roux PM, Khan MA, Broggini GA, Duffy B, Gessler C, Patocchi A (2010) Mapping of quantitative trait loci for fire blight resistance in the apple cultivars ‘Florina’ and ‘Nova Easygro’. Genome 53:710–722

    Article  PubMed  CAS  Google Scholar 

  • Legay S, Guerriero G, André C, Guignard C, Cocco E, Charton S, Boutry M, Rowland O, Hausman J-F (2016) MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. N Phytol 212:977–991. https://doi.org/10.1111/nph.14170

    Article  CAS  Google Scholar 

  • Legay S, Cocco E, André CM, Guignard C, Hausman J-F, Guerriero G (2017) Differential lipid composition and gene expression in the semi-russeted ‘Cox Orange Pippin’ apple variety. Front Plant Sci 8:1656. https://doi.org/10.3389/fpls.2017.01656

    Article  PubMed  PubMed Central  Google Scholar 

  • Lespinasse Y (1989) Breeding pome fruits with stable resistance to diseases: genes, resistance mechanisms, present work and prospects. IOBC/WPRS Bull 2:100–115

    Google Scholar 

  • Lespinasse Y, Aldwinckle H (2000) Breeding for resistance to fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford, UK, pp 253–273

    Chapter  Google Scholar 

  • Lespinasse Y, Olivier JM, Lespinasse JM, Le Lezec M (1985) ‘Florina- Quérina’®: la résistance du pommier à la tavelure. Arboricult Fruit 378:43–47

    Google Scholar 

  • Li X, Kui L, Zhang J, Xie Y, Wang L, Yan Y, Wang N, Xu J, Li C, Wang W, van Nocker S, Dong Y, Ma F, Guan Q (2016) Improved hybrid de novo genome assembly of domesticated apple (Malus × domestica). Gigascience 5:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van DeWeg E, Gessler C (2002) Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturatedreference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    Article  CAS  PubMed  Google Scholar 

  • Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.). J Exp Bot 63:1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Longhi S, Hamblin MT, Trainotti L, Peace CP, Velasco R, Costa F (2013) A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus × domestica Borkh.). BMC Plant Biol 13:37. https://doi.org/10.1186/1471-2229-13-37

  • Ma B, Zhao S, Wu B, Wang D, Peng Q, Owiti A, Fang T, Liao L, Ogutu C, Korban SS, Li S, Han YP (2016) Construction of a high density linkage map and its application in the identification of QTLs for soluble sugar and organic acid components in apple. Tree Genet Genomes 12:1. https://doi.org/10.1007/s11295-015-0959-6

    Article  Google Scholar 

  • Ma B, Liao L, Peng Q, Fang T, Zhou H, Korban SS, Han Y (2017) Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple. J Integr Plant Biol 59:190–204

    Article  CAS  PubMed  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielinkvan Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multiallelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Manganaris AG (1989) Isoenzymes as genetic markers in apple breeding. PhD thesis, University of London, London, UK

    Google Scholar 

  • Markussen T, Kruger J, Schmidt H, Dunemann F (1995) Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pl1 from Malus robusta in cultivated apple. Plant Breed 114:530–534

    Article  CAS  Google Scholar 

  • McClure KA, Gong Y, Song J, Vinqvist-Tymchuk M, Palmer LC, Fan L, Burgher-MacLellan K, Zhang ZQ, Celton J-M, Forney CF, Migicovsky Z, Myles S (2019) Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols. Hortic Res 6:107. https://doi.org/10.1038/s41438-019-0190-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellidou I, Chagné D, Laing WA, Keulemans J, Davey MW (2012) Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Physiol 160:1613–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minarro M, Dapena E (2004) Inheritance of tolerance to the rosy apple aphid of the cv. ‘Florina’. Acta Hortic 663: 261–264

    Google Scholar 

  • Miotto YE, Tessele C, Czermainski ABC, Porto DD, Falavigna VdS, Sartor T, Cattani AM, Delatorre CA, de Alencar SA, da Silva-Junior OB, Togawa RC, do Carmo Costa MM, Pappas Jr. GJ, Grynberg P, de Oliveira PRD, Kvitschal MV, Denardi F, Buffon V, Revers LF (2019) Spring is coming: Genetic analyses of the bud break date locus reveal candidate genes from the cold perception pathway to dormancy release in apple (Malus × domestica Borkh.). Front Plant Sci 10:33 https://doi.org/10.3389/fpls.2019.00033

  • Moriya S, Okada K, Haji T, Yamamoto T, Abe K (2012) Fine mapping of Co, a gene controlling columnar growth habit located on apple (Malus × domestica Borkh.) linkage group 10. Plant Breed 131:641–647

    Article  CAS  Google Scholar 

  • N’Diaye A, Van de Weg WE, Kodde LP, Koller B, Dunemann F, Thiermann M, Tartarini S, Gennari F, Durel CE (2008) Construction of an integrated consensus map of the apple genome based on four mapping populations. Tree Genet Genomes 4:727–743

    Article  Google Scholar 

  • Nachman MW (2002) Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev 12:657–663

    Article  CAS  PubMed  Google Scholar 

  • Papp D, Singh J, Gadoury DM, Khan MA (2019) New North American isolates of Venturia inaequalis can overcome apple scab resistance of Malus floribunda 821. Plant Dis 104(3):649–55

    Article  Google Scholar 

  • Parisi L, Lespinasse Y (1996) Pathogenicity of Venturia inaequalis race 6 strains on apple clones (Malus spp.). Plant Dis 80:1179–1183

    Article  Google Scholar 

  • Parravicini G, Gessler C, Denancé C, Lasserre-Zuber P, Vergne E, Brisset MN, Patocchi A, Durel CE, Broggini GA (2011) Identification of serine/threonine kinase and nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol Plant Pathol 12:493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patocchi A, Gianfranceschi L, Gessler C (1999a) Towards the map-based cloning of Vf: Fine and physical mapping of the Vf region. Theor Appl Genet 99:1012–1017

    Article  CAS  Google Scholar 

  • Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang H-B, Sansavini S, Gessler C (1999b) Construction of a 550 kb BAC contig spanning the genomic region containing the apple resistance gene Vf. Mol Gen Genet 262:884–891

    Article  CAS  PubMed  Google Scholar 

  • Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr2: A new apple scab resistance gene. Theor Appl Genet 109:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Patocchi A, Walser M, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–663

    Article  CAS  PubMed  Google Scholar 

  • Peil A, Garcia-Libreros T, Richter K, Trognitz FC, Trognitz B, Hanke MV, Flachowsky H (2007) Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breed 126:470–475

    Article  CAS  Google Scholar 

  • Peil A, Bus VGM, Geider K, Richter K, Flachowsky H, Hanke MV (2009) Improvement of fire blight resistance in apple and pear. Int J Plant Breed 3:1–27

    Google Scholar 

  • Pessina S, Pavan S, Catalano D, Gallotta A, Visser RG, Bai Y, Malnoy M, Schouten HJ (2014) Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genom 15:618

    Article  Google Scholar 

  • Pessina S, Angeli D, Martens S, Visser RG, Bai Y, Salamini F, Velasco R, Schouten HJ, Malnoy M (2016) The knock-down of the expression of MdMLO19 reduces susceptibility to powdery mildew (Podosphaera leucotricha) in apple (Malus domestica). Plant Biotechnol J 14:2033–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qubbaj T, Reineke A, Zebitz CPW (2005) Molecular interactions between rosy apple aphids, Dysaphis plantaginea, and resistant and susceptible cultivars of its primary host Malus domestica. Entomol Exper Applicat 115:145–152

    Article  CAS  Google Scholar 

  • Roberts AL, Crute IR (1994) Apple scab resistance from Malus floribunda 821 (Vf) is rendered ineffective by isolates of Venturia inaequalis from Malus floribunda. Norw J Agr Sci 17:403–406

    Google Scholar 

  • Roche P, Alston FH, Maliepaard C, Evans KM, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C, King GJ (1997a) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd-1) in apple. Theor Appl Genet 94:528–533

    Article  CAS  Google Scholar 

  • Roche PG, Van Arkel AW, Heusden Van (1997b) A specific PCR assay based on an RFLP marker closely linked to the Sd1 gene for resistance to biotypes 1 and 2 of the rosy leaf curling aphid in apple. Plant Breed 116:567–572

    Article  CAS  Google Scholar 

  • Rushlomé-Pilcher RL, Celton J-M, Gardiner SE (2008) Genetic markers linked to the dwarfing trait of apple rootstock ‘Malling 9’. J Am Soc Hort Sci 133:100–106

    Article  Google Scholar 

  • Sandanayaka WRM, Bus VGM, Connolly P, Newcomb R (2003) Characteristics associated with woolly apple aphid Eriosoma lanigerum, resistance of three apple rootstocks. Entomol Exp Appl 109:63–72

    Article  Google Scholar 

  • Schouten HJ, Brinkhuis J, van der Burgh A, Schaart JG, Groenwold R, Broggini GAL, Gessler C (2014) Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance. Tree Genet Genomes 10:251–260

    Article  Google Scholar 

  • Seglias NP, Gessler C (1997) Genetics of apple powdery mildew resistance from Malus zumi (Pl2). IOBC/WPRS Bull 20:195–208

    Google Scholar 

  • Seleznyova AN, Tustin DS, Thorp TG (2008) Apple dwarfing rootstocks and interstocks affect the type of growth units produced during the annual growth cycle: precocious transition to flowering affects the composition and vigour of annual shoots. Ann Bot 101:679–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Soriano JM, Joshi SG, Van Kaauwen W, Noordijk Y, Groenwold R, Henken B, van de Weg WE, Schouten HJ (2009) Identification and mapping of the novel apple scab resistance gene Vd3. Tree Genet Genomes 5:475–482

    Article  Google Scholar 

  • Souleyre EJ, Chagné D, Chen X, Tomes S, Turner RM, Wang MY, Maddumage R, Hunt MB, Winz RA, Wiedow C, Hamiaux C, Gardiner SE, Rowan DD, Atkinson RG (2014) The AAT1 locus is critical for the biosynthesis of esters contributing to ‘ripe apple’ flavour in ‘Royal Gala’ and ‘Granny Smith’ apples. Plant J 78:903–915

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Chang Y, Yang F, Wang Y, Li H, Zhao Y, Chen D, Wu T, Zhang X, Han Z (2015) A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics 16:747

    Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tartarini S (1996) RAPD markers linked to the Vf gene for scab resistance in apple. Theor Appl Genet 92:803–810

    Article  CAS  PubMed  Google Scholar 

  • Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (1999) Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed 118:183–186

    Article  Google Scholar 

  • Tartarini S, Gennari F, Pratesi D, Palazzetti C, Sansavini S, Parisi L, Fouillet A, Fouillet V, Durel CE (2004) Characterisation and genetic mapping of a major scab resistance gene from the old Italian apple cultivar ‘Durello di Forli’. Acta Hortic 663:129–133

    Article  CAS  Google Scholar 

  • Tian YK, Wang CH, Zhang JS, James C, Dai HY (2005) Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica 145:181–188

    Article  CAS  Google Scholar 

  • Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, Guyader A, Guisnel R, Feugey L, Aubourg S, Celton J-M, Daccord N, Dondini L, Gregori R, Lateur M, Houben P, Ordidge M, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Troggio M, Bianco L, Velasco R, Poncet C, Théron A, Moriya S, Bink MCAM, Laurens F, Tartarini S, Durel C-E (2017) Genome-wide association mapping of flowering and ripening periods in apple. Front Plant Sci 8:1923 https://doi.org/10.3389/fpls.2017.01923

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Google Scholar 

  • Verdu CF, Guyot S, Childebrand N, Bahut M, Celton JM, Gaillard S, Lasserre-Zuber P, Troggio M, Guilet D, Laurens F (2014) QTL analysis and candidate gene mapping for the polyphenol content in cider apple. PLoS ONE 9:

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma S, Evans K, Guan Y, Luby JJ, Rosyara UR, Howard NP, Bassil N, Bink MCAM, van De Weg WE, Peace CP (2019) Two large-effect QTLs, Ma and Ma3, determine genetic potential for acidity in apple fruit: breeding insights from a multi-family study. Tree Genet Genomes 15:18. https://doi.org/10.1007/s11295-019-1324-y

    Article  Google Scholar 

  • Vinatzer BA, Zhang H-B, Sansavini S (1998) Construction and characterization of a bacterial artificial chromosome library of apple. Theor Appl Genet 97:1183–1190

    Article  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang H-B, Gessler C, Sansavini S (2001) Apple (Malus sp.) contains receptor-like genes homologous to the Cf resistance gene family of tomato with a cluster of such genes co-segregating with Vf apple scab resistance. Mol Plant-Microbe Interact 14:508–515

    Article  CAS  PubMed  Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed 123:321–326

    Article  CAS  Google Scholar 

  • Visser T, Verhaegh JJ (1976) Review of tree fruit breeding carried out at the Institute for Horticultural Plant Breeding at Wageningen from 1951 to 1976. In: Proceedings of Eucarpia meeting of tree fruit breeding, Wageningen, The Netherlands, pp 113–132

    Google Scholar 

  • Wolters PJ, Schouten HJ, Velasco R, Si-Ammour A, Baldi P (2013) Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytol 200:993–999

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Korban SS (2000) Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor Appl Genet 101:844–851

    Article  CAS  Google Scholar 

  • Xu M, Korban SS (2001) AFLP-derived SCARs facilitate construction of a 1.1 Mb sequence-ready map of a region that spans the Vf locus in the apple genome. Plant Mol Biol 50:803–818

    Article  Google Scholar 

  • Xu M, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Korban SS (2004) Somatic variation plays a key role in the evolution of the Vf gene family residing in the Vf locus that confers resistance to apple scab disease. Mol Phylogenet Evol 32:57–65

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Huaracha E, Korban SS (2001a) Development of sequence characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome 44:63–70

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Song J, Cheng Z, Jiang J, Korban SS (2001b) A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44:1104–1113

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Song J, Jiang J, Korban SS (2002) Constructing a bacterial artificial chromosome library of the apple cultivar GoldRush. Acta Hortic 595:103–112

    Article  CAS  Google Scholar 

  • Xu K, Wang A, Brown S (2012) Genetic characterization of the Ma locus with pH and titratable acidity in apple. Mol Breed 30:899–912

    Article  CAS  Google Scholar 

  • Yang H, Korban SS (1996) Screening apples for OPD20/600 using sequence-specific primers. Theor Appl Genet 92:263–266

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Krüger J (1994) Identification of an RAPD markers linked to the Vf gene for scab resistance in apples. Plant Breed 112:323–329

    Article  Google Scholar 

  • Yang HY, Korban SS, Krüger J, Schmidt H (1997) The use of a modified bulk segregant analysis to identify a molecular marker linked to a scab resistance gene in apple. Euphytica 94:175–182

    Article  Google Scholar 

  • Yao JL, Xu J, Cornille A, Tomes S, Karunairetnam S, Luo Z, Bassett H, Whitworth C, Rees-George J, Ranatunga C, Snirc A, Crowhurst R, de Silva N, Warren B, Deng C, Kumar S, Chagné D, Bus VG, Volz RK, Rikkerink EH, Gardiner SE, Giraud T, MacDiarmid R, Gleave AP (2015) A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. Plant J 84:417–427

    Article  CAS  PubMed  Google Scholar 

  • Yauk YK, Chagné D, Tomes S, Matich AJ, Wang MY, Chen X, Maddumage R, Hunt MB, Rowan DD, Atkinson RG (2015) The O-methyltransferase gene MdoOMT1 is required for biosynthesis of methylated phenylpropenes in ripe apple fruit. Plant J 82:937–950

    Article  CAS  PubMed  Google Scholar 

  • Yauk YK, Souleyre EJF, Matich AJ, Chen X, Wang MY, Plunkett B, Dare AP, Espley RV, Tomes S, Chagné D, Atkinson RG (2017) Alcohol acyl transferase 1 links two distinct volatile pathways that produce esters and phenylpropenes in apple fruit. Plant J 91:292–305

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Ma B, Li H, Chang Y, Han Y, Li J, Wei G, Zhao S, Khan MA, Zhou Y, Gu C, Zhang X, Han Z, Korban SS, Li S, Han Y (2012) Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genom 13:537. https://doi.org/10.1186/1471-2164-13-537

    Article  Google Scholar 

  • Zhang L, Hu J, Han X, Li J, Gao Y, Richards CM, Zhang C, Tian Y, Liu G, Gul H, Wang D, Tian Y, Yang C, Meng M, Yuan G, Kang G, Wu Y, Wang K, Zhang H, Wang D, Con P (2019) A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun 10:1494. https://doi.org/10.1038/s41467-019-09518-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen Q, Fang T, Peng Q, Liao L, Zhao L, Owiti A, Han Y (2018) Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. Hortic Res 5:14. https://doi.org/10.1038/s41438-018-0024-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zini E, Biasioli F, Gasperi F, Mott D, Aprea E, Märk TD, Patocchi A, Gessler C, Komjanc M (2005) QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry. Euphytica 145:269–279

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuepeng Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, Y., Korban, S.S. (2021). Genetic and Physical Mapping of the Apple Genome. In: Korban, S.S. (eds) The Apple Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-74682-7_7

Download citation

Publish with us

Policies and ethics