Skip to main content

Alleviation of Diverse Abiotic Stress in Plants Through the Fungal Communities

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Part of the book series: Fungal Biology ((FUNGBIO))

  • 644 Accesses

Abstract

The principal factors involved in the creation of abiotic stresses are the adverse climatic conditions. These have led to a decline in the agricultural production. Dominant abiotic stresses include drought, salinity, low/high temperature, acidic conditions, flooding, light intensity, anaerobiosis, and nutrient starvation. Climate change is responsible for temperature, water deficiency, salinity, and heavy metal pollution relation stresses. The abiotic stress factors influence the biotic stress and eventually reduce crop productivity. The major effect of these stresses results in the loss of soil microbial diversity, fertility of soil, and competition for nutrient resources. The soil microflora have the ability to counter the abiotic stresses due to their metabolic abilities. Their interactions with plants help in modulating the mechanisms in the plants for their defense against the adversity. This is plant-associated microbial community, the best alternative, helps the plants’s growth and development under different types of abiotic and biotic stresses. This chapter gives an overview of the stress conditions and the mechanisms of overcoming these conditions with an insight on the role of fungi associated with plants, in the alleviation of adverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868

    Article  PubMed  PubMed Central  Google Scholar 

  • Ajilogba CF, Babalola OO (2019) GC–MS analysis of volatile organic compounds from Bambara groundnut rhizobacteria and their antibacterial properties. World J Microbiol Biotechnol 35:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Rao LV, Kishore VN, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat rhizosphere by EPS producing Pantoea agglomerans and its effect on soil aggregation. Appl Environ Microbiol 64:3740–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreasson E, Ellis B (2010) Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci 15:106–113

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and nonmycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seeds with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    Article  CAS  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Samuels GJ (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in anti-oxidants. New Phytol 180:501–510

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grape vine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Barriuso J, Solano BR, Fray RG, Camara M, Hartmann A, Manero FJG (2008a) Transgenic tomato plants alter quorum sensing in plant growth promoting rhizobacteria. Plant Biotechnol J 6:442–452

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Solano BR, Mañero FJG (2008b) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98:666–672

    Article  CAS  PubMed  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain AM3 containing 1-aminocyclopropane1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Bolton MV (2009) Primary metabolism and plant defense-fuel for the fire. Mol Plant Microbe Interact 22:487–497

    Article  CAS  PubMed  Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere: the hidden half of the hidden half. In: Waisel Y, Eshel A, Kalkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 641–669

    Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    Article  PubMed  CAS  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specifcity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH (2008) 2R,3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Crane TA, Roncoli C, Hoogenboom G (2011) Adaptation to climate change and climate variability: the importance of understanding agriculture as performance. NJAS –Wag J Life Sci 57:179–185

    Article  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 66:617–625

    Article  CAS  Google Scholar 

  • Dardanelli MS, Fernández de CĂłrdoba FJ, Espuny MR, RodrĂ­guez Carvajal MA, Soria DĂ­az ME, Gil Serrano AM (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5:21–47

    Article  Google Scholar 

  • Duan Y, Xu M, Gao S, Liu H, Huang S, Wang B (2016) Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems. Sci Rep 6:33611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102:7821–7835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by coinoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soils 32:259–264

    Article  Google Scholar 

  • Gill SS (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377

    Google Scholar 

  • Grayson M (2013) Agriculture and drought. Nature 501:S1

    Article  CAS  PubMed  Google Scholar 

  • Hamdia ABE, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Hasanuzzaman M (2013) Drought stress responses in plants, oxidative stress, and antioxidant defense. In: Climate change and plant abiotic stress tolerance. Wiley-VCH, Weinheim, pp 209–250

    Chapter  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • He X, Han G, Lin Y, Tian X, Xiang C, Tian Q, Wang F, He Z (2012) Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol Res 27:273–284

    Article  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S (2015) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev 91:1118–1133

    Article  PubMed  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Igiehon NO, Babalola OO (2018) Below-ground-above-ground plant-microbial interactions: focusing on soybean, rhizobacteria and mycorrhizal fungi. Open Microbiol J 12:261–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MB (1991) Regulation of water relationships in flooded plants by ABA from leaves, roots and xylem sap. In: Davis WJ, Jones HG (eds) Abscisic acid. Physiology and biochemistry. Bios Scientific, Oxford, pp 217–226

    Google Scholar 

  • Jambon I, Thijs S, Weyens N, Vangronsveld J (2018) Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. J Plant Interact 13:119–130

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) The combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6

    Article  CAS  Google Scholar 

  • Khan AL (2017) Plant growth-promoting endophyte Sphingomonas sp: LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A et al (2019) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management, Volume 1: Rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308

    Chapter  Google Scholar 

  • Kour D, Kaur T, Devi R, Rana KL, Yadav N, Rastegari AA et al (2020a) Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 255–279

    Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020b) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487

    Article  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama H, Toda T, Hara T (2001) Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: pectin–Ca interaction may play an important role in proton rhizotoxicity. J Exp Bot 52:361–368

    CAS  PubMed  Google Scholar 

  • Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A et al (2019a) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308

    Article  CAS  Google Scholar 

  • Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A et al (2019b) Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 149–170

    Chapter  Google Scholar 

  • Li Z, Setsuko W, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multifunctional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Malinowski CP, Beleskey DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Mantri N, Patade V, Penna S (2011) Abiotic stress responses in plants: present and future. Springer, New York, pp 1–19

    Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought tolerant or drought sensitive Glomus species. Microb Ecol 54:543–552

    Article  CAS  PubMed  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  CAS  PubMed  Google Scholar 

  • Massad TJ, Dyer LA, Vega CG (2012) Cost of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS One 7:7554

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Halder SK, Yadav AN, Mondal KC (2020) Microbial consortium with multifunctional plant growth promoting attributes: future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture, Volume 2: Functional annotation and future challenges. Springer, Singapore, pp 219–254

    Chapter  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701

    Article  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Nia SH, Zarea MJ, Rejali F, Varma A (2012) Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J Saudi Soc Agric Sci 11:113–121

    Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Omar MNA, Osman MEH, Kasim WA, Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. Tasks Veg Sci 44:133–147

    Article  Google Scholar 

  • Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H (2013) Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25:609–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Padgham J (2009) Agricultural development under a changing climate: opportunities and challenges for adaptation. Agriculture and Rural Development & Environmental Departments, The World Bank, Washington, DC

    Book  Google Scholar 

  • Panlada T, Pongdet P, Aphakorn L, Rujirek NN, Nantakorn B, Neung T (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59:559–571

    Article  CAS  Google Scholar 

  • Pardo JM (2010) Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol 21:185–196

    Article  CAS  PubMed  Google Scholar 

  • Pishchik VN, Vorobyev NI, Chernyaeva II, Timofeeva SV, Kozhemyakov AP, Alexeev YV (2002) Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243:173–186

    Article  CAS  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretty J, Toulmin C, Williams S (2011) Sustainable intensification in African agriculture. Int J Agric Sustain 9:5–24

    Article  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Rabie GH (2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15:225–230

    Article  CAS  PubMed  Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60

    Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107

    Article  CAS  PubMed  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Redman RS, Ranson J, Rodriguez RJ (1999) Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic endophytic mutualist by gene disruption. Mol Plant-Microbe Interact 12:969–975

    Article  CAS  Google Scholar 

  • Remans R, Ramaekers L, Shelkens S, Hernandez G, Garcia A, Reyes GL (2008) Effect of Rhizobium, Azospirillum co-inoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    Article  CAS  Google Scholar 

  • Rouhier N, Koh CS, Gelhaye E, Corbier C, Favier F, Didierjean C (2008) Redox based anti-oxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta 1780:1249–1260

    Article  CAS  PubMed  Google Scholar 

  • Sahoo RK, Ansari MW, Dangar TK, Mohanty S, Tuteja N (2014a) Phenotypic and molecular characterization of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasma 251:511–523

    Article  CAS  PubMed  Google Scholar 

  • Sahoo RK, Ansari M, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014b) A novel Azotobacter vinellandii (SRIAz3) functions in salinity stress tolerance in rice. Plant Signal Behav 9:e29377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Sekmen AH, TĂĽrkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131:399–411

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress—induced anatomical changes in higher plants. C R Biol 331:215–225

    Article  PubMed  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Silva EN, Ribeiro RV, Ferreira-Silva SL, ViĂ©gas RA, Silveira JAG (2010) Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J Arid Environ 74:1130–1137

    Article  Google Scholar 

  • Simontacchi M, Galatro A, Ramos-Artuso F, Santa-Maria GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh DP, Prabha R, Yandigeri MS, Arora DK (2011) Cyanobacteria mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie Van Leeuwenhoek 100:557–568

    Article  CAS  PubMed  Google Scholar 

  • Singh C, Tiwari S, Singh JS, Yadav AN (2020) Microbes in agriculture and environmental development. CRC Press, Boca Raton

    Book  Google Scholar 

  • Smith LE, Siciliano GA (2015) A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric Ecosyst Environ 209:15–25

    Article  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone cross talk during plant immune response. Cell Host Microbe 3:348–351

    Article  CAS  PubMed  Google Scholar 

  • Springmann M, Mason-D’Croz D, Robinson S, Garnett T, Godfray HCJ, Gollin D, Rayner M, Ballon P, Scarborough PJTL (2016) Global and regional health effects of future food production under climate change: a modelling study. Lancet 387:1937–1946

    Article  PubMed  Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 1–52

    Google Scholar 

  • Sun C, Johnson J, Cai D, Sherameti I, OelmĂĽeller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) Metabolic consequences of susceptibility and resistance in barley leaves challenged with powdery mildew. Plant Cell Environ 29:1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Terekhova VA, Semenova TA (2005) The structure of micromycete communities and their synecologic interactions with basidiomycetes during plant debris decomposition. Microbiology 74:91–96

    Article  CAS  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282

    Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression, a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916

    Article  CAS  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice (N Y) 5:1–9

    Google Scholar 

  • Uphoff N, Dazzo F (2016) Making rice production more environmentally-friendly. Environments 3:12

    Article  Google Scholar 

  • Vanlauwe B, Wendt J, Giller KE, Corbeels M, Gerard B, Nolte CA (2014) A fourth principle is required to define conservation agriculture in sub-Saharan Africa: the appropriate use of fertilizer to enhance crop productivity. Field Crops Res 155:10–13

    Article  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Volume 2: Microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580

    Google Scholar 

  • Wang C, Yang W, Wang C, Gu C, Niu D, Liu H (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth promoting rhizobacterium strains. PLoS One 7:e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indole acetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassmann R (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133

    Article  Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. Symp Soc Exp Biol 42:329–346

    CAS  PubMed  Google Scholar 

  • Xu Z, Jiang Y, Jia B, Zhou G (2016) Elevated-CO2 response of stomata and its dependence on environmental factors. Front Plant Sci 7:657

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Kaur T, Kour D, Rana KL, Yadav N, Rastegari AA et al (2020a) Saline microbiome: biodiversity, ecological significance and potential role in amelioration of salt stress in plants. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 283–309

    Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, Volume 1: Perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020c) Agriculturally important Fungi for sustainable agriculture, Volume 2: Functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020d) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yao LX, Wu ZS, Zheng YY, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Yokota S, Ojima K (1995) Physiological-response of root-tip of Alfalfa low pH and aluminium stress in water culture. Plant Soil 171:163–165

    Article  CAS  Google Scholar 

  • Yolcu S, Ozdemir F, GĂĽler A, Bor M (2016) Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. Plant Physiol Biochem 100:37–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the parent institutions for continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kajarekar, K.V., Parulekar Berde, C.V., Salvi, S.P., Berde, V.B. (2021). Alleviation of Diverse Abiotic Stress in Plants Through the Fungal Communities. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-60659-6_11

Download citation

Publish with us

Policies and ethics