Skip to main content
Log in

A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Acidity levels greatly affect the taste and flavor of fruit, and consequently its market value. In mature apple fruit, malic acid is the predominant organic acid. Several studies have confirmed that the major quantitative trait locus Ma largely controls the variation of fruit acidity levels. The Ma locus has recently been defined in a region of 150 kb that contains 44 predicted genes on chromosome 16 in the Golden Delicious genome. In this study, we identified two aluminum-activated malate transporter-like genes, designated Ma1 and Ma2, as strong candidates of Ma by narrowing down the Ma locus to 65–82 kb containing 12–19 predicted genes depending on the haplotypes. The Ma haplotypes were determined by sequencing two bacterial artificial chromosome clones from G.41 (an apple rootstock of genotype Mama) that cover the two distinct haplotypes at the Ma locus. Gene expression profiling in 18 apple germplasm accessions suggested that Ma1 is the major determinant at the Ma locus controlling fruit acidity as Ma1 is expressed at a much higher level than Ma2 and the Ma1 expression is significantly correlated with fruit titratable acidity (R 2 = 0.4543, P = 0.0021). In the coding sequences of low acidity alleles of Ma1 and Ma2, sequence variations at the amino acid level between Golden Delicious and G.41 were not detected. But the alleles for high acidity vary considerably between the two genotypes. The low acidity allele of Ma1, Ma1-1455A, is mainly characterized by a mutation at base 1455 in the open reading frame. The mutation leads to a premature stop codon that truncates the carboxyl terminus of Ma1-1455A by 84 amino acids compared with Ma1-1455G. A survey of 29 apple germplasm accessions using marker CAPS1455 that targets the SNP1455 in Ma1 showed that the CAPS1455A allele was associated completely with high pH and highly with low titratable acidity, suggesting that the natural mutation-led truncation is most likely responsible for the abolished function of Ma for low pH or high acidity in apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn CS, Han JA, Lee HS, Lee S, Pai HS (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23:185–209

    Article  PubMed  CAS  Google Scholar 

  • Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse J-M, Gambale F, Thomine S, Wege S (2011) Anion channels/transporters in plants: from molecular bases to regulatory networks. Annu Rev Plant Biol 62:25–51

    Article  PubMed  CAS  Google Scholar 

  • Beruter J (1998) Carbon partitioning in an apple mutant deficient in malic acid. Acta Hort 446:23–28

    Google Scholar 

  • Beruter J (2004) Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. J Plant Physiol 161:1011–1029

    Article  PubMed  Google Scholar 

  • Blanpied GD, Silsby KJ (1992) Predicting harvest date windows for apples. Information Bulletin 221. Cornell Cooperative Extension, Cornell University, Ithaca

  • Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E (2009) Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biol 9:14

    Article  Google Scholar 

  • Brown AG, Harvey DM (1971) Nature and inheritance of sweetness and acidity in cultivated apple. Euphytica 20:68–80

    Article  CAS  Google Scholar 

  • Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669–682

    Article  PubMed  CAS  Google Scholar 

  • Cummins J, Aldwinckle H, Robinson T, Fazio G (2006) Apple tree rootstock named ‘G.41’. In: Office TUSPaT (ed) The United States Patent and Trademark Office, Cornell Research Foundation Inc, USA. USPP17139

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  Google Scholar 

  • Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, Martinoia E, Neuhaus HE (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. P Natl Acad Sci USA 100:11122–11126

    Article  CAS  Google Scholar 

  • Fang DQ, Federici CT, Roose ML (1997) Development of molecular markers linked to a gene controlling fruit acidity in citrus. Genome 40:841–849

    Article  PubMed  CAS  Google Scholar 

  • Forsline PL, Aldwinckle HS, Dickson EE, Luby JJ, Hokanson SC (2003) Collection, maintenance, characterization and utilization of wild apples of Central Asia. Horticultural Rev 29:1–61

    Google Scholar 

  • Fulton TM, Bucheli P, Voirol E, Lopez J, Petiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Furuichi T, Sasaki T, Tsuchiya Y, Ryan PR, Delhaize E, Yamamoto Y (2010) An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat. Plant J 64:47–55

    PubMed  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. P Natl Acad Sci USA 103:9738–9743

    Article  CAS  Google Scholar 

  • Hulme AC, Wooltorton LSC (1957) The organic acid metabolism of apple fruits: changes in individual acids during growth on the tree. J Sci Food Agr 8:117–122

    Article  CAS  Google Scholar 

  • Iwanami H, Moriya S, Kotoda N, Mimida N, Takahashi-Sumiyoshi S, Abe K (2012) Mode of inheritance in fruit acidity in apple analysed with a mixed model of a major gene and polygenes using large complex pedigree. Plant Breed 131:322–328

    Article  CAS  Google Scholar 

  • Jalikop SH (2007) Linked dominant alleles or inter-locus interaction results in a major shift in pomegranate fruit acidity of ‘Ganesh’ × ‘Kabul Yellow’. Euphytica 158:201–207

    Article  Google Scholar 

  • Kenis K, Keulemans J, Davey M (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  • Kovermann P, Meyer S, Hortensteiner S, Picco C, Scholz-Starke J, Ravera S, Lee Y, Martinoia E (2007) The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J 52:1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Leivar P, Antolin-Llovera M, Ferrero S, Closa M, Arro M, Ferrer A, Boronat A, Camposa N (2011) Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl Coenzyme A reductase by protein phosphatase 2A. Plant Cell 23:1494–1511

    Article  PubMed  CAS  Google Scholar 

  • Lerceteau-Köhler E, Moing A, Guérin G, Renaud C, Petit A, Rothan C, Denoyes B (2012) Genetic dissection of fruit quality traits in the octoploid cultivated strawberry highlights the role of homoeo-QTL in their control. Theor Appl Genet 124:1059–1077

    Article  PubMed  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus × domestica Borkh). Plant Mol Biol 52:511–526

    Article  PubMed  CAS  Google Scholar 

  • Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol 142:1294–1303

    Article  PubMed  CAS  Google Scholar 

  • Ligaba A, Kochian L, Pineros M (2009) Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat. Plant J 60:411–423

    Article  PubMed  CAS  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KAS, Geiger D, Marten I, Martinoia E, Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062

    Article  PubMed  CAS  Google Scholar 

  • Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, Gambale F, Martinoia E (2011) Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J 67:247–257

    Article  PubMed  CAS  Google Scholar 

  • Navascues J, Perez-Rontome C, Sanchez DH, Staudinger C, Wienkoop S, Rellan-Alvarez R, Becana M (2012) Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus. New Phytol 193:625–636

    Article  PubMed  CAS  Google Scholar 

  • Nybom N (1959) On the inheritance of acidity in cultivated apples. Hereditas 45:332–350

    Article  Google Scholar 

  • Obrero A, Die JV, Roman B, Gomez P, Nadal S, Gonzalez-Verdejo CI (2011) Selection of reference genes for gene expression studies in Zucchini (Cucurbita pepo) using qPCR. J Agr Food Chem 59:5402–5411

    CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst and Evol 226:35–58

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Schumacher K, Krebs M (2010) The V-ATPase: small cargo, large effects. Curr Opin Plant Biol 13:724–730

    Article  PubMed  CAS  Google Scholar 

  • Skottke KR, Yoon GM, Kieber JJ, DeLong A (2011) Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet 7:e1001370

    Article  PubMed  CAS  Google Scholar 

  • Soglio V, Costa F, Molthoff J, Weemen-Hendriks W, Schouten H, Gianfranceschi L (2009) Transcription analysis of apple fruit development using cDNA microarrays. Tree Genet Genomes 5:685–698

    Article  Google Scholar 

  • Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL (2009) Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329–1344

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Ulrich R (1970) Organic acids. In: Hulme A (ed) The biochemistry of fruit and their products. Academic Press, London and New York, pp 89–118

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Visser T, Verhaegh JJ (1978) Inheritance and selection of some fruit characters of apple.1. Inheritance of low and high acidity. Euphytica 27:753–760

    Article  Google Scholar 

  • Xu K, Wang A, Brown S (2011) Genetic characterization of the Ma locus with pH and titratable acidity in apple. Mol Breeding. doi:10.1007/s11032-011-9674-7

  • Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ, Matsumoto H (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol 46:812–816

    Article  PubMed  CAS  Google Scholar 

  • Yao YX, Li M, Liu Z, Hao YJ, Zhai H (2007) A novel gene, screened by cDNA-AFLP approach, contributes to lowering the acidity of fruit in apple. Plant Physiol Bioch 45:139–145

    Article  CAS  Google Scholar 

  • Yao YX, Li M, Liu Z, You CX, Wang DM, Zhai H, Hao YJ (2009) Molecular cloning of three malic acid related genes MdPEPC, MdVHA-A, MdcyME and their expression analysis in apple fruits. Sci Hortic 122:404–408

    Article  CAS  Google Scholar 

  • Yao Y-X, Li M, Zhai H, You C-X, Hao Y-J (2011) Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. J Plant Physiol 168:474–480

    Article  PubMed  CAS  Google Scholar 

  • You F, Huo N, Gu Y, Luo M-c, Ma Y, Hane D, Lazo G, Dvorak J, Anderson O (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9:253

    Article  PubMed  Google Scholar 

  • Zhang YZ, Li PM, Cheng LL (2010) Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem 123:1013–1018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for Mr. Phil Forseline and Dr. Herb Aldwinkle who developed the four mapping populations and made them available for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lailiang Cheng or Kenong Xu.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Y., Dougherty, L., Li, M. et al. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287, 663–678 (2012). https://doi.org/10.1007/s00438-012-0707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-012-0707-7

Keywords

Navigation