Skip to main content
Log in

Measurement and analysis of adhesion strength for thermally sprayed coatings

  • Reviewed Paper
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermally sprayed coatings have a distinctive microstructure which can be described as “a three dimensional layered structure of discs which are interlaced to form a material of composite nature.≓ The coatings are normally greater than 25 (Ώm in thickness and can thus be described as bulk coatings. The minimum microstructural detail would be a single splat (ofter described as a lamella) which is about S (Ώm (approximately 0.0002 in.) in thickness and up to 80 Ώm (approximately 0.003 in.) in diameter.

This paper focuses on methods used to define and measure the adhesion of coatings or deposits formed by thermal spray technology. The properties distinguished include strength and toughness. Measurements such as the tensile adhesion test (according to ASTM C633), the double cantilever beam test, and the scratch test are detailed to illustrate their relevance to present industrial practice. Acoustic emission studies have also been used to assess the “crack density function,” a product of the number of cracks and crack size. Indentation techniques have been used to determine the fracture toughness of coatings and to demonstrate that the material properties of coatings are anisotropic. These techniques, among others, may be used to gain a fundamental understanding of coating performance or for quality control. A further focus of this paper concerns the highly variable nature of the material properties of coatings. Such variation leads to poor reproducibility during service and can cause unpredictable performance. Therefore, a section is presented on the statistical analysis of thermal spray coatings, with particular reference to the Weibull distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.N. Rhys Jones, Thermally Sprayed Coating Systems for Surface Protection and Clearance Control Application in Aero Engines,Surf. Coat. Technol., Vol 43/44,1990, p 402–415

    Article  Google Scholar 

  2. K.T. Scott and R. Kingswell, Thermal Spraying,Advanced Surface Coatings, D.S. Rickerby and A. Mattews, Ed., Chapman and Hall, 1991, p 217–243

  3. J.H. Zatt, A Quarter of a Century of Plasma Spraying,Annual Review of Material Science, Vol 13, R.A. Huggins, R.H. Bube, and D.A. Vermilyea, Ed., Annual Review Inc., 1983, p 9–42

    Article  Google Scholar 

  4. C.C. Berndt, Ed.,Thermal Spray: International Advances in Coatings Technology, ASM International, 1992

  5. C.C. Berndt and T.F. Bernecki, Ed.,Thermal Spray Coatings: Research, Design and Application, ASM International, 1993

  6. S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A.R. Nicoll, Ed.,Proc. 2nd Plasma-Technik-Symp., Plasma-Technik AG, Wohlen/Switzerland, HÄfliger Druck AG, Wettingen, 1991

    Google Scholar 

  7. L.E. Weiss, F.B. Prinz, D.A. Actams, and D.P. Siewiorek, Thermal Spray Shape Deposition,J. Therm. Spray Technol., Vol1(No. 3), 1992, p 231–237

    Article  CAS  Google Scholar 

  8. K. Neufuss, B. Kolman, J. Dubsky, and P. Chraska, Plasma Sprayed Free-Standing Ceramic Parts,Proc. AustCeram 92 (Melbourne), 16-21Aug 1992, p 124–129

    Google Scholar 

  9. R. McPherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings,Surf. Coat. Technol., Vol 39/40, 1989, p 173–181

    Article  Google Scholar 

  10. V.H.S. Wilms, “The Microstructure of Plasma Sprayed Ceramic Coatings,≓ Ph.D. thesis, SUNY at Stony Brook, 1978

    Google Scholar 

  11. K.L. Mittal, “Adhesion Measurement: Recent Progress, Unsolved Problems, and Prospects,≓Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings, STP 640, K.L. Mittal Ed., ASTM,1978 p5–17

  12. K.L. Mittal, Ed.,Adhesion Measurement of Thin Films, Thick Films,and Bulk Coatings, STP 640, ASTM, 1978

  13. R.L. Patrick,Treatise on Adhesion and Adhesive, Vol 1, Marcel Dekker, 1967

  14. ≓Standard Terminology of Adhesives,≓ D 907-82,Annual Book of Standards, Vol 15.06, ASTM, 1985,p45–54

  15. J. Comyn, Surface Treatment and Analysis for Adhesive Bonding,Int. J. Adhes. Adhes., Vol 10 (No. 3), 1990, p 161–165

    Article  CAS  Google Scholar 

  16. A. Matting and H.-D. Steffens, Adherence and Coating by Arc Spraying and Flame Spraying, Parts 1-3,Metallwiss. Tech.,Vol. 17,1963,p583–593,905-922,1213-1230

    CAS  Google Scholar 

  17. M.D. Thouless, The Role of Fracture Mechanics in Adhesion,Mater. Res. Soc. Symp. Proc., Vol 119,1988, p 51–62

    Google Scholar 

  18. B.R.Lawn and T.R. Wilshaw,Fracture of Brittle Solids, Cambridge University Press, 1975

  19. C.C. Berndt and R. McPherson, A Fracture Mechanics Approach to the Adhesion of Flame and Plasma Sprayed Coatings,Trans. Int. Eng., Vol 6 (No. 4), 1981, p 53–58

    Google Scholar 

  20. C.C. Berndt, Fracture Toughness Tests on Plasma Sprayed Coatings,Advances in Fracture Research, Vol 4, S.R. Valluri, D.M.R. Taplin, P. RamaRao, J.F. Knott, and R. Dubey, Ed., Pergamon Press, Oxford,1984, p 2545–2552

    Google Scholar 

  21. G.N. Heintze and R. McPherson, Fracture Toughness of Plasma Sprayed Zirconia Coatings,Surf. Coat. Technol., Vol 34,1988, p 15–23

    Article  CAS  Google Scholar 

  22. C.C. Berndt, “The Adhesion of Flame and Plasma Sprayed Coatings,≓Ph.D. thesis, Monash University, Clayton, Victoria, Australia, 1980

    Google Scholar 

  23. P. Ostojic, “The Adhesion of Thermally Sprayed Coatings,≓ Ph.D. thesis,Monash University, Clayton, Victoria, Australia, 1986

    Google Scholar 

  24. K.L. Mittal, Selected Bibliography on Measurement of Films and Coatings,J. Adhes. Sci. Technol.,Vol 1(No. 3), 1987,p247–259

    Article  Google Scholar 

  25. D.S. Rickerby, A Review of the Methods for the Measurement of Coating-Substrate Adhesion,Surf. Coat. Technol, Vol 36,1988, p 541–557

    Article  CAS  Google Scholar 

  26. S.J. Bull and D.S. Rickerby, Evaluation of Coatings,Br. Ceram. Trans.J., Vol 88,1989, pi 77–183

    Google Scholar 

  27. P.R. Chalker, S.J. Bull, and D.S. Rickerby, A Review of the Methods for the Evaluation of Coating-Substrate Adhesion,Mater. Sci. Eng., VolA140,1991, p 583–592

    CAS  Google Scholar 

  28. B.A. Lyashenko, V.V. Rishin, V.G. Zil’berberg, and S.Yu. Sharivker,Strength of Adhesion Between Plasma-Sprayed Coatings and the BaseMetal,Sov. Powder Metall. Met. Ceram., Vol 8,1969, p 331–334

    Article  Google Scholar 

  29. B.M. Zakharov, M.G. Trofimov, L.I. Guseva, Y.I. Golovkin, A.A. Kononov, and V.V. Vinokurova, Bond Strength of Coatings Applied by the Flame Plating Technique,Sov. Powder Metall. Met. Ceram., Vol 9,1970, p 925–929

    Article  Google Scholar 

  30. W.E. Stanton, The Mechanical Properties of Sprayed Metals for Engineering,7th Int. Metal Spraying Con/., The Welding Institute, Cambridge,U.K., 1974, p 157–164,312-314

    Google Scholar 

  31. T. Suhara, K. Kitajima, and S. Fukada, Coatings by Wire Explosion Spraying—Properties and Applications,7th Int. Metal Spraying Conf, The Welding Institute, Cambridge, U.K., 1974, p 179–184

    Google Scholar 

  32. N.N Rykalin, Plasma Engineering in Metallurgy and Inorganic Materials Technology,Pure Appl. Chem., Vol 48,1976, p 179–194

    CAS  Google Scholar 

  33. V.E. Belashchenko and Y.B. Chernyak, Stochastic Approach to the Modeling of Thermal Spray Coating Formation,Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 43–437

  34. R.L. Apps, New Developments in Ceramics and Coatings,Chem. Eng. (UK), Vol 292,1974, p 769–773

    CAS  Google Scholar 

  35. V. Wilms and H. Herman, Plasma Spraying of A12O3 and AI2O3-Y2O3,Thin Solid Films, Vol 39,1976, p 251–262

    Article  CAS  Google Scholar 

  36. T.J. Steeper, D.J. Varacalle, G.C. Wilson, W.L. Riggs II, A.J. Rotolico, and J.E. Nerz, A Design of Experiment Study of Plasma Sprayed Alumina-Titania Coatings,Thermal Spray: International Advances in Coatings Technology, C.C. Bemdt, Ed., ASM International, 1992, p 415-420

  37. C.C. Berndt, Tensile Adhesion Testing Methodology for Thermally Sprayed Coatings,.J. Mater. Eng., Vol 12,1990, p 151–158

    CAS  Google Scholar 

  38. Y. Shimizu, M. Sato, M. Kobayashi, and K. Maeda, Effect of Test Specimen Size upon Adhesive Strength of Flame Sprayed Coatings,Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 257–262

  39. W. Han, E.F. Rybicki, and J.R. Shadley, An Improvement Specimen Geometry for ASTM C633-79 to Estimate Bond Strength of Thermal Spray Coatings,J. Therm. Spray Technol, Vol 2 (No. 2), 1993, p 145–150

    CAS  Google Scholar 

  40. W. Han, E.F. Rybicki, and J.R. Shadley, Application of Fracture Mechanics to the Interpretation of Bond Strength Data from ASTM Standard C633-79,J Therm. Spray Technol, Vol2(No. 3), 1993,p235–241

    CAS  Google Scholar 

  41. G.E. Dieter, inMechanical Metallurgy, McGraw-Hill, 1988, p 348–374

  42. F.J. Hermanek, Determining the Adhesive/Cohesive Strength of Thin Thermally Sprayed Deposits,Weld. J., Vol 57,1978, p 31–35

    Google Scholar 

  43. C.C. Berndt, Tensile Adhesion Test Measurements on Plasma-Sprayed Coatings,Advances in Fracture Research, Vol 4, S.R. Valluri, D.M.R. Taplin, P. Rama Rao, J.F. Knott, and R. Dubey, Ed., Pergamon Press, Oxford, 1984, p 2553–2559

    Google Scholar 

  44. P.F. Becher and W.L. Newell, Adherence-Fracture of Glass-Bonded Thick-Film Conductor: Effect of Firing Conditions,J. Mater. Sci., Vol 12,1977, p 90–96

    Article  CAS  Google Scholar 

  45. P.F. Becher, W.L. Newell, and S.A. Halen, Application of Fracture Mechanics to the Adherence of Thick Films and Ceramic Braze Joints,Fracture Mechanics of Ceramics, Vol III, R.C. Bradt, D.P.H. Hassel-man, and F.F. Lange, Ed., Plenum Press, 1978, p 463–471

  46. W.D. Bascom and J.L. Bitner, AFracture Approach to Thick Film Adhesion Measurements,J. Mater. Sci., Vo1 12, 1977, p 1401–1410

    Article  CAS  Google Scholar 

  47. S. Mostovoy, P.B. Crosley, and E.J. Ripling, Use of Crack-Line-Loaded Specimens for Measuring Plane-Strain Fracture Toughness,J. Mater.,Vol 2,1967, p 661–681

    Google Scholar 

  48. G.N. Heintze and R. McPherson, A Further Study of the Fracture Toughness of Plasma-Sprayed Zirconia Coatings,Surf. Coat. Technol.,Vol 36,1988,p125–132

    Article  CAS  Google Scholar 

  49. J.O. Outwater and D.J. Gerry, On the Fracture Energy, Rehealing Velocity and Refracture Energy of Cast Epoxy Resin,J. Adhes., Vol 1, 1969, p 290–298

    Google Scholar 

  50. J.A. Kies and A.B.J. Clark, Fracture Propagation Rates and Times to Fail Following Proof Stress in Bulk Glass,Fracture 1969, PX. Pratt,Ed., Chapman and Hall, London, 1969, p 483–491

    Google Scholar 

  51. M.K. Ferber and S.D. Brown, Delayed Failure of Plasma-Sprayed AI2O3 Applied to Metallic Substrates,J. Am. Ceram. Soc., Vol 64 (No.12), 1981, p 737–743

    Article  CAS  Google Scholar 

  52. L.C. Cox, The Four-Point Bend Test as a Tool for Coating Characterization,Surf. Coat. Technol, Vol 36,1988, p 807–815

    Article  CAS  Google Scholar 

  53. S.J. Howard and T.W. Clyne, Interfacial Fracture Toughness of Vacuum-Plasma-Sprayed Coatings,Surf. Coat. Technol, Vol 45, 1991, p333–342

    Article  CAS  Google Scholar 

  54. A.G. Evans, Fracture Mechanics Determinations, Fracture Mechanics of Ceramics, Vol 1, R.C.Bradt, D.P.H. Hasselman, and F.F.Lange, Ed., Plenum Press, 1974, p 17–48

  55. P. Benjamin and C. Weaver, Measurement of Adhesion of Thin Film,Proc. R. Soc. (London) A, Vol 254,1960, p 163–176

    Article  CAS  Google Scholar 

  56. A.J. Perry, J. Valli, and P.A. Steinmann, Adhesion Scratch Testing: A Round-Robin Experiment,Sur. Coat. Technol, Vol 36, 1988, p 559–575

    Article  CAS  Google Scholar 

  57. C. Julia-Schmutz and H.E. Hintermann, Microscratch Testing to Characterize the Adhesion of Thin Layers,Surf. Coat. Technol, Vol 48,1991,p1–6

    Article  CAS  Google Scholar 

  58. P.J. Burnett and D.S. Rickerby, The Relationship Between Hardness and Scratch Adhesion,Thin Solid Films, Vol 154,1987, p 403–416

    Article  CAS  Google Scholar 

  59. S.J. Bull, D.S. Rickerby, A. Matthews, A. Leyland, A.R. Pace, and J. Valli, The Use of Scratch Adhesion Testing forthe Determination of Interfacial Adhesion: The Importance of Frictional Drag,Surf. Coat. echnol, Vol 36,1988, p 503–517

    Article  CAS  Google Scholar 

  60. J. Sekler, P.A. Steinmann, and H.E. Hintermann, The Scratch Test: Different Critical Load Determination Techniques,Surf. Coat. Technol,Vol 36,1988, p 519–529

    Article  CAS  Google Scholar 

  61. S.J. Bull, Failure Modes in Scratch Adhesion Testing,Surf. Coat. Technol, Vol 50,1991, p 25–32

    Article  CAS  Google Scholar 

  62. D.K. Das, M.P. Srivastava, S.V. Joshi, and R. Sivakumar, Scratch Adhesion Testing of Plasma-Sprayed Yttria-Stabilized Zirconia Coatings,Surf. Coat. Technol, Vol 46,1991,p 331–345

    Article  CAS  Google Scholar 

  63. C.W. Anderson and K.H. Heffner, Precision Gas Bearing Plasma Sprayed Aluminum Oxide Coating Characterization,Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 695–704

  64. M. Gudge, D.S. Rickerby, R. Kingswell, and K.T. Scott, Residual Stress in Plasma Metallic and Ceramic Coatings,Thermal Spray Research and Application, I.V. Bernecki, Ed., ASM International, USA, 1991, p 331–337

    Google Scholar 

  65. E. Lopez, F. Beltzung, and G. Zambelli, Measurement of Cohesion and Adhesion Strengths in Alumina Coatings Produced by Plasma Spraying,J. Mater. Sci. Lett., Vol 8,1989, p 346–348

    Article  CAS  Google Scholar 

  66. F. Beltzung, G. Zambelli, E. Lopez, and A.R. Nicoll, Fracture Toughness Measurement of Plasma Sprayed Ceramic Coatings,Thin Solid Films, Vol 181,1989, p 407–415

    Article  CAS  Google Scholar 

  67. M.J. Noone and R.L. Mehan, Observation of Crack Propagation in Polycrystalline Ceramics and Its Relationship to Acoustic Emission,Fracture Mechanics of Ceramics, Vol 1, R.C. Bradt, D.P.H. Hasselman, and F.F. Lange, Ed., Plenum Press, 1974, p 201–229

    CAS  Google Scholar 

  68. R.G. Liptai, D.O. Harris, and C.A. Tatro,Acoustic Emission, STP 505, ASTM, 1972

  69. J.R. Matthews,Acoustic Emission, Gordon & Breach, 1983

  70. T.C. Nerz, J.E. Nerz, B.A. Kushner, A.J. Rotolico, and W.L. Riggs, Evaluation of HEP Sprayed Tungsten Carbide/Cobalt Coating Using Design of Experiment Method,Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 405–414

  71. M.M Mayuram and R. Krishnamurphy, Some Studies on Acoustic Emission Application in Assessing Tribological Characteristics of Plasma Sprayed Ceramic Coatings,Thermal Spray: International Advances in Coatings Technology, C.C. Bemdt, ASM International, 1992,p 711–715

  72. N. Iwamoto, M. Kamai, and G. Ueno, Examination of Tungsten Carbide Coatings for Thermal Cycling Using NDT,Thermal Spray: International Advances in Coatings Technology, C.C. Bemdt, Ed., ASM International, 1992, p 259–265

  73. H. Nakahira, Y. Harada, N. Mifune, T. Yogoro, and H. Yamane, Advanced Thermal Barrier Coatings Involving Efficient Vertical MicroCracks,Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 519–524

  74. H.L. Dunegan, Quantitative Capabilities of Acoustic Emission for Predicting Structural Failure,Prevention of Structural Failure, American Society for Metals, 1975, p 86–113

  75. T. Tsuru, A. Sagara, and S. Haruyama, Acoustic Emission Measurements to Evaluate the Degradation of Coating Films,Corrosion, Vol 43 (No. 11), 1987, p 703–707

    CAS  Google Scholar 

  76. F. Bordeaux, C. Moreau, and R.G. Saint Jacques, Acoustic Emission Study of Failure Mechanisms in TiC Thermal Barrier Coatings,Surf. Coat. Technol, Vol 54/55,1992, p 70–76

    Article  Google Scholar 

  77. C.C. Berndt, Failure Processes Within Ceramic Coatings at High Temperatures,J. Mater. Sci., Vol24,1989,p3511–3520

    Article  CAS  Google Scholar 

  78. I.G. Scott,Basic Acoustic Emission, Gordon & Breach, 1991

  79. C.C. Bemdt and R. A. Miller, Failure Analysis of Plasma-Sprayed Thermal Barrier Coatings,Thin Solid Films, Vol 119,1984, p 173–184

    Article  Google Scholar 

  80. C.C. Bemdt, Examination of Coating Failure by Acoustic Emission,Thermal Barrier Coatings Workshop, NASA Lewis Research Center, Cleveland, 21-22 May, 1985, p 127–137

    Google Scholar 

  81. H.-D. Steffens and H.-A. Crostack, Non-Destructive Testing of Thermally Sprayed Coatings,General Aspects of Thermal Spraying, J.H. Zaat, Ed., The Hague, Netherlands, 1980, p 120–128

    Google Scholar 

  82. K. Hoehne, Moeglichkeiten der zerstoerungsfreien Prunfung von Metallspritzschichten,Schweisstechnik, Vol 13,1963, p 55–61

    Google Scholar 

  83. W. Francke and A.W.J. de Gee, A Non-Destructive Method for the Measurement of the Adhesive Bond Strength of Thermally Sprayed Nonfused Coatings,Proc. Int. Conf. Advances in Surface Technology, London, 1978, p 99–109

  84. R.L. Cox, D.P. Almond, and H. Reiter, Ultrasonic Studies of Plasma Sprayed Coatings,General Aspects of Thermal Spraying, J.H. Zaat,Ed., The Hague, Netherlands, 1980, p 133–137

    Google Scholar 

  85. Y. Suga, Harjanto, and J. Takahashi, Study on the Ultrasonic Test for Evaluating the Adhesion of Sprayed Coatings to a Substrate,Thermal Spray: International Advances in Coatings Technology, C.C. Bemdt, Ed., ASM International, 1992, p 247–252

  86. E. Lugscheider, P. Jokiel, G. Purshe, O. Roman, and K. Yushchenko, Particle Reinforced Material Containing Titanium-I-Boride for Wear Protection,Thermal Spray: International Advances in Coatings Technology, C.C. Bemdt, Ed., ASM International, 1992, p 647–651

  87. K. Furukubo, S. Oki, and S. Gohda, Relationship Between Wear and Microstructures of Ceramic Spray Coatings,Thermal Spray: International Advances in Coatings Technology, C.C. Bemdt, Ed., ASM International, 1992, p 705–709

  88. R.C. Hendricks and G. McDonald, “Assessment of Variations in Thermal Cycle Life Date of Thermal Barrier Coated Rods,≓ TM-81743, NASA, Cleveland, 1981

    Google Scholar 

  89. H.-D. Steffens and U. Fischer, Characterization and Thermal Shock Testing of Yttria-Stabilized Zirconia Coatings,Surf. Coat. Technoi, Vol 32,1987, p 327–338

    Article  CAS  Google Scholar 

  90. S.J. Grisaffe, “Analysis of Shear Bond Strength of Plasma-Sprayed Alumina Coatings on Stainless Steel,≓ TN D3113, NASA, Cleveland,1965

    Google Scholar 

  91. H. Grützner and H. Weiss, A Novel Shear Test for Plasma-Sprayed Coatings,Surf. Coat. Technol.,Vol45,1991,p317–323

    Article  Google Scholar 

  92. K.K. Schweitzer, M.H. Zeihl, and Ch. Schwaminger, Improved Methods for Testing Bond and Intrinsic Strength and Fatigue of Thermally Sprayed Metallic and Ceramic Coatings,Surf. Coat. Technol., Vol 48, 1991,p103–111

    Article  CAS  Google Scholar 

  93. M.J. Filiaggi and R.M. Pilliar, Mechanical Testing of Plasma-Sprayed Ceramic Coatings on Metal Substrates: Interfacial Fracture Toughness and Tensile Bond Strength,J. Mater. Sci., Vol 26,1991, p 5383–5395

    Article  CAS  Google Scholar 

  94. H.R. Brown and A.C.M. Yang, The Use of Peel Test to Examine the Self Adhesion of Polyimide Films,J. Adhes. Sci. Technol., Vol 6 (No. 3), 1992, p 333–346

    CAS  Google Scholar 

  95. M. Mantel and F. Descaves, Study of a T-Type Peel Test on a Metal/Polymer/Metal Sheet Sandwich,J. Adhes. Sci. Technol., Vol 6 (No.3), 1992, p 357–376

    CAS  Google Scholar 

  96. B. Lawn and R. Wilshaw, Review—Indentation Fracture: Principles and Applications,J Mater. Sci., Vol 10,1975, p 1049–1081

    Article  Google Scholar 

  97. H.R. Hertz,Hertz’s Miscellaneous Papers, MacMillian Press, London,1882, chap. 5,6

    Google Scholar 

  98. B.R. Lawn and D.B. Marshall, Indentation Fracture and Strength Degradation in Ceramics,Fracture Mechanics of Ceramics, Vol 3, R.C. Bradt, D.P.H. Hasselman, and F.F. Lange, Ed., Plenum Press, 1978, p 205–229

    CAS  Google Scholar 

  99. P. Ostojic and R. McPherson, Indentation Toughness Testing of Plasma Sprayed Coatings,Mater. Forum, Vol 10 (No. 4), 1987, p 247–255

    CAS  Google Scholar 

  100. J.G. Binner and R. Stevens, The Measurement of Toughness by Indentation,Trans. J. Br. Ceram. Soc, Vol 83,1984, p 168–172

    Google Scholar 

  101. C. Richard, J. Lu, J.F. Flavenot, G. Beranger, and F. Decomps, Study of Cr2U3 Coating Materials and Characterization by an Interfacial Test of Coating/Substrate Adherence,Thermal Spray: International Advances in Coatings Technology, C.C. Bemdt, Ed., ASM International, 1992, p 11–16

  102. R. Dal Maschio, V.M. Sgavo, L. Bertamini, and E. Galvanetto, Measurement of Metal-Ceramic Adhesion by Indentation Technique in Thick TBCs,Thermal Spray: International Advances in Coatings Technology, C.C. Bemdt, Ed., ASM International, 1992, p 947–951

  103. C.C. Bemdt, J. Karthikeyan, R. Ratanaraj, and Yang Da Jun, Material Property Variations in Thermally Sprayed Coatings,Thermal Spray Coatings: Properties, Processes, and Applications, T.F. Bemecki, Ed., ASM International, 1992, p 199–203

  104. C.C. Bemdt, J. Ilavsky, and J. Karthikeyan, Microhardness-Lifetime Correlations for Plasma Sprayed Thermal Barrier Coatings,Thermal Spray: International Advances in Coatings Technology, C.C. Bemdt, Ed., ASM International, 1992, p 941–946

  105. C.K. Lin and C.C. Bemdt, Microhardness Variation in Thermally Sprayed Coatings,Thermal Spray Coatings: Research, Design and Application, C.C. Bemdt and T.F. Bemecki, Ed., ASM International, 1993, p561–568

  106. R.A. Miller, Oxidation-Based Model for Thermal Barrier Coating Life,J. Am. Ceram. Soc., Vol 67 (No. 8), 1984, p 517–521

    Article  CAS  Google Scholar 

  107. W. Weibull, A Statistical Theory of the Strength of Materials,Ingeniorsvetenskapakademiens. Handlinger Nr., Vol 151, 1939

  108. S.B. Batdorf, Fundamentals of the Statistical Theory of Fracture,Fracture Mechanics of Ceramics, Vol 3, R.C. Bradt, D.P.H. Hasselman, and F.F. Lange, Ed., Plenum Press, 1978, p 1–30

  109. W. Weibull, A Statistical Distribution Function of Wide Applicability,J. Appl. Mech., Sept 1951,p293–297

  110. K.C. Kapur and L.R. Lamberson,Reliability in Engineering Design, John Wiley & Sons, 1977

  111. D.G.S. Davies, The Statistical Approach to Engineering Design in Ceramics,Proc. Br. Ceram. Soc, 1973, p429–452

  112. B. Bergman, On the Estimation of the Weibull Modulus,J. Mater. Sci. Lett, Vol 3,1984, p 689–692

    Article  CAS  Google Scholar 

  113. K. Trustrum and A. DE S. Jayatilaka, On Estimating the Weibull Modulus for a Brittle Material,J. Mater. Sci., Vol 14,1979, p 1080–1084

    Article  Google Scholar 

  114. J.S. White, The Moments of Log-Weibull Order Statistics,Technometrics,Vol.11 (No. 2), 1969, p 373–386

    Article  Google Scholar 

  115. A.C. Cohen, Maximum Likelihood Estimation in the Weibull Distribution Based on Complete and on Censored Samples,Technometrics, Vol 7 (No. 4), 1965, p 579–588

    Article  Google Scholar 

  116. J.F. Lawless, inStatistical Models and Methods for Lifetime Data, John Wiley & Sons, 1982, p 141–202

  117. E.H. Lloyd, Least-Squares Estimation of Location and Scale Parameters Using Order Statistics,Biometrika, Vol 39,1952, p 88–95

    Google Scholar 

  118. M.G. Kendall and A. Stuart,The Advanced Theory of Statistics, Vol 2, 2nd ed., Griffin, London, 1969

    Google Scholar 

  119. N.R. Mann, Table for Obtaining the Best Linear Invariant Estimates of Parameters of the Weibull Distribution,Technometrics, Vol 9,1967, p629–645

    Article  Google Scholar 

  120. N.R. Mann, “Results on Location and Scale Parameter Estimation with Application to the Extreme Value Distribution,≓ ARL 67-0023, Wright-Patterson Air Force Base, 1967

  121. J.W. Heavens and P.N. Murgatroyd, Analysis of Brittle Fracture Stress Statistics,J. Am. Ceram. Soc, Vol 53 (No. 9), 1970, p 503–505

    Article  CAS  Google Scholar 

  122. R.A. Fisher, Two New Properties of Mathematical Likelihood,Proc. R. Soc. (London)A.,Vol 144,1934,p285–307

    Google Scholar 

  123. J.F. Lawless, Confidence Interval Estimation for the Weibull and Extreme Value Distributions,Technometrics, Vol 20,1978, p 355–364

    Article  Google Scholar 

  124. NR. Mann, K.W. Fertig, and E.M. Scheuer, “Confidence and Tolerance Bounds and a New Goodness of Fit Test for the Two-Parameter Weibull or Extreme Value Distribution with Tables for Censored Samples of Size 3(1)25,≓ ARL 71-0077, Wright-Patterson Air Force Base, 1971

  125. N.R. Mann and K.W. Fertig, Tables for Obtaining Confidence Bounds and Tolerance Bounds Based on Best Linear Invariant Estimates of Parameters of the Extreme Value Distribution,Technometrics, Vol 15, 1973,p 87–101

    Article  Google Scholar 

  126. L.J. Bain,Statistical Analysis of Reliability and Life-Testing Models, Marcel Dekker, 1978

  127. D.R. Thoman, L.J. Bain, C.E. Antle, Inference on the Parameters of the Weibull Distribution,Technometrics, Vol 11, 1969, p 445–460

    Article  Google Scholar 

  128. R.B. Abernethy, J.E. Breneman, C.H. Medlin, and G.L. Reinman,Weibull Analysis Handbook, AFWAL-TR-83-2079, Propulsion Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson ir Force Base, 1983

    Google Scholar 

  129. G. Taguchi and S. Konishi,Taguchi Methods, Orthogonal Arrays and Linear Groups, American Supplier Institute, 1987

  130. P. Ross,Taguchi Techniques for Quality Engineering, McGraw-Hill, 1988

  131. G.E.P. Box, Signal to Noise Ratios: Performance Criteria and Transformation,Technometrics, Vol 30 (No. 1), 1988, p 1–17

    Article  Google Scholar 

  132. S. Bisgaard, Optimizing Thermal Spray Processes Going Beyond Taguchi Methods,Thermal Spray Research and Application, T.F. Bernecki, Ed., ASM International, 1991, p 661–667

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on “Measurement of Adhesion for Thermally Sprayed Material,”Journal of Adhesion Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C.K., Berndt, C.C. Measurement and analysis of adhesion strength for thermally sprayed coatings. JTST 3, 75–104 (1994). https://doi.org/10.1007/BF02649003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649003

Key words

Navigation