Skip to main content

Coating Characterizations

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

Coatings, as most industrial products, must be tested at the research and development stage, in production environment, but it should be kept in mind that coating properties depend strongly on both the spray conditions and powder used and both must be regularly tested. Tests at the research and development level use techniques more or less sophisticated such as metallography and image analysis. In production, tests deal with the quality control (adhesion–cohesion, mechanical properties, thermal properties, wear resistance, corrosion resistance, etc.) and are more targeted toward the service conditions, without neglecting some simple tests from visual observation of the coated part to some specific characteristics required by the coating or component specifications. The aim of this chapter is not to describe in detail all the characterization and testing methods that could be used for thermal spray coatings but to give the reader information about the most used techniques and the information that can be drawn from them. It starts with the specificity of coating characterization methods followed by nondestructive methods, metallography and image analysis, materials characterization, void content and network architecture, adhesion–cohesion, mechanical properties, thermal properties, and testing of wear and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ASM Thermal Spray Society (TSS), Accepted Practices Committee on Metallography Accepted Practice–Molybdenum Thermal Spray Coatings, see [Puerta DG (2008)].

  2. 2.

    ASM Thermal Spray Society (TSS), Accepted Practices Committee on Metallography Accepted Practice–NiCrAl/Bentonite Abradable Coatings, see [Puerta DG (2008)].

Abbreviations

AAS:

Atomic Absorption Spectroscopy

AC:

Alternative Current

AE:

Acoustic Emission

AES:

Atomic Emission Spectroscopy

AFM:

Atomic Force Microscopy

AP:

Archimedean Porosimetry

BSE:

Back Scattered Electrons

CBN:

Cubic Boron Nitride

CMAS:

Calcium–Magnesium–Aluminosilicate

DB:

Double Bar method

DC:

Direct Current

DCB:

Double Cantilever Beam

D-gun:

Detonation Gun

DOF:

Depth of Field

DPH:

Diamond Pyramid Hardness

DSC:

Differential Scanning Calorimetry

DTA:

Differential Thermal Analysis

EB-PVD:

Electron Beam Physical Vapor Deposition

EDS:

Energy-Dispersive X-ray Spectroscopy

EIS:

Electrochemical Impedance Spectroscopy

EN:

Electrochemical Noise

EPMA:

Electron Probe Microanalysis

ESCA:

Electron Spectroscopy for Chemical Analysis

EXAFS:

Extended X-Ray Absorption Fine Structure

FBR:

Fluidized Bed Reactor

FCT:

Furnace Cycle Test

FESEM:

Field Emission Scanning Electron Microscope

FFT:

Fast Fourier Transform

FGM:

Functional Gradient Material

FIB:

Focused Ion Beam

FTIR:

Fourier Transform Infrared Spectroscopy

FWHM:

Full-Width at Half-Maximum

GP:

Gas Permeation

HA:

Hydroxyapatite

HIP:

Hot Isostatic Pressing

HK:

Knoop Hardness

HR:

High resolution

HRTEM:

High-Resolution Transmission Electron Microscopy

HU:

Universal Hardness

HV:

Vickers Hardness

HVOF:

High-Velocity Oxy-Fuel

i.d.:

Internal Diameter

IA:

Image Analysis

ICP:

Inductively Coupled Plasma

IRS:

Infrared Spectroscopy

JCPDS:

Joint Committee Powder Diffraction Standard

JETS:

Jet Engine Thermal Shock

LASAT:

Laser Adhesion Test

MIP:

Mercury Intrusion Porosimetry

MS:

Mass Spectrometry

MSANS:

Multiple Small Angle Neutron Scattering

ND:

Neutron Diffraction

NDT:

Nondestructive Technique

NEXAFS:

Near Edge X-Ray Absorption Fine Structure

NS:

Neutron Scattering

OM:

Optical Microscopy

OOF:

Object-Oriented Finite Element Analysis

P:

Pycnometry

PS:

Porod Scattering

PT:

Pulsed Thermography

R&D:

Research and Development

RC:

Resistive/Capacitive Circuit

RCF:

Rolling Contact Fatigue

REV:

Representative Elementary Volume

RFPPS:

RF Precursor Plasma Spray Synthesis

RPM:

Rotation Per Minute

RTS:

Reactive Thermal Spraying

RVE:

Representative Volume Element

SANS:

Small-Angle Neutron Scattering

SAW:

Surface Acoustic Waves

SAXS:

Small-Angle X-ray Scattering

SB:

Single Bar Method

SCE:

Standard Calomel Electrode

SEM:

Scanning Electron Microscopy

SRV:

Sliding, Reciprocating, and Vibrating friction

ST:

Stereological Protocols

STF:

Strain to Fracture

TAT:

Tensile Adhesion Test

TBC:

Thermal Barrier Coating

TEM:

Transmission Electron Microscopy

TG:

Thermo Gravimeter

TG-DTA:

Thermo Gravimeter-Differential Thermal Analysis

TGO:

Thermally Grown Oxide

TSR:

Thermal Shock Resistance

TSS:

Thermal Spray Society

URCAS:

Ultrasonic Reflection Coefficient Amplitude Spectrum

USAXS:

Ultrasmall Angle X-Ray Scattering

VH:

Vickers Hardness

XANES:

X-Ray Absorption Near Edge Structure

XAS:

X-Ray Absorption Spectroscopy

XPS:

X-Ray Photoelectron Spectroscopy

XRD:

X-Ray Diffraction

XRF:

X-Ray Fluorescence

YAG:

Yttrium Aluminum Garnet

YPSZ:

Yttria Partially Stabilized Zirconia

YSZ:

Yttria-Stabilized Zirconia

References

  • Agüero, A., F. Camón, J. García de Blas, J.C. del Hoyo, R. Muelas, A. Santaballa, S. Ulargui, and P. Vallés. 2011. HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators. Journal of Thermal Spray Technology 20 (6): 1292–1309.

    Article  CAS  Google Scholar 

  • Ahmed, R., and M. Hadfield. 2002. Mechanisms of fatigue failure in thermal spray coatings. Journal of Thermal Spray Technology 11 (3): 334–349.

    Article  Google Scholar 

  • Aksel, C., and P.D. Warren. 2003. Thermal shock parameters [R, R″′ and R″″] of magnesia–spinel composites. Journal of the European Ceramic Society 23: 301–308.

    Article  CAS  Google Scholar 

  • Allen, A.J., G.G. Long, H. Boukari, J. Ilavsky, A. Kulkarni, S. Sampath, H. Herman, and A.N. Goland. 2001a. Microstructural characterization studies to relate the properties of thermal spray coatings to feedstock and spray conditions. Surface and Coating Technology 146–147: 544–552.

    Article  Google Scholar 

  • Allen, A.J., J. Ilavsky, G.G. Long, J.S. Wallace, C.C. Berndt, and H. Herman. 2001b. Micro structural characterization of yttria-stabilized zirconia plasma-sprayed deposits using multiple small-angle neutron scattering. Acta Materialia 49: 1661–1675.

    Article  CAS  Google Scholar 

  • Amada, S., and T. Hirose. 1998. Influence of grit blasting pre-treatment on the adhesion strength of plasma sprayed coatings: Fractal analysis of roughness. Surface and Coating Technology 102: 132–137.

    Article  CAS  Google Scholar 

  • Anderson, P.S., X. Wang, and P. Xiao. 2004. Impedance spectroscopy study of plasma sprayed and EB-PVD thermal barrier coatings. Surface and Coating Technology 185: 106–119.

    Article  CAS  Google Scholar 

  • Andreola, F., C. Leonelli, M. Romagnoli, and P. Miselli. 2000. Techniques used to determine porosity. American Ceramic Society Bulletin 79 (7): 49–52.

    CAS  Google Scholar 

  • Andrews, D.J., and J.A.T. Taylor. 2000. Quality control of thermal barrier coatings using acoustic emission. Journal of Thermal Spray Technology 9 (2): 181–190.

    Article  CAS  Google Scholar 

  • Antou, G., and G. Montavon. 2007. Quantifying thermal spray coating architecture by stereological protocols: Part II. Key points to be addressed. Journal of Thermal Spray Technology 16 (2): 168–176.

    Article  Google Scholar 

  • Antou, G., G. Montavon, F. Hlawka, A. Cornet, C. Coddet, and F. Machi. 2004a. Evaluation of modifications induced on pore network and structure of partially stabilized zirconia manufactured by hybrid plasma spray process. Surface and Coating Technology 180–181: 627–632.

    Article  CAS  Google Scholar 

  • Antou, G., G. Montavon, F. Hlawka, A. Cornet, and C. Coddet. 2004b. Characterizations of the pore-crack network architecture of thermal-sprayed coatings. Materials Characterization 53: 361–372.

    Article  CAS  Google Scholar 

  • ———. 2006. Exploring thermal spray gray alumina coating pore network architecture by combining stereological protocols and impedance electrochemical spectroscopy. Journal of Thermal Spray Technology 15 (4): 765–772.

    Article  CAS  Google Scholar 

  • ASM International. 2003. Corrosion: Fundamentals, testing, and protection. In ASM handbook, vol. 13A, 509–513. Materials Park: ASM International.

    Google Scholar 

  • ———. 2007. ASM handbook: Nondestructive evaluation and quality control, vol. 17, 9th ed. Materials Park: ASM International.

    Google Scholar 

  • ———. 2008. ASM handbook, Materials characterization, vol. 10, 8th ed. Materials Park: ASM International

    Google Scholar 

  • Asmani, M., C. Kermel, A. Leriche, and M. Ourak. 2001. Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics. Journal of the European Ceramic Society 21: 1081–1086.

    Article  CAS  Google Scholar 

  • Atlas Steel Technical Note No. 7 “Galvanic corrosion,” revised August 2010.

    Google Scholar 

  • Baba, T., and A. Ono. 2001. Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Measurement Science and Technology 12: 2046–2057.

    Article  CAS  Google Scholar 

  • Bacciochini, A., J. Ilavsky, G. Montavon, A. Denoirjean, F. Ben-ettouil, S. Valette, P. Fauchais, and K. Wittmann-Teneze. 2010a. Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using ultra-small-angle X-ray scattering (USAXS). Materials Science and Engineering A528: 91–102.

    Article  CAS  Google Scholar 

  • Bacciochini, A., G. Montavon, J. Ilavsky, A. Denoirjean, and P. Fauchais. 2010b. Porous architecture of SPS thick YSZ coatings structured at the nanometer scale (50 nm). Journal of Thermal Spray Technology 19 (1–2): 198–206.

    Article  CAS  Google Scholar 

  • Bahbou, M.F., P. Nylén, and J. Wigren. 2004. Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating. Journal of Thermal Spray Technology 13 (4): 508–514.

    Article  Google Scholar 

  • Balykov, A.V. 2006. Main conditions for efficient drilling of holes in brittle nonmetallic materials using diamonds drills. Material Processing 63 (5–6): 161–165.

    CAS  Google Scholar 

  • Barletta, M., G. Bolelli, B. Bonferroni, and L. Lusvarghi. 2010. Wear and corrosion behavior of HVOF-sprayed WC-CoCr coatings on Al alloys. Journal of Thermal Spray Technology 19 (1–2): 358–367.

    Article  CAS  Google Scholar 

  • Barradas, S., F. Borit, V. Guipont, M. Jeandin, C. Bolis, M. Boustie, and L. Berthe. 2002. Laser shock flier impact simulation of particle-substrate interactions in cold spray. In ITSC-2002, ed. E. Lugscheider and C.C. Berndt, 592–597. Düsseldorf: DVS Deutscher Verband fûr Schweißen.

    Google Scholar 

  • Barradas, S., R. Molins, M. Jeandin, M. Arrigoni, M. Boustie, C. Bolis, L. Berthe, and M. Ducos. 2005. Application of laser shock adhesion testing to the study of the interlamellar strength and coating-substrate adhesion in cold-sprayed copper coating of aluminum. Surface and Coating Technology 197: 18–27.

    Article  CAS  Google Scholar 

  • Basak, A.K., P. Matteazzi, M. Vardavoulias, and J.-P. Celis. 2006. Corrosion-wear behaviour of thermal sprayed nanostructured FeCu/WC–Co coatings. Wear 261: 1042–1050.

    Article  CAS  Google Scholar 

  • Beghini, M., L. Bertini, and E. Frendo. 2001a. Measurement of coatings’ elastic properties by mechanical methods: Part 1. Consideration on experimental errors. Experimental Mechanics 41 (4): 293–304.

    Article  Google Scholar 

  • Beghini, M., G. Benamati, L. Bertini, and F. Frendo. 2001b. Measurement of coatings’ elastic properties by mechanical methods: Part 2. Application to thermal barrier coatings. Experimental Mechanics 41 (4): 305–311.

    Article  Google Scholar 

  • Berka, L., and N. Murafa. 2004. On the estimation of the toughness of surface microcracks. International Journal of Fracture 128: 115–120.

    Article  Google Scholar 

  • Berndt, C.C. 1985. Acoustic emission evaluation of plasma-sprayed thermal barrier coatings. Journal of Engineering for Gas Turbines and Power 107: 142–146.

    Article  CAS  Google Scholar 

  • Berndt, C.C., and R. McPherson. 1981. A fracture mechanics approach to the adhesion of flame and plasma sprayed coatings. Transaction of the Institute of Engineers 6 (4): 53–58.

    Google Scholar 

  • Białucki, P., and S. Kozerski. 2006. Study of adhesion of different plasma-sprayed coatings to aluminium. Surface and Coating Technology 201: 2061–2064.

    Article  CAS  Google Scholar 

  • Bobzin, K., N. Kopp, T. Warda, and M. Öte. 2012. Determination of the effective properties of thermal spray coatings using 2-D and 3-D models. Journal of Thermal Spray Technology. https://doi.org/10.1007/s11666-012-9809-3.

  • Boccaccini, D.N., and A.R. Boccaccini. 1997. Dependence of ultrasonic velocity on porosity and pore shape in sintered materials. Journal of Nondestructive Evaluation 16 (4): 187–192.

    Article  Google Scholar 

  • Bolcavage, A., A. Feuerstein, J. Foster, and P. Moore. 2004. Thermal shock testing of thermal barrier coating/bondcoat systems. Journal of Materials Engineering and Performance 13 (4): 389–397.

    Article  CAS  Google Scholar 

  • Bolelli, G., V. Cannillo, L. Lusvarghi, and T. Manfredini. 2006. Wear behaviour of thermally sprayed ceramic oxide coatings. Wear 261: 1298–1315.

    Article  CAS  Google Scholar 

  • Bolelli, G., L. Lusvarghi, T. Varis, E. Turunen, M. Leoni, P. Scardi, C.L. Azanza-Ricardo, and M. Barletta. 2008. Residual stresses in HVOF-sprayed ceramic coatings. Surface and Coating Technology 202: 4810–4819.

    Article  CAS  Google Scholar 

  • Bolelli, G., J. Rauch, V. Cannillo, A. Killinger, L. Lusvarghi, and R. Gadow. 2009. Microstructural and tribological investigation of high-velocity suspension flame sprayed (HVSFS) Al2O3 coatings. Journal of Thermal Spray Technology 18 (1): 35–49.

    Article  CAS  Google Scholar 

  • Bolis, C., et al. 2002. Developments in laser shock adhesion test (LASAT). In ITSC-2002, ed. E. Lugscheider et al., 587–593. Materials Park: ASM International.

    Google Scholar 

  • Bolot, R., G. Antou, G. Montavon, and C. Coddet. 2005. A two-dimensional heat transfer model for thermal barrier coating average thermal conductivity computation. Numerical Heat Transfer, Part A: Applications 47 (9): 875–898.

    Article  Google Scholar 

  • Bolot, R., J.-L. Seichepine, J. Hao Qiao, and C. Coddet. 2011. Predicting the thermal conductivity of AlSi/polyester abradable coatings: Effects of the numerical method. Journal of Thermal Spray Technology 20 (1–2): 39–47.

    Article  CAS  Google Scholar 

  • Bradai, M.A., M. Braccini, A. Ati, N. Bounar, and A. Benabbas. 2008. Microstructure and adhesion of 100Cr6 steel coatings thermally sprayed on a 35CrMo4 steel substrate. Surface and Coating Technology 202: 4538–4543.

    Article  CAS  Google Scholar 

  • Brousse, E. 2010. Elaboration by thermal spraying of finely structured elements of a high temperature electrolyser for hydrogen production: Processes, structures and characteristics. PhD thesis, University of Limoges, France (in French).

    Google Scholar 

  • Bucaille, J.L., E. Felder, and G. Hochstetter. 2002. Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nano-indentation test. Journal of Materials Science 37: 3999–4011.

    Article  CAS  Google Scholar 

  • Bunker, G. 2010. Introduction to XAFS: A practical guide to X-ray absorption fine structure spectroscopy. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cernuschi, F., L. Lorenzoni, S. Ahmaniemi, P. Vuoristo, and T. Mäntylä. 2005. Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements. Journal of the European Ceramic Society 25: 393–400.

    Article  CAS  Google Scholar 

  • Chandler, H., ed. 2004. Hardness testing, 2nd ed. Materials Park: ASM.

    Google Scholar 

  • Chandra, S., and P. Fauchais. 2009. Formation of solid splats during thermal spray deposition. Journal of Thermal Spray Technology 18 (2): 148–180.

    Article  CAS  Google Scholar 

  • Chattopadhyay, R. 2001. Surface wear: Analysis, treatment, and prevention, 307 p. Materials Park: ASM International.

    Google Scholar 

  • Chen, H., Y. Hao, H. Wang, and W. Tang. 2010. Analysis of the microstructure and thermal shock resistance of laser glazed nanostructured zirconia TBCs. Journal of Thermal Spray Technology 19 (3): 558–565.

    Article  CAS  Google Scholar 

  • Chi, W., S. Sampath, and H. Wange. 2006. Ambient and high-temperature thermal conductivity of thermal sprayed coatings. Journal of Thermal Spray Technology 15 (4): 773–778.

    Article  CAS  Google Scholar 

  • Chivavibul, P., M. Watanabe, S. Kuroda, J. Kawakita, M. Komatsu, K. Sato, and J. Kitamura. 2010. Effect of powder characteristics on properties of warm-sprayed WC-Co coatings. Journal of Thermal Spray Technology 19 (1–2): 81–88.

    Article  CAS  Google Scholar 

  • Choi, S.R., D. Zhu, and R.A. Miller. 2005. Fracture behavior under mixed-mode loading of ceramic plasma-sprayed thermal barrier coatings at ambient and elevated temperatures. Engineering Fracture Mechanics 72: 2144–2158.

    Article  Google Scholar 

  • Chraska, T. 1999. TEM studies of microstructures and interfaces of zirconia produced by plasma spraying. Ph.D. thesis, State University of New York at Stony Brook, New York.

    Google Scholar 

  • Chraska, T., and A.H. King. 2001. Transmission electron microscopy study of rapid solidification of plasma sprayed zirconia—Part I. First splat solidification. Thin Solid Films 397: 30–39.

    Article  CAS  Google Scholar 

  • Christoulis, D.K., S. Guetta, E. Irissou, V. Guipont, M.H. Berger, M. Jeandin, J.-G. Legoux, C. Moreau, S. Costil, M. Boustie, Y. Ichikawa, and K. Ogawa. 2010. Cold-spraying coupled to nano-pulsed Nd-YaG laser surface pre-treatment. Journal of Thermal Spray Technology 19 (5): 1062–1073.

    Article  CAS  Google Scholar 

  • Clark, H.M.I., H.M. Hawthorne, and Y. Xie. 1999. Wear rates and specific energies of some ceramic, cermet and metallic coatings determined in the Coriolis erosion tester. Wear 233–235: 319–327.

    Article  Google Scholar 

  • Clyne, T.W., and S.C. Gill. 1996. Residual stresses in thermal spray coatings and their effect on interfacial adhesion: A review of recent work. Journal of Thermal Spray Technology 5 (4): 401–418.

    Article  CAS  Google Scholar 

  • Cockeram, B.V., and W.L. Wilson. 2001. The hardness, adhesion and wear resistance of coatings developed for cobalt-base alloys. Surface and Coating Technology 139: 161–182.

    Article  CAS  Google Scholar 

  • Costil, S., C. Verdy, R. Bolot, and C. Coddet. 2007. On the role of spraying process on microstructural, mechanical, and thermal response of alumina coatings. Journal of Thermal Spray Technology 16 (5–6): 839–843.

    Article  CAS  Google Scholar 

  • Craig, B.D. 2005. Material failure modes, Part II: A brief tutorial on impact, spalling, wear, brinelling, thermal shock, and radiation damage. Journal of Failure Analysis and Prevention 5 (6): 7–12.

    Article  Google Scholar 

  • CSM Instruments. 2010. Advanced mechanical surface testing: Characterization of thermal spray coatings by instrumented indentation and scratch testing. Part II: Indentation of plasma sprayed coatings, CSM instruments application bulletin, vol. 32. Peseux: CSM Instruments.

    Google Scholar 

  • Curran, J.A., and T.W. Clyne. 2006. Porosity in plasma electrolytic oxide coatings. Acta Materialia 54 (7): 1985–1993.

    Article  CAS  Google Scholar 

  • Dallaire, S. 2001. Hard arc-sprayed coating with enhanced erosion and abrasion wear resistance. Journal of Thermal Spray Technology 10 (3): 511–519.

    Article  CAS  Google Scholar 

  • Deevi, S.C., V.K. Sikka, C.J. Swindeman, and R.D. Seals. 1997. Reactive spraying of nickel-aluminide coatings. Journal of Thermal Spray Technology 6 (3): 335–344.

    Article  CAS  Google Scholar 

  • Deshpande, S., A. Kulkarni, S. Sampath, and H. Herman. 2004. Application of image analysis for characterization of porosity in thermal spray coatings and correlation with small angle neutron scattering. Surface and Coating Technology 187: 6–16.

    Article  CAS  Google Scholar 

  • Dey, A., A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu. 2009. Weibull modulus of nano-hardness and elastic modulus of hydroxyapatite coating. Journal of Materials Science 44: 4911–4918.

    Article  CAS  Google Scholar 

  • Drexler, J.M., A. Aygun, D. Li, R. Vaßen, T. Steinke, and N.P. Padture. 2010. Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation. Surface and Coating Technology 204: 2683–2688.

    Article  CAS  Google Scholar 

  • Du, H., W. Hua, J. Liu, J. Gong, C. Sun, and L. Wen. 2005. Influence of process variables on the qualities of detonation gun sprayed WC–Co coatings. Materials Science and Engineering A 408: 202–210.

    Article  CAS  Google Scholar 

  • Eaton, P., and P. West. 2010. Atomic force microscopy. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Elsebaei, A., J. Heberlein, M. Elshaer, and A. Farouk. 2010. Comparison of in-flight particle properties, splat formation, and coating microstructure for regular and nano-YSZ powders. Journal of Thermal Spray Technology 19 (1–2): 2–10.

    Article  CAS  Google Scholar 

  • Emiliani, M.L. 1993. Debond coating requirements for brittle matrix composites. Journal of Materials Science 28: 5280–5296.

    Article  CAS  Google Scholar 

  • Era, H., F. Otsubo, T. Uchida, S. Fukuda, and K. Kishitake. 1998. A modified shear test for adhesion evaluation of thermal sprayed coating. Materials Science and Engineering A251: 166–172.

    Article  CAS  Google Scholar 

  • Erickson, L.C., R. Westergard, U. Wiklund, N. Axén, H.M. Hawthorne, and L.S. Hogmark. 1998. Cohesion in plasma-sprayed coatings – A comparison between evaluation methods. Wear 214: 30–37.

    Article  CAS  Google Scholar 

  • Etchart-Salas, R., V. Rat, J.F. Coudert, P. Fauchais, N. Caron, K. Wittman, and S. Alexandre. 2007. Influence of plasma instabilities in ceramic suspension plasma spraying. Journal of Thermal Spray Technology 16 (5–6): 857–865.

    Article  CAS  Google Scholar 

  • Factor, M., and I. Roman. 2000a. Vickers micro-indentation of WC-12%Co thermal spray coating. Part 1: Statistical analysis of microhardness data. Surface and Coating Technology 132: 181–193.

    Article  CAS  Google Scholar 

  • ———. 2000b. Vickers micro-indentation of WC-12%Co thermal spray coating. Part 2: The between-operator reproducibility limits of microhardness measurement and alternative approaches to quantifying hardness of cemented-carbide thermal spray coatings. Surface and Coating Technology 132: 65–75.

    Article  CAS  Google Scholar 

  • Faisal, N.H., J.A. Steel, R. Ahmed, and R.L. Reuben. 2009. The use of acoustic emission to characterize fracture behavior during Vickers indentation of HVOF thermally sprayed WC-Co coatings. Journal of Thermal Spray Technology 18 (4): 525–535.

    Article  CAS  Google Scholar 

  • Fan, X., and T. Ishigaki. 2001. Mo5Si3-B and MoSi2 deposits fabricated by radio frequency induction plasma spraying. Journal of Thermal Spray Technology 10 (4): 611–617.

    Article  CAS  Google Scholar 

  • Fauchais, P., G. Montavon, R.S. Lima, and B.R. Marple. 2011. Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles. Suspensions and solutions: An invited review. Journal of Physics D 44: 093001.

    Article  CAS  Google Scholar 

  • Feng, C., and B.S. Kang. 2006. A transparent indenter measurement method for mechanical property evaluation. Experimental Mechanics 46 (1): 91–103.

    Article  Google Scholar 

  • ———. 2008. Young’s modulus measurement using a simplified transparent indenter measurement technique. Experimental Mechanics 48: 9–15.

    Article  CAS  Google Scholar 

  • Fernandez, J.E., R. Rodriguez, Y. Wang, R. Vijande, and A. Rincon. 1995. Sliding wear of a plasma-sprayed A2O3 coating. Wear 181–183: 417–425.

    Article  Google Scholar 

  • Flores Renteria, A., B. Saruhan, J. Ilavsky, and A.J. Allen. 2007. Application of USAXS analysis and non-interacting approximation to determine the influence of process parameters and ageing on the thermal conductivity of electron-beam physical vapor-deposited thermal barrier coatings. Surface and Coating Technology 201: 4781–4788.

    Article  CAS  Google Scholar 

  • Flores, A., Saruhan B. Renteria, J. Ilavsky, and A.J. Allenc. 2007. Application of USAXS analysis and non-interacting approximation to determine the influence of process parameters and ageing on the thermal conductivity of electron-beam physical vapor deposited thermal barrier coatings. Surface and Coating Technology 201: 4781–4788.

    Article  CAS  Google Scholar 

  • Fowler, D.B., W. Riggs, and J.C. Russ. 1990. Inspecting thermal sprayed coatings. Advanced Materials and Processes 11: 41–52.

    Google Scholar 

  • Fox, A.C., and T.W. Clyne. 2004. Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coatings. Surface and Coating Technology 184: 311–321.

    Article  CAS  Google Scholar 

  • Fridrici, V., S. Fouvry, and P. Kapsa. 2003. Fretting wear behavior of a Cu–Ni–In plasma coating. Surface and Coating Technology 163–164: 429–434.

    Article  Google Scholar 

  • Garcıa, J.R., J.M. Cuetos, E. Fernandez, and V. Higuera. 2007. Laser surface melting Cr–Ni coatings, in the erosive-corrosive atmosphere of boilers. Tribology Letters 28: 99–108.

    Article  CAS  Google Scholar 

  • Garcia, E., J. Mesquita-Guimaraes, P. Miranzo, M.I. Osendi, C.V. Cojocaru, Y. Wang, C. Moreau, and R.S. Lima. 2011. Phase composition and microstructural responses of graded mullite/YSZ coatings under water vapor environments. Journal of Thermal Spray Technology 20 (1–2): 83–91.

    Article  CAS  Google Scholar 

  • Gawne, D.T., Z. Qiu, Y. Bao, T. Zhang, and K. Zhang. 2001. Abrasive wear resistance of plasma-sprayed glass-composite coatings. Journal of Thermal Spray Technology 10 (4): 599–603.

    Article  CAS  Google Scholar 

  • Gean, M.C., and T.N. Farris. 2009. Elevated temperature fretting fatigue of Ti-17 with surface treatments. Tribology International 42: 1340–1345.

    Article  CAS  Google Scholar 

  • Geels, K. 2007. Metallographic and materialographic specimen preparation, light microscopy, image analysis and hardness testing, ASTM MNL46. West Conshohocken: ASTM International.

    Book  Google Scholar 

  • Giannuzzi, L.A., and F.A. Stevens. 2004. Introduction to focused ion beams: Instrumentation, theory, techniques and practice. Berlin: Springer.

    Google Scholar 

  • Gill, S.C., and T.W. Clyne. 1994. Investigation of residual stress generation during thermal spraying by continuous curvature measurement. Thin Solid Films 250: 172–180.

    Article  CAS  Google Scholar 

  • Giolli, C., A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi. 2009. Failure mechanism for thermal fatigue of thermal barrier coating systems. Journal of Thermal Spray Technology 18 (2): 223–230.

    Article  CAS  Google Scholar 

  • Giraud, D., F. Borit, V. Guipont, and M. Jeandin. 2012. Metallization of a polymer using cold spray: Application to aluminum coating of polyamide 66. In Thermal spray 2012: Proceedings (ITSC-2012), ed. R.S. Lima et al. Materials Park: ASM International. (e-proc).

    Google Scholar 

  • Gitzhofer, F., D. Lombard, A. Vardelle, M. Vardelle, C. Martin, and P. Fauchais. 1986. Thermophysical properties of zirconia coatings stabilized with calcia or yttria: Influence of spraying parameters and heat treatment. In Advances in thermal spraying, 269–275. Oxford: Pergamon.

    Chapter  Google Scholar 

  • Gobinda, C.S., and T.I. Khan. 2010. The corrosion and wear performance of microcrystalline WC-10Co-4Cr and near-nanocrystalline WC-17Co high velocity oxy-fuel sprayed coatings on steel substrate. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 41A: 3000–3009.

    Google Scholar 

  • Golosnoy, I.O., S. Paul, and T.W. Clyne. 2008. Modelling of gas permeation through ceramic coatings produced by thermal spraying. Acta Materialia 56: 874–883.

    Article  CAS  Google Scholar 

  • Greving, D.J., J.R. Shadley, and E.F. Rybicki. 1994a. Effects of coating thickness and residual stresses on the bond strength of ASTM C633-79 thermal spray coating test specimens. Journal of Thermal Spray Technology 3 (4): 371–378.

    Article  CAS  Google Scholar 

  • Greving, D.J., E.F. Rybicki, and J.R. Shadley. 1994b. Through-thickness residual stress evaluations for several industrial thermal spray coatings using a modified layer-removal method. Journal of Thermal Spray Technology 3 (4): 379–388.

    Article  CAS  Google Scholar 

  • Guetta, S., M.H. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi, and K. Ogawa. 2009. Influence of particle velocity on adhesion of cold-sprayed splats. Journal of Thermal Spray Technology 18 (3): 331–342.

    Article  Google Scholar 

  • Guilemany, J.M., J.M. Miguel, S. Armada, S. Vizcaino, and F. Climent. 2001. Use of scanning white light interferometry in the characterization of wear mechanisms in thermal-sprayed coatings. Materials Characterization 47: 307–314.

    Article  CAS  Google Scholar 

  • Guilemany, J.M., N. Espallargas, P.H. Suegama, A.V. Benedetti, and J. Fernández. 2005. High-velocity oxyfuel Cr3C2-NiCr replacing hard chromium coatings. Journal of Thermal Spray Technology 14 (3): 336–341.

    Article  Google Scholar 

  • Guilemany, J.M., M. Torrell, and J.R. Miguel. 2008. Study of the HVOF Ni-based coatings corrosion resistance applied on municipal solid-waste incinerators. Journal of Thermal Spray Technology 17 (2): 254–262.

    Article  CAS  Google Scholar 

  • Guilemany, J.M., N. Cinca, S. Dosta, and I.G. Cano. 2009. FeAl and NbAl3 intermetallic-HVOF coatings: Structure and properties. Journal of Thermal Spray Technology 18 (4): 536–545.

    Article  CAS  Google Scholar 

  • Guinier, A., and G. Fournet. 1955. Small angle scattering of X-rays. New York: Wiley.

    Google Scholar 

  • Guipont, V. 2013. Microstructures and interfaces ceramic/metal obtained by physical processes. State thesis, University of Limoges, Limoges.

    Google Scholar 

  • Han, W., E.E. Rybicki, and J.R. Shadley. 1993a. An improved specimen geometry for ASTM C633-79 to estimate bond strengths of thermal spray coatings. Journal of Thermal Spray Technology 2 (2): 145–150.

    Article  CAS  Google Scholar 

  • Han, W., E.F. Rybicki, and J.R. Shadley. 1993b. Application of fracture mechanics to the interpretation of bond strength data from ASTM Standard C633-79. Journal of Thermal Spray Technology 2 (3): 235–241.

    Article  CAS  Google Scholar 

  • Hanson, T.C., and G.S. Settlese. 2003. Particle temperature and velocity effects on the porosity and oxidation of an HVOF corrosion-control coating. Journal of Thermal Spray Technology 12 (3): 403–415.

    Article  Google Scholar 

  • Harok, V., and K. Neufuss. 2001. Elastic and inelastic effects in compression in plasma-sprayed ceramic coatings. Journal of Thermal Spray Technology 10 (1): 126–132.

    Article  CAS  Google Scholar 

  • Hasselman, D.P.H. 1970. Thermal stress resistance parameters for brittle refractory ceramics: A compendium. American Ceramic Society Bulletin 49 (12): 1033–1037.

    Google Scholar 

  • He, G.H., J.D. Guo, Y.Y. Zhang, B.Q. Wang, and B.L. Zhou. 2000. Measurement of thermal diffusivity of thermal control coatings by the flash method using two-layer composite sample. International Journal of Thermophysics 21 (2): 535–542.

    Article  CAS  Google Scholar 

  • He, D., N. Dong, and J. Jiang. 2007. Corrosion behavior of arc sprayed nickel-base coatings. Journal of Thermal Spray Technology 16 (5–6): 850–856.

    Article  CAS  Google Scholar 

  • He, D.-Y., B.-Y. Fu, J.-M. Jiang, and X.-Y. Li. 2008. Microstructure and wear performance of arc sprayed Fe-FeB-WC coatings. Journal of Thermal Spray Technology 17 (5–6): 757–761.

    Article  CAS  Google Scholar 

  • Heintze, G.N., and R. McPherson. 1988. Fracture toughness of plasma sprayed zirconia coatings. Surface and Coating Technology 134: 15–23.

    Article  Google Scholar 

  • Hejwowski, T. 2009. Erosive and abrasive wear resistance of overlay coatings. Vacuum 83: 166–170.

    Article  CAS  Google Scholar 

  • Hejwowski, T., S. Szewczyk, and A. Weronski. 2000. An investigation of the abrasive and erosive wear of flame-sprayed coatings. Journal of Materials Processing Technology 106: 54–57.

    Article  Google Scholar 

  • Heping, L., P. Nie, Y. Yan, J. Wang, and B. Sun. 2010. Characterization and adhesion strength study of detonation-sprayed MoB–CoCr alloy coatings on 2Cr13 stainless steel substrate. Journal of Coating Technology and Research 7 (6): 801–807.

    Article  CAS  Google Scholar 

  • Higuera Hidalgo, V., J. Belzunce Varela, A. Carriles Menéndez, and S. Poveda Martınez. 2001. High temperature erosion wear of flame and plasma-sprayed nickel–chromium coatings under simulated coal-fired boiler atmospheres. Wear 247: 214–222.

    Article  CAS  Google Scholar 

  • Hivart, P., and J. Crampon. 2007. Interfacial indentation test and adhesive fracture characteristics of plasma sprayed cermet Cr3C2/Ni–Cr coatings. Mechanics of Materials 39: 998–1005.

    Article  Google Scholar 

  • Hugot, F., J. Patru, P. Fauchais, and L. Bianchi. 2007. Modelling of a substrate thermomechanical behavior during plasma spraying. Journal of Materials Processing Technology 190 (1–3): 317–323.

    Article  CAS  Google Scholar 

  • Hung, Y.Y., Y.S. Chen, S.P. Ng, L. Liu, Y.H. Huang, B.L. Luk, R.W.L. Ip, C.M.L. Wu, and P.S. Chung. 2009. Review and comparison of shearography and active thermography for non-destructive evaluation. Materials Science and Engineering R 64: 73–112.

    Article  CAS  Google Scholar 

  • Ibrahim, A., and C.C. Berndt. 2007. Fatigue and deformation of HVOF sprayed WC–Co coatings and hard chrome plating. Materials Science and Engineering A 456: 114–119.

    Article  CAS  Google Scholar 

  • Ibrahim, A., R.S. Lima, C.C. Berndt, and B.R. Marple. 2007. Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings. Surface and Coating Technology 201: 7589–7596.

    Article  CAS  Google Scholar 

  • Ilavsky, J. 2010. Characterization of complex thermal barrier deposits pore microstructures by a combination of imaging, scattering and intrusion techniques. Journal of Thermal Spray Technology 19 (1–2): 178–189.

    Article  Google Scholar 

  • Ilavsky, J., and C.C. Berndt. 1998. Thermal expansion properties of metallic and cermet coatings. Surface and Coating Technology 102: 19–24.

    Article  CAS  Google Scholar 

  • Ilavsky, J., H. Herman, C.C. Berndt, A.N. Goland, G.G. Long, S. Krueger, and A.J. Allen. 1994. In Thermal spray industrial applications, ed. C.C. Berndt and S. Sampath, 709–715. Materials Park: ASM International.

    Google Scholar 

  • Ilavsky, J., C.C. Berndt, and J. Karthikeyan. 1997. Mercury intrusion porosimetry of plasma-sprayed ceramic. Journal of Materials Science 32: 3925–3932.

    Article  CAS  Google Scholar 

  • Ilavsky, J., G.G. Long, A.J. Allen, L. Leblanc, M. Prystay, and C. Moreau. 1999a. Anisotropic microstructure of plasma-sprayed deposits. Journal of Thermal Spray Technology 8 (3): 414–420.

    Article  CAS  Google Scholar 

  • Ilavsky, J., G.G. Long, A.J. Allen, and C.C. Berndt. 1999b. Evolution of the void structure in plasma-sprayed YSZ deposits during heating. Materials Science and Engineering A 272: 215–221.

    Article  Google Scholar 

  • Ilavsky, J., P.R. Jemian, A.J. Allen, F. Zhang, L.E. Levine, and G.G. Long. 2009a. Ultra-small-angle X-ray scattering at the advanced photon source. Journal of Applied Crystallography 42: 1–11.

    Article  CAS  Google Scholar 

  • ———. 2009b. Ultra-small-angle X-ray scattering at the advanced photon source. Journal of Applied Crystallography 42 (3): 469–479.

    Article  CAS  Google Scholar 

  • Ingo, G.M., S. Kaciulis, A. Mezzi, T. Valente, F. Casadei, and G. Gusmano. 2005. Characterization of composite titanium nitride coatings prepared by reactive plasma spraying. Electrochimica Acta 50: 4531–4537.

    Article  CAS  Google Scholar 

  • Irisawa, T., and H. Matsumoto. 2006. Thermal shock resistance and adhesion strength of plasma-sprayed alumina coating on cast iron. Thin Solid Films 509: 141–144.

    Article  CAS  Google Scholar 

  • Ishikawa, Y., J. Kawakita, S. Osawa, T. Itsukaichi, Y. Sakamoto, M. Takaya, and S. Kuroda. 2005. Evaluation of corrosion and wear resistance of hard cermet coatings sprayed by using an improved HVOF process. Journal of Thermal Spray Technology 14 (3): 384–390.

    Article  CAS  Google Scholar 

  • Jadhav, A.D., N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo, and E.R. Fuller Jr. 2006. Low-thermal-conductivity plasma-sprayed thermal barrier coatings with engineered microstructures. Acta Materialia 54: 3343–3349.

    Article  CAS  Google Scholar 

  • James, J.D., J.A. Spittle, S.G.R. Brown, and R.W. Evans. 2001. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Measurement Science and Technology 12: R1–R15.

    Article  CAS  Google Scholar 

  • Jayaraj, B., V.H. Desai, C.K. Lee, and Y.H. Sohn. 2004. Electrochemical impedance spectroscopy of porous ZrO2–8 wt.% Y2O3 and thermally grown oxide on nickel aluminide. Materials Science and Engineering A 372 (1–2): 278–286.

    Article  CAS  Google Scholar 

  • Jeandin, M., D.K. Christoulis, F. Borit, M.H. Berger, S. Guetta, G. Rolland, V. Guipont, E. Irissou, J.G. Legoux, C. Moreau, M. Nivard, L. Berthe, M. Boustie, K. Sakaguchi, Y. Ichikawa, K. Ogawa, and S. Costil. 2010. Lasers and thermal spray. Materials Science Forum 174: 638–642.

    Google Scholar 

  • Jennifer, S.Y., H. Wang, W.D. Porter, A.R. de Arellano Lopez, and K.T. Faber. 2001. Thermal conductivity and phase evolution of plasma-sprayed multilayer coatings. Journal of Materials Science 36: 3511–3518.

    Article  Google Scholar 

  • Ji, G.-C., C.-J. Li, Y.-Y. Wang, and W.-Y. Li. 2007. Erosion performance of HVOF-sprayed Cr3C2-NiCr coatings. Journal of Thermal Spray Technology 16 (4): 557–565.

    Article  CAS  Google Scholar 

  • Kang, H.-K., and S. Bong Kange. 2004. Behavior of porosity and copper oxidation in W/Cu composite produced by plasma spray. Journal of Thermal Spray Technology 13 (2): 223–228.

    Article  CAS  Google Scholar 

  • Kawakita, J., S. Kuroda, and T. Kodama. 2003. Evaluation of through-porosity of HVOF sprayed coating. Surface and Coating Technology 166: 17–23.

    Article  CAS  Google Scholar 

  • Kennedy, D.M., and M.S.J. Hashmi. 1998. Methods of wear testing for advanced surface coatings and bulk materials. Journal of Materials Processing Technology 77: 246–253.

    Article  Google Scholar 

  • Kim, H.J., Y.G. Kweon, and R.W. Chang. 1994. Wear and erosion behavior of plasma-sprayed WC-Co coatings. Journal of Thermal Spray Technology 3 (2): 169–178.

    Article  CAS  Google Scholar 

  • Kishitake, K., H. Era, and F. Otsubo. 1996. Characterization of plasma sprayed Fe-17Cr-38Mo-4C amorphous coatings crystallizing at extremely high temperature. Journal of Thermal Spray Technology 5 (3): 283–288.

    Article  CAS  Google Scholar 

  • Koiprasert, H., S. Dumrongrattana, and P. Niranatlumpong. 2004. Thermally sprayed coatings for protection of fretting wear in land-based gas-turbine engine. Wear 257: 1–7.

    Article  CAS  Google Scholar 

  • Koivuluoto, H., J. Lagerbom, M. Kylmälahti, and P. Vuoristo. 2008. Microstructure and mechanical properties of low-pressure cold-sprayed (LPCS) coatings. Journal of Thermal Spray Technology 17 (5–6): 721–727.

    Article  CAS  Google Scholar 

  • Kovarik, O., J. Siegl, J. Nohava, and P. Chraska. 2005. Young’s modulus and fatigue behavior of plasma-sprayed alumina coatings. Journal of Thermal Spray Technology 14 (2): 231–238.

    Article  Google Scholar 

  • Kovarik, O., J. Siegl, and Z. Prochazka. 2008. Fatigue behavior of bodies with thermally sprayed metallic and ceramic deposits. Journal of Thermal Spray Technology 17 (4): 525–532.

    Article  Google Scholar 

  • Krishnamurthy, N., S.C. Sharma, M.S. Murali, and P.G. Mukunda. 2009. Adhesion behavior of plasma sprayed thermal barrier coatings on Al-6061 and cast-iron substrates. Frontiers of Materials Science in China 3 (3): 333–338.

    Article  Google Scholar 

  • Kucuk, A., C.C. Berndt, U. Senturk, and R.S. Lima. 2000a. Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. I: Four-point bend test. Materials Science and Engineering A 284: 29–40.

    Article  Google Scholar 

  • ———. 2000b. Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. II: Acoustic emission response. Materials Science and Engineering A 284: 41–50.

    Article  Google Scholar 

  • Kulkarni, A., Z. Wang, T. Nakamura, S. Sampath, A. Goland, H. Herman, J. Allen, J. Ilavsky, G.G. Long, J. Frahm, and R.W. Steinbrech. 2003. Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings. Acta Materialia 51: 2457–2475.

    Article  CAS  Google Scholar 

  • Kulkarni, A.A., A. Goland, H. Herman, A.J. Allen, J. Ilavsky, G.G. Long, and F. De Carlo. 2005. Advanced microstructural characterization of plasma-sprayed zirconia coatings over extended length scales. Journal of Thermal Spray Technology 14 (2): 239–250.

    Article  CAS  Google Scholar 

  • Kulkarni, A., A. Goland, H. Herman, A.J. Allen, T. Dobbins, F. DeCarlo, J. Ilavsky, G.G. Long, S. Fang, and P. Lawton. 2006. Advanced neutron and X-ray techniques for insights into the microstructure of EB-PVD thermal barrier coatings. Materials Science and Engineering A 426: 43–52.

    Article  CAS  Google Scholar 

  • Kulu, P., and T. Pihl. 2002. Selection criteria for wear resistant powder coatings under extreme erosive wear conditions. Journal of Thermal Spray Technology 11 (4): 517–522.

    Article  CAS  Google Scholar 

  • Kuroda, S., T. Kukushima, and S. Kitahara. 1988. Simultaneous measurement of coating thickness and deposition stress during thermal spraying. Thin Solid Films 164: 157–163.

    Article  Google Scholar 

  • Kuroda, S., Y. Tashiro, H. Yumoto, S. Taira, H. Fukanuma, and S. Tobe. 2001. Peening action and residual stresses in high-velocity oxygen fuel thermal spraying of 316L stainless steel. Journal of Thermal Spray Technology 10 (2): 367–374.

    Article  CAS  Google Scholar 

  • Landa, M., F. Kroupa, K. Neufuss, and P. Urbanek. 2003. Effect of uniaxial pressure on ultrasound velocities and elastic moduli in plasma-sprayed ceramics. Journal of Thermal Spray Technology 12 (2): 226–233.

    Article  CAS  Google Scholar 

  • Langford, J.I., and A.J.C. Wilson. 1978. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. Journal of Applied Crystallography 1: 102–113.

    Article  Google Scholar 

  • Lee, H., S. Mall, J.H. Sanders, and S.K. Sharma. 2005. Wear analysis of Cu–Al coating on Ti–6Al–4V substrate under fretting condition. Tribology Letters 19 (3): 239–248.

    Article  CAS  Google Scholar 

  • Lee, H., S. Mall, and K.N. Murray. 2007. Fretting wear behavior of Cu–Al coating on Ti-6Al-4V substrate under dry and wet (lubricated) contact condition. Tribology Letters 28: 19–25.

    Article  CAS  Google Scholar 

  • Leigh, S.H., and C.C. Berndt. 1994. A test for coating adhesion on flat substrates – A technical note. Journal of Thermal Spray Technology 3 (2): 184–190.

    Article  CAS  Google Scholar 

  • Leigh, S.-H., and C.C. Berndt. 1999. Modelling of elastic constants of plasma spray deposits with ellipsoid-shaped voids. Acta Materialia 47 (5): 1575–1586.

    Article  CAS  Google Scholar 

  • Lesage, J., M.H. Staiab, D. Chicot, C. Godoy, and P.E.V. De Mirandad. 2000. Effect of thermal treatments on adhesive properties of a NiCr thermal sprayed coating. Thin Solid Films 377–378: 681–686.

    Article  Google Scholar 

  • Li, J., and C. Ding. 2001. Determining microhardness and elastic modulus of plasma-sprayed Cr2C3-NiCr coatings using Knoop indentation testing. Surface and Coating Technology 135: 229–237.

    Article  CAS  Google Scholar 

  • Li, C.-J., and Y.-Y. Wang. 2002. Effect of particle state on the adhesive strength of HVOF sprayed metallic coating. Journal of Thermal Spray Technology 11 (4): 523–529.

    Article  CAS  Google Scholar 

  • Li, H., K.A. Khor, and P. Cheanga. 2002. Young’s modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings. Surface and Coating Technology 155: 21–32.

    Article  CAS  Google Scholar 

  • Li, C.-J., X.-J. Ning, and C.-X. Li. 2005. Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells. Surface and Coating Technology 190: 60–64.

    Article  CAS  Google Scholar 

  • Li, L., N. Hitchman, and J. Knapp. 2010. Failure of thermal barrier coatings subjected to CMAS attack. Journal of Thermal Spray Technology 19 (1–2): 148–155.

    Article  CAS  Google Scholar 

  • Li, C.-J., H.-T. Wang, G.-J. Yang, and C.-G. Bao. 2011. Characterization of high-temperature abrasive wear of cold-sprayed FeAl intermetallic compound coating. Journal of Thermal Spray Technology 20: 227–233.

    Article  CAS  Google Scholar 

  • Lima, C.R.C., and J.M. Guilemany. 2007. Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surface and Coating Technology 201: 4694–4701.

    Article  CAS  Google Scholar 

  • Lima, R.S., and B.R. Marple. 2003. High Weibull modulus HVOF titania coatings. Journal of Thermal Spray Technology 12 (2): 240–249.

    Article  CAS  Google Scholar 

  • Lima, R.S., A. Kucuk, and C.C. Berndt. 2001a. Integrity of nanostructured partially stabilized zirconia after plasma spray processing. Materials Science and Engineering A313: 75–82.

    Article  CAS  Google Scholar 

  • ———. 2001b. Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zirconia coatings. Surface and Coating Technology 135: 166–172.

    Article  CAS  Google Scholar 

  • ———. 2002. Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia. Materials Science and Engineering A327: 224–232.

    Article  CAS  Google Scholar 

  • Lima, R.S., S.E. Kruger, G. Lamouche, and B.R. Marple. 2003a. Elastic modulus measurements via laser-ultrasonic and Knoop indentation techniques. In ITSC-2003: Advancing the science and applying the technique, ed. C. Moreau and B. Marple, 1369–1378. Materials Park: ASM International.

    Google Scholar 

  • Lima, M.M., C. Godoy, J.C. Avelar-Batista, and P.J. Modenesi. 2003b. Toughness evaluation of HVOF WC-Co coatings using non-linear regression analysis. Materials Science and Engineering A357: 337–345.

    Article  CAS  Google Scholar 

  • Lima, M.M., C. Godoy, P.J. Modenesi, J.C. Avelar-Batista, A. Davison, and A. Matthews. 2004. Coating fracture toughness determined by Vickers indentation: An important parameter in cavitation erosion resistance of WC-Co thermally sprayed coatings. Surface and Coating Technology 177–178: 489–496.

    Article  CAS  Google Scholar 

  • Lima, C.R.C., J. Nin, and J.M. Guilemany. 2006. Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the modified layer removal method (MLRM). Surface and Coating Technology 200: 5963–5972.

    Article  CAS  Google Scholar 

  • Lin, C.K., and C.C. Berndt. 1993. Microhardness variations in thermally sprayed coatings. In Proceedings of the national thermal spray conference, ed. C.C. Berndt and T.F. Bernicki, 561–564. Materials Park: ASM International.

    Google Scholar 

  • ———. 1994. Measurement and analysis of adhesion strength for thermally sprayed coatings. Journal of Thermal Spray Technology 3 (1): 75–104.

    Article  CAS  Google Scholar 

  • ———. 1998. Acoustic emission studies on thermal spray materials. Surface and Coating Technology 102: 1–7.

    Article  CAS  Google Scholar 

  • Lin, J.F., M.H. Liu, and J.D. Wu. 1996. Analysis of the friction and wear mechanisms of structural ceramic coatings. Part 1: The effect of processing conditions. Wear 194: 1–11.

    Article  CAS  Google Scholar 

  • Lin, C.K., C.C. Berndt, S.H. Leigh, and K. Murakami. 1997. Acoustic emission studies of alumina-13% titania free-standing forms during four-point bend tests. Journal of the American Ceramic Society 80: 2382–2394.

    Article  CAS  Google Scholar 

  • Liu, X., and C. Ding. 2002. Thermal properties and microstructure of a plasma sprayed wollastonite coating. Journal of Thermal Spray Technology 11 (3): 375–379.

    Article  CAS  Google Scholar 

  • Liu, R., and D.Y. Li. 1999. Protective effect of yttrium additive in lubricants on corrosive wear. Wear 225–229: 968–974.

    Article  Google Scholar 

  • Liu, Y., and H.M. Wang. 2010. Microstructure and wear property of laser-clad Co3Mo2Si/Coss wear resistant coatings. Surface and Coating Technology 205: 377–382.

    Article  CAS  Google Scholar 

  • Liu, X.Q., Y.G. Zheng, X.C. Chang, W.L. Hou, J.Q. Wang, Z. Tang, and A. Burgess. 2009. Microstructure and properties of Fe-based amorphous metallic coating produced by high velocity axial plasma spraying. Journal of Alloys and Compounds 484: 300–307.

    Article  CAS  Google Scholar 

  • Luiz de Assis, S., S. Wolynec, and I. Costa. 2006. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochimica Acta 51: 1815–1819.

    Article  CAS  Google Scholar 

  • Lyphout, C., P. Nylén, A. Manescu, and T. Pirling. 2008. Residual stresses distribution through thick HVOF sprayed Inconel 718 coatings. Journal of Thermal Spray Technology 17 (5–6): 915–923.

    Article  CAS  Google Scholar 

  • Ma, X.Q., and M. Takemoto. 2001. Quantitative acoustic emission analysis of plasma, sprayed thermal barrier coatings subjected to thermal shock tests. Materials Science and Engineering A308: 101–110.

    Article  CAS  Google Scholar 

  • Ma, X.Q., Y. Mizutani, and M. Takemoto. 2001a. Laser-induced surface acoustic waves for evaluation of elastic stiffness of plasma sprayed materials. Journal of Materials Science 36: 5633–5641.

    Article  CAS  Google Scholar 

  • Ma, X.Q., S. Cho, and M. Takemoto. 2001b. Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests. Surface and Coating Technology 139: 55–62.

    Article  CAS  Google Scholar 

  • Ma, X.Q., D.W. Gandy, and G.J. Frederick. 2008. Innovation of ultrafine structured alloy coatings having superior mechanical properties and high temperature corrosion resistance. Journal of Thermal Spray Technology 17 (5–6): 933–941.

    Article  CAS  Google Scholar 

  • Ma, D., C.W. Ong, and T. Zhang. 2009. An instrumented indentation method for Young’s modulus measurement with accuracy estimation. Experimental Mechanics 49: 719–729.

    Article  CAS  Google Scholar 

  • Magnani, M., P.H. Suegama, N. Espallargas, C.S. Fugivara, S. Dosta, J.M. Guilemany, and A.V. Benedettir. 2009. Corrosion and wear studies of Cr3C2-NiCr-HVOF coatings sprayed on AA7050 T7 under cooling. Journal of Thermal Spray Technology 18 (3): 354–363.

    Article  CAS  Google Scholar 

  • Majzoobi, G.H., R. Hojjati, M. Nematian, E. Zalnejad, A.R. Ahmadkhani, and E. Hanifepoor. 2010. A new device for fretting fatigue testing. Transactions of the Indian Institute of Metals 63 (2–3): 493–497.

    Article  CAS  Google Scholar 

  • Maldague, X., and S. Marinetti. 1996. Pulse phase infrared thermography. Journal of Applied Physics 79 (5): 2694–2698.

    Article  CAS  Google Scholar 

  • Mancini, C.E., C.C. Berndt, L. Sun, and A. Kucuk. 2001. Porosity determinations in thermally sprayed hydroxyapatite coatings. Journal of Materials Science 36: 3891–3896.

    Article  CAS  Google Scholar 

  • Mann, B.S., and V. Arya. 2001. Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: Their application in hydro turbines. Wear 249: 354–360.

    Article  CAS  Google Scholar 

  • Marcano, Z., J. Lesage, D. Chicot, G. Mesmacque, E.S. Puchi-Cabrera, and M.H. Staiaa. 2008. Microstructure and adhesion of Cr3C2–NiCr vacuum plasma sprayed coatings. Surface and Coating Technology 202: 4406–4410.

    Article  CAS  Google Scholar 

  • Marinetti, S., D. Robba, F. Cernuschi, P.G. Bison, and E. Grinzato. 2007. Thermographic inspection of TBC coated gas turbine blades: Discrimination between coating over-thicknesses and adhesion defects. Infrared Physics & Technology 49: 281–285.

    Article  Google Scholar 

  • Marot, G., P. Démarécaux, J. Lesage, M. Hadad, and Staia M.H. St. Siegmann. 2008. The interfacial indentation test to determine adhesion and residual stresses in NiCr VPS coatings. Surface and Coating Technology 202: 4411–4416.

    Article  CAS  Google Scholar 

  • Marshall, D.B., T. Noma, and A.G. Evans. 1982. A simple method for determining elastic-modulus-to-hardness ratios using Knoop indentation measurements. Communications of the American Ceramic Society 65: C175–C176.

    Article  CAS  Google Scholar 

  • Matějíček, J., B. Kolman, J. Dubský, K. Neufuss, N. Hopkins, and J. Zwick. 2006. Alternative methods for determination of composition and porosity in abradable materials. Materials Characterization 57: 17–29.

    Article  CAS  Google Scholar 

  • Matthews, S., B. James, and M. Hyland. 2010. The effect of heat treatment on the oxidation mechanism of blended powder Cr3C2-NiCr coatings. Journal of Thermal Spray Technology 19 (1–2): 119–127.

    Article  CAS  Google Scholar 

  • Mauer, G., R. Vaßen, and D. Stöver. 2009. Atmospheric plasma spraying of yttria-stabilized zirconia coatings with specific porosity. Surface and Coating Technology 204: 172–179.

    Article  CAS  Google Scholar 

  • McGrann, R.T.R., D.J. Greving, J.R. Shadley, E.F. Rybicki, B.E. Bodger, and D.A. Somerville. 1998. The effect of residual stress in HVOF tungsten carbide coatings on the fatigue life in bending of thermal spray coated aluminum. Journal of Thermal Spray Technology 7 (4): 546–552.

    Article  CAS  Google Scholar 

  • Meacham, B.E., M.C. Marshall, and D.J. Branagan. 2006. Palmqvist fracture toughness of a new wear-resistant weld alloy. Metallurgical and Materials Transactions A 37A: 3617–3627.

    Article  CAS  Google Scholar 

  • Michlik, P., and C.C. Berndt. 2006. Image-based extended finite element modeling of thermal barrier coatings. Surface and Coating Technology 201: 2369–2380.

    Article  CAS  Google Scholar 

  • Montavon, G. 2004. Quality control of thermal sprayed coatings, course thermal spraying. Limoges: Aliderte.

    Google Scholar 

  • Montavon, G., and G. Antou. 2007. Quantifying thermal spray coating architecture by stereological protocols: Part I. A historical perspective. Journal of Thermal Spray Technology 16 (1): 6–14.

    Article  CAS  Google Scholar 

  • Montavon, G., C. Coddet, C.C. Berndt, and S.-H. Leigh. 1998. Microstructural index to quantify thermal spray deposit microstructures using image analysis. Journal of Thermal Spray Technology 7 (2): 229–241.

    Article  CAS  Google Scholar 

  • Musalek, R., J. Matejicek, M. Vilemova, and O. Kovarik. 2010. Non-linear mechanical behavior of plasma sprayed alumina under mechanical and thermal spray loading. Journal of Thermal Spray Technology 19 (1–2): 422–428.

    Article  CAS  Google Scholar 

  • Musil, J., F. Kunc, H. Zeman, and H. Polakova. 2002. Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surface and Coating Technology 154: 304–313.

    Article  CAS  Google Scholar 

  • Nolan, D.J., and M. Samandi. 1997. Revealing true porosity in WC-Co thermal spray coatings. Journal of Thermal Spray Technology 6 (4): 422–424.

    Article  CAS  Google Scholar 

  • Noone, M.J., and R.L. Mehan. 1974. In Fracture mechanics of ceramics, ed. R.C. Bradt, Hasselman DPH, and F.F. Lange, 201–229. Plenum: New York.

    Google Scholar 

  • Nusair Khan, A., and J. Lu. 2003. Behavior of air plasma sprayed thermal barrier coatings, subject to intense thermal cycling. Surface and Coating Technology 166: 37–43.

    Article  Google Scholar 

  • Ozdemir, I., I. Hamanaka, Y. Tsunekawa, and M. Okumiya. 2005. In-process exothermic reaction in high-velocity oxyfuel and plasma spraying with SiO2/Ni/Al-Si-Mg composite powder. Journal of Thermal Spray Technology 14 (3): 321–329.

    Article  CAS  Google Scholar 

  • Paul, S., and K. Yadav. 2010. Corrosion behavior of surface-treated implant Ti-6Al-4V by electrochemical polarization and impedance studies. Journal of Materials Engineering and Performance 20 (3): 422–435.

    Article  CAS  Google Scholar 

  • Pawlowski, L. 1995. The science and engineering of thermal spray coatings. New York: Wiley, 2nd (2008), Ed, (656 p).

    Google Scholar 

  • Pejryd, L., J. Wigren, D.J. Greving, J.R. Shadley, and E.E. Rybicki. 1995. Residual stresses as a factor in the selection of tungsten carbide coatings for a jet engine application. Journal of Thermal Spray Technology 4 (3): 268–274.

    Article  CAS  Google Scholar 

  • Pershin, V., M. Lufitha, S. Chandra, and J. Mostaghimi. 2003. Effect of substrate temperature on adhesion strength of plasma-sprayed nickel coatings. Journal of Thermal Spray Technology 12 (3): 370–376.

    Article  CAS  Google Scholar 

  • Petorak, C., J. Ilavsky, H. Wang, W. Porter, and R. Trice. 2010. Microstructural evolution of 7 wt.% Y2O3–ZrO2 thermal barrier coatings due to stress relaxation at elevated temperatures and the concomitant changes in thermal conductivity. Surface and Coating Technology 205: 57–65.

    Article  CAS  Google Scholar 

  • Podrezov, Y.N., Y.V. Mil’man, D.V. Lotsko, N.L. Lugovoi, D.G. Verbilo, and N.A. Efimov. 1999. A method of determining the mechanical properties of a two-layer composite consisting of a steel matrix and a plasma spray coating based on amorphizing powders. Powder Metallurgy and Metal Ceramics 38 (5–6): 224–227.

    Article  CAS  Google Scholar 

  • Prasad, B.K. 2000. Effects of alumina particle dispersion on the erosive–corrosive wear response of a zinc-based alloy under changing slurry conditions and distance. Wear 238: 151–159.

    Article  CAS  Google Scholar 

  • Prasad Sahu, S., A. Satapathy, A. Patnaik, K.P. Sreekumar, and P.V. Ananthapadmanabhan. 2010. Development, characterization and erosion wear response of plasma sprayed fly ash–aluminum coatings. Materials and Design 31: 1165–1173.

    Article  CAS  Google Scholar 

  • Prudenziati, M., G.C. Gazzadi, M. Medici, G. Dalbagni, and M. Caliari. 2010. Cr3C2-NiCr HVOF-sprayed coatings: Microstructure and properties versus powder characteristics and process parameters. Journal of Thermal Spray Technology 19 (3): 541–550.

    Article  CAS  Google Scholar 

  • Puerta, D.G. 2005. Metallographic preparation and evaluation of thermal spray coatings: Mounting, TSS committee on accepted practices. Journal of Thermal Spray Technology 14 (4): 450–452.

    Google Scholar 

  • ———. 2006. Metallographic preparation and testing of thermal spray coatings: Grinding, TSS committee on accepted practices. Journal of Thermal Spray Technology 15 (1): 31–32.

    Article  Google Scholar 

  • ———. 2008. TSS accepted practices committees—Metallography and mechanical testing. Journal of Thermal Spray Technology 17 (4): 435–436.

    Article  Google Scholar 

  • Qi, Z.M., S. Amada, S. Akiyama, and C. Takahashi. 1988. Evaluation of thermal shock strength of thermal-sprayed coatings by the laser irradiation technique. Surface and Coating Technology 110: 73–80.

    Article  Google Scholar 

  • Rainforth, W.M. 2004. The wear behaviour of oxide ceramics—A review. Journal of Materials Science 39: 6705–6721.

    Article  CAS  Google Scholar 

  • Rammo, N.N., H.R. Al-Amery, T. Abdul-Jabbar, and H.I. Jaffer. 2009. Adhesion, hardness and structure of thermal sprayed Al/SiC composite, coat on graphite. Surface and Coating Technology 203: 2891–2895.

    Article  CAS  Google Scholar 

  • Rätzer-Scheibe, H.-J., U. Schulz, and T. Krell. 2006. The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings. Surface and Coating Technology 200: 5636–5644.

    Article  CAS  Google Scholar 

  • Ravi, B.G., A.S. Gandhi, X.Z. Guo, J. Margolies, and S. Sampath. 2008. Liquid precursor plasma spraying of functional materials: A case study for yttrium aluminum garnet (YAG). Journal of Thermal Spray Technology 17 (1): 82–90.

    Article  CAS  Google Scholar 

  • Reed, J.S. 1995. Principles of ceramics processing. New York: Wiley.

    Google Scholar 

  • Rendler, N.J., and I. Vigness. 1966. Hole drilling method of measuring residual stresses. Experimental Mechanics 6 (12): 577–586.

    Article  Google Scholar 

  • Rice, R.W. 1996. Porosity dependence of physical properties of materials: A summary review. Key Engineering Materials 115: 1–19.

    Article  CAS  Google Scholar 

  • Richard, C.S., J. Lu, G. Béranger, and F. Decomps. 1995. Study of Cr2O3 coatings. Part II: Adhesion to a cast-iron substrate. Journal of Thermal Spray Technology 4 (4): 347–352.

    Article  CAS  Google Scholar 

  • Richard, C.S., G. Béranger, J. Lu, J.F. Flavenot, and T. Grégoire. 1996. Four-point bending tests of thermally produced WC-Co coatings. Surface and Coating Technology 78 (284): 294.

    Google Scholar 

  • Rickerby, D.S. 1988. A review of the methods for the measurement of coating-substrate adhesion. Surface and Coating Technology 36 (1–2): 541–557.

    Article  CAS  Google Scholar 

  • Riggs, W. 2004. Metallography and image analysis. In Handbook of thermal spray technology, ed. J.R. Davis, 224–259. Metals Park: ASM International.

    Google Scholar 

  • Robin, P., F. Gitzhofer, P. Fauchais, and M. Boulos. 2010. Remaining fatigue life assessment of plasma sprayed thermal barrier coatings. Journal of Thermal Spray Technology 19 (5): 911–920.

    Article  CAS  Google Scholar 

  • Rolland, G., P. Sallamand, V. Guipont, M. Jeandin, E. Boller, and C. Bourda. 2011. Laser-induced damage in cold-sprayed composite coatings. Surface and Coating Technology 205: 4915–4927.

    Article  CAS  Google Scholar 

  • Rosa, G., P. Psyllaki, R. Oltra, S. Costil, and C. Coddet. 2001. Simultaneous laser generation and laser ultrasonic detection of the mechanical breakdown of a coating-substrate interface. Ultrasonics 39: 355–365.

    Article  CAS  Google Scholar 

  • Roy, M., A. Pauschitz, J. Bernardi, T. Koch, and F. Franek. 2006. Microstructure and mechanical properties of HVOF sprayed nanocrystalline Cr3C2-25(Ni20Cr) coating. Journal of Thermal Spray Technology 15 (3): 372–381.

    Article  CAS  Google Scholar 

  • Russ, J.C. 1995. The image processing handbook, 2nd ed. Boca Raton: CRC.

    Google Scholar 

  • ———. 2011. The image processing handbook, 6th ed. Boca Raton: CRC, Taylor & Francis Group.

    Google Scholar 

  • Russ, J.C., and R.T. DeHoff. 1999. Practical stereology, 2nd ed. New York: Plenum.

    Google Scholar 

  • Salimijazi, H., M. Hosseini, J. Mostaghimi, L. Pershin, T.W. Coyle, H. Samadi, and A. Shafyei. 2012. Plasma sprayed coating using mullite and mixed alumina/silica powders. Journal of Thermal Spray Technology 21 (5): 825–830.

    Article  CAS  Google Scholar 

  • Sampath, S., X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya. 2004. Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: An integrated study for Ni-5 wt.%Al bond coats. Materials Science and Engineering A364: 216–231.

    Article  CAS  Google Scholar 

  • Sansoucy, E., G.E. Kim, A.L. Moran, and B. Jodoin. 2007. Mechanical characteristics of Al-Co-Ce coatings produced by the cold spray process. Journal of Thermal Spray Technology 16 (5–6): 651–660.

    Article  Google Scholar 

  • Santana, Y.Y., P.O. Renault, M. Sebastiani, J.G. La Barbera, J. Lesage, E. Bemporad, E. Le Bourhis, E.S. Puchi-Cabrera, and M.H. Staia. 2008. Characterization and residual stresses of WC–Co thermally sprayed coatings. Surface and Coating Technology 202: 4560–4565.

    Article  CAS  Google Scholar 

  • Saravanan, P., V. Selvarajan, M.P. Srivastava, D.S. Rao, S.V. Joshi, and G. Sundararajan. 2000. Study of plasma- and detonation gun-sprayed alumina coatings using Taguchi experimental design. Journal of Thermal Spray Technology 9 (4): 505–512.

    Article  CAS  Google Scholar 

  • Sauer, J.P. 2005. Metallographic preparation and testing of thermal spray coatings: Sectioning, TSS committee on accepted practices. Journal of Thermal Spray Technology 14 (3): 313–314.

    Google Scholar 

  • Sauer, J.P., and G. Blann. 2006. Metallographic preparation and testing of thermal spray coatings: Fine grinding and polishing, TSS committee on accepted practices. Journal of Thermal Spray Technology 15 (2): 174–176.

    CAS  Google Scholar 

  • Schajer, G.S. 1988. Measurement of non-uniform residual stress using the hole drilling method. Part 1. Journal of Engineering Materials and Technology 110 (4): 338–343, Part 2. 110(4):345–349.

    Article  Google Scholar 

  • Schajer, G.S., and E. Altus. 1996. Stress calculation error analysis for incremental hole drilling residual stress measurement. Journal of Engineering Materials and Technology 118 (1): 120–126.

    Article  Google Scholar 

  • Schmidt, G., and S. Steinhäuser. 1996. Characterization of wear protective coatings. Tribology International 29 (3): 207–214.

    Article  CAS  Google Scholar 

  • Scrivani, A., G. Rizzi, U. Bardi, C. Giolli, M. Muniz Miranda, S. Ciattini, A. Fossati, and F. Borgioli. 2007. Thermal fatigue behavior of thick and porous thermal barrier coatings systems. Journal of Thermal Spray Technology 16 (5–6): 816–821.

    Article  Google Scholar 

  • Scrivani, A., G. Rizzi, and C.C. Berndt. 2008. Enhanced thick thermal barrier coatings that exhibit varying porosity. Materials Science and Engineering A 476: 1–7.

    Article  CAS  Google Scholar 

  • Shepard, S.M. .2001. Advances in pulsed thermography. In Proceedings of SPIE, Thermo sense XXIII, Orlando, FL, USA, 16–19 April 2001, pp. 511–515.

    Google Scholar 

  • Shivamurthy, R.C., M. Kamaraj, R. Nagarajan, S.M. Shariff, and G. Padmanabham. 2010. Slurry erosion characteristics and erosive wear mechanisms of Co-based and Ni-based coatings formed by laser surface alloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 41A: 470–486.

    Article  CAS  Google Scholar 

  • Shrestha, S., A. Neville, and T. Hodgkiess. 2001. The effect of post-treatment of a high-velocity oxy-fuel Ni-Cr-Mo-Si-B coating. Part I: Microstructure/corrosion behavior relationships. Journal of Thermal Spray Technology 10 (3): 470–479.

    Article  CAS  Google Scholar 

  • Sidhu, T.S., S. Prakash, and R.D. Agrawal. 2006a. Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. Journal of Thermal Spray Technology 15 (3): 387–399.

    Article  CAS  Google Scholar 

  • ———. 2006b. Characterizations and hot corrosion resistance of Cr3C2-NiCr coating on Ni-base superalloys in an aggressive environment. Journal of Thermal Spray Technology 15 (4): 811–816.

    Article  CAS  Google Scholar 

  • ———. 2007. Study of molten salt corrosion of high velocity oxy-fuel sprayed cermet and nickel-based coatings at 900 °C. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 38A: 77–85.

    Article  CAS  Google Scholar 

  • Siebert, B., C. Funke, R. Vaßen, and D. Stöver. 1999. Changes in porosity and Young’s modulus due to sintering of plasma sprayed thermal barrier coatings. Journal of Materials Processing Technology 92–93: 217–223.

    Article  Google Scholar 

  • Singh, H., D. Puri, and S. Prakash. 2005. Corrosion behavior of plasma-sprayed coatings on a Ni-base superalloy in Na2SO4-60 Pct V2O3 environment at 900 °C. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 36A: 1008–1015.

    Google Scholar 

  • Slifka, A.J., B.J. Filla, J.M. Phelps, G. Bancke, and C.C. Berndt. 1998. Thermal conductivity of a zirconia thermal barrier coating. Journal of Thermal Spray Technology 7 (1): 43–46.

    Article  CAS  Google Scholar 

  • Sorai, M., and N.N. Gakkai. 2004. Comprehensive handbook of calorimetry and thermal analysis, 534 p. New York: Wiley.

    Google Scholar 

  • Souza, V.A.D., and A. Neville. 2006. Mechanisms and kinetics of WC-Co-Cr high velocity oxy-fuel thermal spray coating degradation in corrosive environments. Journal of Thermal Spray Technology 15 (1): 106–117.

    Article  CAS  Google Scholar 

  • Speyer, R. 1993. Thermal analysis of materials, Materials engineering. Seattle: Amazon.

    Book  Google Scholar 

  • Stack, M.M., F.H. Stott, and G.C. Wood. 1993. Review of mechanisms of erosion-corrosion of alloys at elevated temperatures. Part 2. Wear 162–164: 706–712.

    Article  Google Scholar 

  • Staia, M.H., E. Ramos, A. Carrasquero, A. Roman, J. Lesage, D. Chicot, and G. Mesmacque. 2000. Effect of substrate roughness induced by grit blasting upon adhesion of WC-17% Co thermal sprayed coatings. Thin Solid Films 377–378: 657–664.

    Article  Google Scholar 

  • Stewart, S., R. Ahmed, and T. Itsukaichi. 2005. Rolling contact fatigue of post-treated WC – NiCrBSi thermal spray coatings. Surface and Coating Technology 190 (1–2): 171–189.

    Article  CAS  Google Scholar 

  • Stokes, J., and L. Looney. 2008. Predicting quenching and cooling stresses within HVOF deposits. Journal of Thermal Spray Technology 17 (5–6): 908–914.

    Article  CAS  Google Scholar 

  • Strunz, P., G. Schumacher, R. Vaßen, and A. Wiedenmann. 2004. In situ SANS study of pore microstructure in YSZ thermal barrier coatings. Acta Materialia 52: 3305–3312.

    Article  CAS  Google Scholar 

  • Sundararajan, G., N.M. Chavan, G. Sivakumar, and P. Sudharshan Phani. 2010. Evaluation of parameters for assessment of inter-splat bond strength in cold-sprayed coatings. Journal of Thermal Spray Technology 19 (6): 1255–1266.

    Article  CAS  Google Scholar 

  • Taha-al, Z.Y., M.S. Hashmi, and B.S. Yilbas. 2009. Effect of WC on the residual stress in the laser treated HVOF coating. Journal of Materials Processing Technology 209: 3172–3181.

    Article  CAS  Google Scholar 

  • Tan, Y., J.P. Longtin, and S. Sampath. 2006. Modeling thermal conductivity of thermal spray coatings: Comparing predictions to experiments. Journal of Thermal Spray Technology 15 (4): 545–552.

    Article  CAS  Google Scholar 

  • Théry, P.-Y., M. Poulain, M. Dupeux, and M. Braccini. 2007. Adhesion energy of a YPSZ EB-PVD layer in two thermal barrier coating systems. Surface and Coating Technology 202: 648–652.

    Article  CAS  Google Scholar 

  • Tiana, W., Y. Wang, T. Zhang, and Y. Yang. 2009. Sliding wear and electrochemical corrosion behavior of plasma sprayed nanocomposite Al2O3–13%TiO2 coatings. Materials Chemistry and Physics 118: 37–45.

    Article  CAS  Google Scholar 

  • Tillmann, W., E. Vogli, and B. Krebs. 2008a. Influence of the spray angle on the characteristics of atmospheric plasma sprayed hard material-based coatings. Journal of Thermal Spray Technology 17 (5–6): 948–955.

    Article  CAS  Google Scholar 

  • Tillmann, W., E. Vogli, I. Baumann, G. Matthaeus, and T. Ostrowski. 2008b. Influence of the HVOF gas composition on the thermal spraying of WC-Co submicron powders (28 + 1 μm) to produce superfine structured cermet coatings. Journal of Thermal Spray Technology 17 (5–6): 924–932.

    Article  CAS  Google Scholar 

  • Tillmann, W., B. Klusemann, J. Nebel, and B. Svendsen. 2011. Analysis of the mechanical properties of an arc-sprayed WC-FeCSiMn coating: Nanoindentation and simulation. Journal of Thermal Spray Technology 20 (1–2): 328–335.

    Article  CAS  Google Scholar 

  • Tjitra Salim, N., M. Yamada, H. Nakano, K. Shima, H. Isago, and M. Fukumoto. 2011. The effect of post-treatments on the powder morphology of titanium dioxide (TiO2) powders synthesized for cold spray. Surface and Coating Technology 206: 366–371.

    Article  CAS  Google Scholar 

  • Underwood, E.E. 1970. Quantitative stereology. Reading: Addison-Wesley.

    Google Scholar 

  • Valente, T., C. Bartuli, M. Sebastiani, and A. Loreto. 2005. Implementation and development of the incremental hole drilling method for the measurement of residual stress in thermal spray coatings. Journal of Thermal Spray Technology 14 (4): 462–470.

    Article  Google Scholar 

  • Van Brakel, J., S. Modrý, and M. Svatá. 1981. Mercury porosimetry: State of the art. Powder Technology 29 (1): 1–12.

    Article  Google Scholar 

  • Van der Voort, G.F. 1999. Metallography principles and practice, Material science and engineering series. Materials Park: ASM International.

    Google Scholar 

  • Vander Voort, George, ed. 2004. ASM handbook, Metallography and microstructures, vol. 09, 1184 p. Materials Park: ASM International.

    Google Scholar 

  • Venkataraman, R., G. Das, S.R. Singh, L.C. Pathak, R.N. Ghosh, B. Venkataraman, and R. Krishnamurthy. 2007. Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings. Materials Science and Engineering A 445–446: 269–274.

    Article  CAS  Google Scholar 

  • Volenık, K., F. Hanousek, P. Chraska, J. Ilavsky, and K. Neufuss. 1999. In-flight oxidation of high-alloy steels during plasma spraying. Materials Science and Engineering A272: 199–206.

    Article  Google Scholar 

  • Voyer, J., F. Gitzhofer, and M.I. Boulos. 1998. Study of the performance of TBC under thermal cycling conditions using an acoustic emission rig. Journal of Thermal Spray Technology 7: 181–190.

    Article  CAS  Google Scholar 

  • Wallace, J.S., and J. Ilavsky. 1998. Elastic modulus measurements in plasma sprayed deposits. Journal of Thermal Spray Technology 7 (4): 521–526.

    Article  CAS  Google Scholar 

  • Walpole, R.E., and R.H. Myers. 1978. Probability and statistics for engineers and scientists, 2nd ed. New York: Macmillan.

    Google Scholar 

  • Wang, H.-P. 1979. The alignment error of the hole-drilling method. Experimental Mechanics 19: 23–27.

    Article  Google Scholar 

  • Wang, H., and R.B. Dinwiddie. 2000. Reliability of laser flash thermal diffusivity measurements of the thermal barrier coatings. Journal of Thermal Spray Technology 9 (2): 210–214.

    Article  Google Scholar 

  • ———. 2004. Development of a lab view based portable thermal diffusivity system. In Thermal conductivity 27, thermal expansion 15, ed. H. Wang, 484–492. Lancaster: DESTech.

    Google Scholar 

  • Wang, Z., A. Kulkarni, S. Deshpande, T. Nakamura, and H. Herman. 2003. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings. Acta Materialia 51: 5319–5334.

    Article  CAS  Google Scholar 

  • Wang, H.-R., B.-R. Hou, J. Wang, Q. Wang, and W.-Y. Li. 2008. Effect of process conditions on microstructure and corrosion resistance of cold-sprayed Ti coatings. Journal of Thermal Spray Technology 17 (5–6): 736–741.

    Article  CAS  Google Scholar 

  • Wang, J., E.H. Jordan, and M. Gell. 2010. Plasma sprayed dense MgO-Y2O3 nanocomposite coatings using sol-gel combustion synthesized powder. Journal of Thermal Spray Technology 19 (5): 873–878.

    Article  CAS  Google Scholar 

  • Washburn, E.W. 1921. The dynamics of capillary flows. Physics Review 17: 273–283.

    Article  Google Scholar 

  • Watanabe, M., S. Kuroda, K. Yokoyama, T. Inoue, and Y. Gotoh. 2008. Modified tensile adhesion test for evaluation of interfacial toughness of HVOF sprayed coatings. Surface and Coating Technology 202: 1746–1752.

    Article  CAS  Google Scholar 

  • Westergård, R., N. Axén, U. Wiklund, and S. Hogmark. 2000. An evaluation of plasma sprayed ceramic coatings by erosion, abrasion and bend testing. Wear 246: 12–19.

    Article  Google Scholar 

  • Wielage, B., S. Steinhäuser, T. Schnick, and D. Nickelmann. 1999. Characterization of the wear behavior of thermal sprayed coatings. Journal of Thermal Spray Technology 8 (4): 553–558.

    Article  CAS  Google Scholar 

  • Wigren, J. and J. Johansson. 2011. Improving reliability of thermal spray coatings in production environment. In Presented at 3rd plasma round table, 31 October–4 November 2011, South Africa.

    Google Scholar 

  • Wigren, J., and K. Täng. 2007. Quality considerations for the evaluation of thermal spray coatings. Journal of Thermal Spray Technology 16 (4): 533–540.

    Article  CAS  Google Scholar 

  • Williams, D.B., and C.B. Carter. 2009. Transmission electron microscopy, 2nd ed. New York: Springer.

    Google Scholar 

  • Wittmann-Ténèze, K., N. Caron, and S. Alexandre. 2008. Gas permeability of porous plasma-sprayed coatings. Journal of Thermal Spray Technology 17 (5–6): 902–907.

    Article  CAS  Google Scholar 

  • Xie, Y., and H.M. Hawthorne. 2001. A model for compressive coating stresses in the scratch adhesion test. Surface and Coating Technology 141: 15–25.

    Article  CAS  Google Scholar 

  • Xie, X.Y., H.B. Guo, and S.K. Gong. 2010. Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma sprayed LaTi2Al9O19/YSZ thermal barrier coatings. Journal of Thermal Spray Technology 19 (6): 1179–1185.

    Article  CAS  Google Scholar 

  • Xu, G.-Z., J.-J. Liu, and Z.-R. Zhou. 2002. The effect of the third body on the fretting wear behavior of coatings. Journal of Materials Engineering and Performance 11 (3): 288–293.

    Article  CAS  Google Scholar 

  • Yan, L., Y. Leng, and J. Chen. 2003. Torsional fatigue resistance of plasma sprayed HA coating on Ti-6Al-4V. Journal of Materials Science. Materials in Medicine 14: 291–295.

    Article  CAS  Google Scholar 

  • Yan, D., Y. Dong, Y. Yang, L. Wang, X. Chen, J. He, and J. Zhang. 2011. Microstructure characterization of the FeAl2O4-based nanostructured composite coating synthesized by plasma spraying Fe2O3/Al powders. Journal of Thermal Spray Technology 20 (6): 1269–1277.

    Article  CAS  Google Scholar 

  • Yang, G., H. Zu-kun, X. Xiaolei, and X. Gang. 2001. Formation of molybdenum boride cermet coating by the detonation spray process. Journal of Thermal Spray Technology 10 (3): 456–460.

    Article  Google Scholar 

  • Yanga, Q., T. Senda, and A. Hirose. 2006. Sliding wear behavior of WC–12% Co coatings at elevated temperatures. Surface and Coating Technology 200: 4208–4212.

    Article  CAS  Google Scholar 

  • Ye, F.-X., S.-H. Wu, and A. Ohmori. 2008. Microstructure and oxidation behavior of Cr39Ni7C cermet coatings deposited by diamond jet spray process. Journal of Thermal Spray Technology 17 (5–6): 942–947.

    Article  CAS  Google Scholar 

  • Yin, B., G. Liu, H. Zhou, J. Chen, and F. Yan. 2010. Sliding wear behavior of HVOF-sprayed Cr3C2-NiCr/CeO2 composite coatings at elevated temperature up to 800 °C. Tribology Letters 37: 463–475.

    Article  CAS  Google Scholar 

  • Zhang, J., and V. Desai. 2005. Evaluation of thickness, porosity and pore shape of plasma sprayed TBC by electrochemical impedance spectroscopy. Surface and Coating Technology 190: 98–109.

    Article  CAS  Google Scholar 

  • Zhang, D.-W., and T.C. Lei. 2003. The microstructure and erosive–corrosive wear performance of laser-clad Ni–Cr3C2 composite coating. Wear 255: 129–133.

    Article  CAS  Google Scholar 

  • Zhang, T., and D.Y. Li. 2001. Improvement in the resistance of aluminum with yttria particles to sliding wear in air and in a corrosive medium. Wear 251: 1250–1256.

    Article  Google Scholar 

  • Zhang, X.C., B.S. Xu, S.T. Tu, F.Z. Xuan, H.D. Wang, and Y.X. Wu. 2009a. Fatigue resistance and failure mechanisms of plasma-sprayed CrC–NiCr cermet coatings in rolling contact. International Journal of Fatigue 31: 906–915.

    Article  CAS  Google Scholar 

  • Zhang, X.C., B.S. Xu, F.Z. Xuan, H.D. Wang, Y.X. Wu, and S.T. Tu. 2009b. Statistical analyses of porosity variations in plasma-sprayed Ni-based coatings. Journal of Alloys and Compounds 467: 501–508.

    Article  CAS  Google Scholar 

  • Zhang, X.C., B.S. Xu, F.Z. Xuan, H.D. Wang, and Y.X. Wu. 2009c. Microstructural and porosity variations in the plasma-sprayed Ni-alloy coatings prepared at different spraying powers. Journal of Alloys and Compounds 473: 145–151.

    Article  CAS  Google Scholar 

  • Zhao, X.B., and Z.H. Ye. 2012. Microstructure and wear resistance of molybdenum based amorphous nanocrystalline alloy coating fabricated by atmospheric plasma spraying. Surface and Coating Technology 228: S226–S270.

    Google Scholar 

  • Zhao, Y., L. Lin, X.M. Li, and M.K. Lei. 2010. Simultaneous determination of the coating thickness and its longitudinal velocity by ultrasonic nondestructive method. NDT and E International 43: 579–585.

    Article  CAS  Google Scholar 

  • Zhou, Y.C., and T. Hashida. 2002. Thermal fatigue failure induced by delamination in thermal barrier coating. International Journal of Fatigue 24: 407–417.

    Article  CAS  Google Scholar 

  • Zhu, S., R.H. Pelton, and K. Collver. 1995. Mechanistic modelling of fluid permeation through compressible fiber beds. Chemical Engineering Science 50 (22): 3557–3572.

    Article  CAS  Google Scholar 

  • Zhu, D., S.R. Choi, and R.A. Miller. 2004. Development and thermal fatigue testing of ceramic thermal barrier coatings. Surface and Coating Technology 188–189: 146–152.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Nomenclature

Units are indicated in parentheses; when no units are indicated, the parameter is dimensionless.

1.1 Latin Alphabet

a :

Thermal diffusivity (m2/s)

a c :

Half-diagonal crack length (μm)

a k :

Crack length (m)

A :

Area (m2)

A w :

Area of contact (m2)

B :

Thickness (m)

cf:

Correction factor related to the shape of the indenter

c p :

Specific heat at constant pressure (J/K kg)

C :

Compliance: ratio of the displacement to the load (m/N)

C T :

Corrosion rate at temperature T (mm/year or mpy)

d :

Equivalent or inside diameter (m)

d 0 :

“Stress-free” lattice parameter (nm)

d hkl :

Distance between atomic layers with the same Miller indices (h, k, l)

d w :

Sliding distance (m)

D :

Outside diameter of the bar (m)

e :

Sample thickness (m)

E :

Energy (J) or (eV)

E′:

Young’s modulus (GPa)

Ec:

Young’s modulus of the coating (GPa)

Es:

Young’s modulus of the substrate (GPa)

E c :

Corrosion potential (mV)

F :

Force applied (N)

f(α):

A function of the impingement angle α (−)

F N :

Applied normal force (N)

G c :

Critical value of the strain energy release rate (J/m2)

h :

Penetration depth of an indenter (μm)

H :

Hardness or yield stress (MPa)

h max :

Penetration depth (μm)

h p :

Plastic component of penetration depth of an indenter (μm)

h r :

Residual depth of the residual deformation once the indenter is removed (μm)

HV x :

Hardness measured with a load of ‘x’ Newton

I :

Impressed current (mA)

I c :

Corrosion current (no external current) (mA)

k :

Wave vector of the incident neutron beam

K :

Strain energy release rate (related to the fracture toughness) (N/m3/2)

ko:

Wave vector of the scattered neutron beam

K adh :

Adhesion wear coefficient Kadh = Kw/3 (−)

K c :

Fracture toughness (N/m3/2)

K ca :

Apparent interface fracture toughness (N/m3/2)

K w :

Wear coefficient (−)

l :

Length of the coating (m)

L :

Length scale (m)

l c :

Palmqvist surface crack length (μm)

m :

Shape parameter in Weibull distribution

p :

Pressure (Pa)

P :

Force required extending a crack (N)

P c :

Applied load (N) on an indenter

P max :

Maximum load on an indenter (N)

q :

Scattering vector

q :

Modulus of scattering vector

Q :

Imposed gas flow (m3/s)

S :

Slope of the initial part of the unloading curve (−)

U :

Elastic energy stored in the system (J)

V :

Volume (m3)

V b :

Coating bulk volume (m3)

V p :

Open pores volume (m3)

V w :

Wear volume (m3)

w :

Coating thickness (μm)

w dry :

The dried coating weight (kg)

w sat :

The wet coating weight (kg)

w wd :

Weight of water displaced (kg)

W :

Total work (J)

W e :

Work done by external forces (J) or elastic work (J)

x i :

Measured value of indent, hardness, Young’s module …

1.2 Greek Alphabet

α :

Impingement angle (°)

φ :

Angle with respect to the normal to the substrate surface (°)

ϕ :

Phase angle

γ :

Surface tension (J/m2 or N/m)

η :

Arithmetic mean of the sample of N events

κ :

Thermal conductivity (W/m K)

μ :

Viscosity (Pa.s)

λ :

Wavelength (nm)

ν :

Poisson’s ratio

θ :

Angle of incidence

ρ :

Mass density (kg/m3)

σ :

Standard deviation

ρ(r):

Scattering length density

ϕ a :

Apparent porosity (%)

τ c :

Critical shear stress (MPa)

κ e :

Electronic conduction (W/m K)

σ f :

Fracture stress (MPa)

ΔG*:

Activation energy of the corrosion reaction (J)

εhkl:

Lattice strain (−)

α L :

Linear expansion coefficient (K−1)

κ c :

Thermal conductivity of the coating (W/m.K)

κ Ph :

Lattice conduction or phonon conduction (W/m.K)

α V :

Volumetric expansion coefficients

δ w :

Depth of wear (μm)

ρ X :

Specific mass or mass density of X (kg/m3)

Δp:

Pressure drop (Pa)

ASTM Standards

1.1 A.1: Adhesion–Cohesion

  • [17.A1] ASTM C633 Revision/Edition: 01 Chg: W/REAP Date: 00/00/08 Standard test method for adhesion or cohesion strength of thermal spray coatings

1.2 A.2: Corrosion

  • [17.C1] ASTM G193 Revision/Edition: 10B Chg: Date: 06/01/10 Standard terminology and acronyms relating to corrosion

  • [17.C2] ASTM 03.02 Revision/Edition: 10 Chg: Date: 08/00/10 Corrosion of metals; Wear and corrosion

  • [17.C3] ASTM G102 Revision/Edition: 89 Standard practice for calculation of corrosion rates and related information from electrochemical measurements

  • [17.C4] ASTM G3 Revision/Edition: 89 Standard practice for conventions applicable to electrochemical measurements in corrosion testing

  • [17.C5] BS EN ISO 17475 Revision/Edition: 06 Corrosion of metals and alloys—Electrochemical test methods—Guidelines for conducting potentiostatic and potentiodynamic polarization measurements

  • [17.C6] ASTM G5 Revision/Edition: 94 Chg: W/REAP Date: 00/00/04 Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements

  • [15.C7] ASTM G59 Revision/Edition: 97 Chg: W/REAP Date: 00/00/09 Standard test method for conducting polarization resistance measurements

  • [17.C8] ASTM G61 Revision/Edition: 86 Chg: W/REAP Date: 00/00/09 Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron-, nickel-, or cobalt-based alloys

  • [17.C9] ASTM G102 Revision/Edition: 89 Chg: W/REAP Date: 00/00/10 Standard practice for calculation of corrosion rates and related information from electrochemical measurements

  • [17.C10] ASTM G106 Revision/Edition: 89 Chg: W/REAP Date: 00/00/10 Standard practice for verification of algorithm and equipment for electrochemical impedance measurements

  • [17.C11] SEMI F77 Revision/Edition: 03 Chg: W/REAP Date: 03/00/10 Test method for electrochemical critical pitting temperature testing of alloy surfaces used in corrosive gas systems

  • [17.C12] ASTM G150 Revision/Edition: 99 Chg: W/REAP Date: 00/00/10 Standard test method for electrochemical critical pitting temperature testing of stainless steels

  • [17.C13] ASTM G78 Revision/Edition: 01 Chg: W/REAP Date: 00/00/07 Standard guide for crevice corrosion testing of iron-base stainless alloys in seawater and other chloride-containing aqueous environments

  • [17.C14] ASTM B117 Revision/Edition: 09 Chg: Date: 07/01/09 Standard practice for operating salt spray (fog) apparatus

  • [17.C15] ISO DIS 21608 Revision/Edition: 10 Chg: Date: 10/29/10 Corrosion of metals and alloys—Test method for isothermal-exposure oxidation testing under high-temperature corrosion conditions for metallic materials.

1.3 A.3: Mechanical Properties

  • [17.M1] ASTM 03.01 Revision/Edition: 10 Chg: Date: 07/00/10 Metals-mechanical testing; elevated and low-temperature tests; Metallography

  • [17.M2] ASM METALS HDBK V8 Revision/Edition: 00 Chg: Date: 00/00/00 Mechanical testing and evaluation

  • [17.M3] ASTM E6 Revision/Edition: 09B Chg: Date: 05/15/09 Standard terminology relating to methods of mechanical testing

  • [17.M4] BS 7134 P4 S4.2 Revision/Edition: 90 Chg: REAF Date: 00/00/96 Testing of engineering ceramics—thermo-mechanical properties—method for determination of thermal diffusivity by the laser flash (or heat pulse) method

  • [17.M5] ASTM A833 Revision/Edition: 08A Chg: Date: 11/01/08 Standard practice for indentation hardness of metallic materials by comparison hardness testers

  • [17.M6] ASTM C1327 Revision/Edition: 08 Chg: Date: 08/01/08 Standard test method for Vickers indentation hardness of advanced ceramics

  • [17.M7] ASTM E384 Revision/Edition: 10 Chg: W/E2 Date: 04/00/10 Standard test method for Knoop and Vickers hardness of materials

  • [17.M8] ASTM C1326 Revision/Edition: 08 Chg: W/E1 Date: 09/00/08 Standard test method for Knoop indentation hardness of advanced ceramics

  • [17.M9] ASTM C1327-08 Standard test method for Vickers indentation hardness of advanced ceramics

  • [17.M10] BS 5600 P4 S4.7 Revision/Edition: 79 Chg: Date: 00/00/79 Determination of the Young’s modulus

  • [17.M11] JIS Z 2280 Revision/Edition: 93 Chg: W/REAF Date: 10/01/08 Test method for Young’s modulus of metallic materials at elevated temperature

  • [17.M12] BS DD CEN/TS 1071-7 Revision/Edition: 03 Chg: Date: 10/16/03 Advanced technical ceramics—Methods of test for ceramic coatings—Part 7: Determination of hardness and Young’s modulus by instrumented indentation testing

  • [17.M12] ASTM C1198 Revision/Edition: 09 Chg: Date: 11/04/09 Standard test method for dynamic Young’s modulus, shear modulus and Poisson’s ratio for advanced ceramics by sonic resonance

  • [17.M13] ASTM C1259 Revision/Edition: 08 Chg: W/E1 Date: 04/00/09 Standard test method for dynamic Young’s modulus, shear modulus and Poisson’s ratio for advanced ceramics by impulse excitation of vibration

  • [17.M14] API TR 6 AM Revision/Edition: 2 Chg: W/REAF Date: 01/00/03 Material toughness

  • [17.M15] ASTM C1421 Revision/Edition: 09 Chg: Date: 05/01/09 Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature

  • [17.M16] BS 7448-1 Revision/Edition: 91 Chg: W/REAF Date: 03/00/07 Fracture mechanics toughness tests—Part 1: Method for determination of K1c, critical CTOD and critical J values of metallic materials

  • [17.M17] BS EN ISO 12737 Revision/Edition: 06 Chg: Date: 01/12/06 Metallic materials—Determination of plane-strain fracture toughness

  • [17.M18] BS ISO 28079 Revision/Edition: 09 Chg: Date: 08/31/09 Hardmetals—Palmquist toughness test

  • [17.M19] ASTM STP381 Revision/Edition: 65 Chg: Date: 00/00/65 Fracture toughness testing and its applications

  • [17.M20] BS EN 15305 Revision/Edition: 08 Chg: W/CRGD Date: 06/30/09 Non-destructive testing—Standard test method for determining residual stress analysis by X-ray diffraction

  • [15.M21] BS DD CEN ISO/TS 21432 Revision/Edition: 06 Chg: W/REAF Date: 12/01/08 Non-destructive testing—Standard test method for determining residual stresses by neutron diffraction.

1.4 A.4: Materials Characterization

  • [17.Ma1] ASTM E204 Revision/Edition: 98 Chg: W/REAP Date: 00/00/07 Standard practices for identification of materials by infrared absorption spectroscopy, using the ASTM coded band and chemical classification index

  • [17.Ma2] BS EN 13925-1 Revision/Edition: 03 Chg: W/REAF Date: 12/01/08 Non-destructive testing—X-ray diffraction from polycrystalline and amorphous materials—Part 1: General principles

  • [17.Ma3] BS EN 13925-2 Revision/Edition: 03 Chg: W/REAF Date: 12/01/08 Non-destructive testing—X-ray diffraction from polycrystalline and amorphous materials—Part 2: Procedures

  • [17.Ma4] NBS MONO 25 SEC 16 Revision/Edition: 79 Chg: Date: 10/00/79 Standard X-ray diffraction powder patterns

  • [17.Ma5] ASTM F2024 Revision/Edition: 10 Chg: REIN Date: 06/00/10 Standard practice for X-ray diffraction determination of phase content of plasma-sprayed hydroxyapatite coatings

  • [17.Ma6] BS ISO 17470 Revision/Edition: 04 Chg: W/REAF Date: 12/01/08 Microbeam analysis—electron probe microanalysis—Guidelines for qualitative point analysis by wavelength dispersive X-ray spectrometry

  • [17.Ma7] BS ISO 18516 Revision/Edition: 06 Chg: W/REAF Date: 06/01/10 Surface chemical analysis—Auger electron spectroscopy and X-ray photoelectron spectroscopy—Determination of lateral resolution

  • [17.Ma8] AS ISO 15470 Revision/Edition: 06 Chg: Date: 10/20/06 Surface chemical analysis—X-ray photoelectron spectroscopy—description of selected instrumental performance parameters

  • [17.Ma9] BS ISO 10810 Revision/Edition: 10 Chg: Date: 12/31/10 Surface chemical analysis—X-ray photoelectron spectroscopy—guidelines for analysis

  • [17.Ma10] BS ISO 15470 Revision/Edition: 05 Chg: W/REAF Date: 10/01/10 Surface chemical analysis—X-ray photoelectron spectroscopy—description of selected performance parameters

1.5 A.5: Metallography and Image Analysis

  • [17. Me1] ASTM E1920 Revision/Edition: 03 Chg: W/REAP Date: 00/00/08 Standard guide for metallographic preparation of thermal sprayed coatings

  • [17. Me2] ASTM E3 Revision/Edition: 01 Chg: W/E1 Date: 03/00/09 Guide for metallographic preparation of metallographic specimens

  • [17. Me3] ASTM MNL46 Revision/Edition: 07 Chg: Date: 00/00/07 Metallographic and materialographic specimen preparation light microscopy, image analysis and hardness testing

1.6 A.6: Non-destructive Methods

  • [17.ND1] ESDU 91027 Revision/Edition: 91 Chg: W/AA Date: 11/01/93 Non-destructive examination—Choice of methods

1.7 A.7: Statistical Methods

  • [17.S1] ASTM C1239-07 Revises ASTM C1239-06a Standard practice for reporting uniaxial strength data and estimating Weibull distribution parameters for advanced ceramics

1.8 A.8: Thermal Properties

  • [17.T1] ASTM E228 Revision/Edition: 06 Chg: W/REIN Date: 09/01/06 Standard test method for linear thermal expansion of solid materials with a push-rod dilatometer

  • [17.T2] ASTM E289 Revision/Edition: 04 Chg: W/REAP Date: 00/00/10 Standard test method for linear thermal expansion of rigid solids with interferometry

  • [17.T3] ASTM C177 Revision/Edition: 10 Chg: Date: 06/01/10 Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus

  • [17.T4] ASTM C201-93 (2009) Standard test method for thermal conductivity of refractories

  • [17.T5] ASTM E 1461 Revision/Edition: 07 Chg: Date: 11/01/07 Standard test method for thermal diffusivity of solids by the flash method Disk 6–12 mm diameter; 1.5–4 mm thick diffusivity 0.1–1000 m2/s

  • [17.T6] ASTM C 714 Revision/Edition: 05 Chg: W/REAP Date: 00/00/10 Standard test method for thermal diffusivity of carbon and graphite by a thermal pulse method; 6–12 mm, 2–4 mm thick; 0.04–2.0 cm2/s

  • [17.T7] ASTM C 1470-06 Standard guide for testing the thermal properties of advanced ceramics

  • [17.T8] BS 7134 P4 S4.2 Revision/Edition: 90 Chg: REAF Date: 00/00/96 Testing of engineering ceramics—thermo-mechanical properties—method for determination of thermal diffusivity by the laser flash (or heat pulse) method

  • [17.T9] ASTM D2766-95(2009) Standard test method for specific heat of liquids and solids

  • [17.T10] ASTM E1269-11 Standard test method for determining specific heat capacity by differential scanning calorimetry

  • [17.T11] ASTM C1525 Revision/Edition: 04 Chg: W/REAP Date: 00/00/09 Standard test method for determination of thermal shock resistance for advanced ceramics by water quenching

  • [17.T12] FORD FLTM BI 107-05 Revision/Edition: 09 Chg: Date: 02/03/09 Thermal shock for coating adhesion

  • [17.T13] JDQ149 Revision/Edition: 02 Chg: Date: 06/27/02 Tests for thermal shock resistance of high temperature coatings

  • [17.T14] ASTM C 1171-05 Standard test method for quantitatively measuring the effect of thermal shock and thermal cycling on refractories

  • [17.T15] ISO DIS 13123 Revision/Edition: 10 Chg: Date: 07/22/10 Metallic and other inorganic coatings—Test method of cyclic heating for thermal barrier coatings under temperature gradient.

1.9 A.9: Void Content and Network Architecture

  • [17.V1] E2109-01(2007) Standard test methods for determining area percentage porosity in thermal sprayed coatings

1.10 A.10: Wear

  • [17.W1] ASTM G40 Revision/Edition: 10A Chg: Date: 07/01/10 Standard terminology relating to wear and erosion

  • [17.W2] ASTM C704/C704M Revision/Edition: 09 Chg: W/E1 Date: 08/00/09 Standard test method for abrasion, resistance of refractory materials at room temperature

  • [17.W3] ASTM G105 Revision/Edition: 02 Chg: W/REAP Date: 00/00/07 Standard test method for conducting wet sand/rubber wheel abrasion test

  • [17.W4] ASTM G132 Revision/Edition: 96 Chg: W/REAP Date: 00/00/07 Standard test method for pin abrasion testing

  • [17.W5] ASTM G65 Revision/Edition: 04 Chg: Date: 11/01/04 10 Standard test method for measuring abrasion using the dry sand/rubber wheel apparatus

  • [17.W6] ASTM MNL56 Revision/Edition: 07 Chg: Date: 00/00/07 Guide to friction, wear, and erosion testing

  • [17.W7] ASTM G99 Revision/Edition: 05 Chg: W/REAP Date: 00/00/10 Standard test method for wear testing with a pin-on-disk apparatus

  • [17.W8] ASTM G133 Revision/Edition: 05 Chg: W/REAP Date: 00/00/10 Standard test method for linearly reciprocating ball-on-disk sliding wear

  • [17.W9] ASTM G98 Revision/Edition: 09 Chg: Date: 10/01/09 Standard test method for galling resistance of materials

  • [17.W10] ASTM G73 Revision/Edition: 10 Chg: Date: 04/01/10 Standard test method for liquid impingement erosion using rotating apparatus

  • [17.W11] ASTM G134 Revision/Edition: 95 Chg: W/REAP Date: 00/00/06 Standard test method for erosion of solid materials by a cavitating liquid jet

  • [17.W12] ASTM G32 Revision/Edition: 09 Chg: Date: 05/01/09 Standard test method for cavitation erosion using vibratory apparatus

  • [17.W13] ASTM E1942 Revision/Edition: 98 Chg: W/REAP Date: 00/00/04 Standard guide for evaluating data acquisition systems used in cyclic fatigue and fracture mechanisms

  • [17.W14] ASTM E2368 Revision/Edition: 10 Chg: Date: 05/01/10 Standard practice for strain controlled thermomechanical fatigue testing

  • [17.W15] BS 3518-1 Revision/Edition: 93 Chg: W/REAF Date: 01/01/09 Methods of fatigue testing—Part 1: Guide to general principles

  • [17.W16] BS 3518-2 Revision/Edition: 62 Chg: W/REAF Date: 01/01/09 Methods of fatigue testing—Part 2: Rotating bending fatigue tests

  • [17.W17] BS 3518-3 Revision/Edition: 63 Chg: W/REAF Date: 01/01/09 Methods of fatigue testing—Part 3: Direct stress fatigue tests

  • [17.W18] ASTM G119 Revision/Edition: 09 Chg: Date: 07/15/09 Standard guide for determining synergism between wear and corrosion

  • [17.W19] ASTM 03.02 Revision/Edition: 10 Chg: Date: 08/00/10 Corrosion of metals; Wear and corrosion

  • [17.W20] ASTM G204 Revision/Edition: 10 Chg: Date: 04/01/10 Standard test method for damage to contacting solid surfaces under fretting conditions

  • [17.W21] ASTM STP1159 Revision/Edition: 92 Chg: Date: 00/00/92 Standardization of fretting fatigue test methods and equipment

  • [17.W22] ASTM STP1367 Revision/Edition: 00 Chg: Date: 02/00/00 Fretting fatigue: current technology and practices

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boulos, M.I., Fauchais, P.L., Heberlein, J.V.R. (2021). Coating Characterizations. In: Thermal Spray Fundamentals. Springer, Cham. https://doi.org/10.1007/978-3-030-70672-2_17

Download citation

Publish with us

Policies and ethics