Skip to main content
Log in

The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Russian apple R12740-7A is the designation for an accession grown from seed collected in Russia, which was found to be highly resistant to apple scab. The resistance has historically been attributed to a naturally pyramided complex involving three major genes: one race-nonspecific gene, Vr, conditioning resistance to all known races, plus two race-specific genes. The race-nonspecific gene was identified as an independently segregating gene by Dayton and Williams (1968) and is referred to in this paper as Vr-DW. The first researchers to study the scab resistance gene complex in Russian apple never described the phenotype conditioned by the race-nonspecific gene. Later, Aldwinckle et al. (1976) associated the name Vr with a scab resistance gene conditioning distinctive stellate necrotic reactions, which we refer to as Vr-A in order to distinguish it from Vr-DW. We show that the segregation ratios in progenies from the scab differential hosts 2 and 4 that are derived from Russian apple, crossed with susceptible cultivars were consistent with a single gene conditioning resistance in each host. The genes have been named Vh2 and Vh4, respectively. Resistant segregants from host 2 showed stellate necrotic reactions, while those from host 4 showed hypersensitive reactions. Both the phenotypes and the genetic maps for the genes in the respective hosts were very similar to those of the genes previously named Vr-A and Vx, respectively, in an F1 family of Russian apple. We showed that race 2 of V. inaequalis isolated from host 2 was able to infect resistant descendants of the non-differential accession PRI 442-23 as well as host 2. The descendants of PRI 442-23 were expected to carry the race-nonspecific Vr-DW gene, but in fact carry Vr-A. We conclude that the Vh2 gene in host 2 and Vr-A are the same, and that the Vh4 gene in host 4 and Vx are the same. However, a major finding of this study is that the latter gene mapped to linkage group 2 of apple instead of linkage group 10 as suggested from previous research. With the two race-specific genes from Russian apple defined now, we discuss the nature of the race-nonspecific Vr-DW gene in this accession. We also report the identification of a new scab resistance gene, VT57, from either ‘Golden Delicious’ or ‘Red Dougherty’, which conditions chlorotic resistance reactions and is linked to Vh2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.S. Aldwinckle H.L. Gustafson R.C. Lamb (1976) ArticleTitleEarly determination of genotypes for apple scab resistance by forced flowering of test cross progenies Euphytica 25 185–191

    Google Scholar 

  • P. Baldi A. Patocchi E. Zini C. Toller R. Velasco M. Komjanc (2004) ArticleTitleCloning and linkage mapping of resistance gene homologues in apple Theor. Appl. Genet. 109 231–239

    Google Scholar 

  • G. Bénaouf L. Parisi (2000) ArticleTitleGenetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species Phytopathology 90 236–242

    Google Scholar 

  • A. Boudichevskaia ,C. Fischer ,H. Flachowsky, V. Hanke, F. Dunemann 2004Development of molecular markers for Vr1a scab resistance factor from R12740-7A apple Acta Hortic.(in press).

  • M.J. Brownstein J.D. Carpten J.R. Smith (1996) ArticleTitleModulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping BioTechniques 20 1004–1010 Occurrence Handle1:CAS:528:DyaK28XjtlGmtr8%3D Occurrence Handle8780871

    CAS  PubMed  Google Scholar 

  • V. Bus C. Ranatunga S. Gardiner H. Bassett E. Rikkerink (2000) ArticleTitleMarker assisted selection for pest and disease resistance in the New Zealand apple breeding programme Acta Hortic. 538 541–547

    Google Scholar 

  • Bus V., Van de Weg W.E., Durel C.E., Gessler C., Calenge F., Parisi L., Rikkerink E., Gardiner S., Patocchi A., Meulenbroek M., Schouten H. and Laurens F. 2004. Delineation of a scab resistance gene cluster on linkage group 2 of apple. Acta Hortic. (in press).

  • F. Calenge A. Faure M. Goerre C. Gebhardt W.E. de Weg L. Parisi C.E. Durel (2004) ArticleTitleQuantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis Phytopathology 94 370–379

    Google Scholar 

  • M. Chevalier Y. Lespinasse S. Renaudin (1991) ArticleTitleA microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis) Plant Pathol. 40 249–256

    Google Scholar 

  • J.A. Crosby J. Janick P.C. Pecknold S.S. Korban P.A. O’Connor S.M. Ries J. Goffreda A. Voordeckers (1992) ArticleTitleBreeding apples for scab resistance: 1945–1990 Fruit Variet. J. 46 145–166

    Google Scholar 

  • D.F. Dayton J.R. Shay L.F. Hough (1953) ArticleTitleApple scab resistance from R12740-7Aa Russian apple Proc. Am. Soc. Hortic. Sci. 62 334–340

    Google Scholar 

  • D.F. Dayton E.B. Williams (1968) ArticleTitleIndependent genes in Malus for resistance to Venturia inaequalis Proc. Am. Soc. Hortic. Sci. 92 89–94

    Google Scholar 

  • D.F. Dayton E.B. Williams (1970) ArticleTitleAdditional allelic genes in Malus for scab resistance of two reaction types J. Am. Soc. Hortic. Sci. 95 735–736

    Google Scholar 

  • C.E. Durel L. Parisi F. Laurens W.E. Van de Weg R. Liebhard M.F. Jourjon (2003) ArticleTitleGenetic dissection of partial resistance to race 6 of Venturia inaequalis in apple Genome 46 224–234

    Google Scholar 

  • S.E. Gardiner H.C.M Bassett D.A.M. Noiton V.G. Bus M.E. Hofstee A.G. White R.D. Ball R.L.S. Forster E.H.A. Rikkerink (1996) ArticleTitleA detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the V f gene Theor. Appl. Genet. 93 485–493

    Google Scholar 

  • M. Hemmat S.K. Brown H.S. Aldwinckle N.F. Weeden S.A. Mehlenbacher (2003a) ArticleTitleIdentification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen’s baccata #2’ Acta Hortic. 622 153–161

    Google Scholar 

  • M. Hemmat S.K. Brown N.F. Weeden (2002) ArticleTitleTagging and mapping scab resistance genes from R12740–7A apple J. Am. Soc. Hortic. Sci. 127 365–370

    Google Scholar 

  • M. Hemmat N.F. Weeden S.K. Brown (2003b) ArticleTitleMapping and evaluation of Malus × domestica microsatellites in apple and pear J. Am. Soc. Hortic. Sci. 128 515–520

    Google Scholar 

  • L.F. Hough J.R. Shay D.F. Dayton (1953) ArticleTitleApple scab resistance from Malus floribunda Sieb Proc. Am. Soc. Hortic. Sci. 62 341–347

    Google Scholar 

  • L.F. Hough E.B. Williams D.F. Dayton J.R. Shay C.H. Bailey J.B. Mowry J. Janick F.H. Emerson (1970) Progress and problems in breeding apples for scab resistance Proceedings of the Angers Fruit Breeding Symposium14–18 September 1970 INRA Versailles 217–230

    Google Scholar 

  • S.S. Korban,H. Chen. 1992. Apple.In F.A. Hammerschlag and R.E. Litz(eds), Biotechnology of Perennial Fruit Crops. CAB International, pp. 203--227.

  • D.D. Kosambi (1944) ArticleTitleThe estimation of map distances from recombination values Ann. Eugen. 12 172–175

    Google Scholar 

  • I.-B. Lee P. Fynn T. Short (2000) ArticleTitleDevelopment and evaluation of a computer-controlled fertigation system Appl. Eng. Agric. 16 IssueID3 279–284

    Google Scholar 

  • Y. Lespinasse (1989) ArticleTitleBreeding pome fruits with stable resistances to diseases. 3 Genes, resistance mechanisms, present work and prospects IOBC Bull. 12 IssueID6 100–115

    Google Scholar 

  • R. Liebhard L. Gianfranceschi B. Koller C.D. Snyder R. Tarchini E. Van de Weg C. Gessler (2003) ArticleTitleDevelopment and characterisation of 140 new microsatellites in apple (Malus×domestica Borkh.) Mol. Breed. 10 217–241

    Google Scholar 

  • R. Liebhard B. Koller A. Patocchi M. Kellerhals W. Pfammatter M. Jermini C. Gessler (2002) ArticleTitleMapping quantitative field resistance against apple scab in a ‘Fiesta’ × ‘Discovery’ progeny Phytopathology 93 493–501

    Google Scholar 

  • W.E. MacHardy (1996) Apple Scab. Biology Epidemiology, and Management APS Press St. Paul 545

    Google Scholar 

  • C. Maliepaard F.H. Alston G. Van Arkel L.M. Brown E. Chevreau F. Dunemann K.M. Evans S. Gardiner P. Guilford A.W. Van Heusden J. Janse F. Laurens J.R. Lynn A.G. Manganaris A.P.M. Den Nijs N. Periam E. Rikkerink P. Roche C. Ryder S. Sansavini H. Schmidt S. Tartarini J.J. Verhaegh M. Vrielink-Van Ginkel G.J. King (1998) ArticleTitleAligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers Theor. Appl. Genet. 97 60–73

    Google Scholar 

  • B.A. McDonald C. Linde (2002) ArticleTitleThe population genetics of plant pathogens and breeding strategies for durable resistance Euphytica 124 163–180

    Google Scholar 

  • R.W. Michelmore B.C. Meyers (1998) ArticleTitleClusters of resistance genes in plants evolve by divergent selection and a birth-and-death process Genome Res. 8 1113–1130

    Google Scholar 

  • J.M. Olivier Y. Lespinasse (1982) ArticleTitleRésistance du pommier à la tavelure Venturia inaequalis (Cke.) Wint.: sources de résistancecomportement du parasiteprogramme de sélection Cryptogr. Mycol. 3 361–375

    Google Scholar 

  • I. Paran R.W. Michelmore (1993) ArticleTitleDevelopment of reliable PCR-based markers linked to downy mildew resistance genes in lettuce Theor. Appl. Genet. 85 985–993

    Google Scholar 

  • L. Parisi Y. Lespinasse (1996) ArticleTitlePathogenicity of Venturia inaequalis strains of race 6 on apple clones (Malus sp.) Plant Dis. 80 1179–1183

    Google Scholar 

  • L. Parisi Y. Lespinasse J. Guillaumes J. Krüger (1993) ArticleTitleA new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene Phytopathology 83 533–537

    Google Scholar 

  • D.M. Parker U.W. Hilber M. Bodmer F.D. Smith C. Yao W. Köller (1995) ArticleTitleProduction and transformation of conidia of Venturia inaequalis Phytopathology 85 87–91

    Google Scholar 

  • Patocchi A., Bigler B., Koller B., Kellerhals, M. and Gessler C. 2004. Vr2: a new apple scab resistance gene. Theor. Appl. Genet. 109: 1087–1092.

    Google Scholar 

  • J.R. Shay L.F. Hough (1952) ArticleTitleEvaluation of apple scab resistance in selections of Malus Am. J. Bot. 39 288–297

    Google Scholar 

  • J.R. Shay E.B. Williams (1956) ArticleTitleIdentification of three physiological races of Venturia inaequalis Phytopath. 46 190–193

    Google Scholar 

  • J.R. Shay E.B. Williams J. Janick (1962) ArticleTitleDisease resistance in apple and pear Proc. Am. Soc. Hortic. Sci. 80 97–104

    Google Scholar 

  • J.W. Van Ooijen R.E. Voorrips (2001) JoinMap Version 3.0, Software for the Calculation of Genetic Linkage Maps Plant Research International Wageningen, The Netherlands

    Google Scholar 

  • E.B. Williams A.G. Brown (1968) ArticleTitleA new physiological race of Venturia inaequalisincitant of apple scab Plant Dis. Rep. 52 799–801

    Google Scholar 

  • E.B. Williams J. Kuć (1969) ArticleTitleResistance in Malus to Venturia inaequalis Ann. Rev. Phytopathol. 7 223–246

    Google Scholar 

  • E.B. Williams J.R. Shay (1957) ArticleTitleThe relationship of genes for pathogenicity and certain other characters in Venturia inaequalis (Cke.) Wint Genetics 42 704–711

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.G.M. Bus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bus, V., Rikkerink, E., van de Weg, W. et al. The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Mol Breeding 15, 103–116 (2005). https://doi.org/10.1007/s11032-004-3609-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-004-3609-5

Keywords

Navigation