Skip to main content

On the Prediction of Landslides and Their Consequences

  • Chapter
  • First Online:
Understanding and Reducing Landslide Disaster Risk (WLF 2020)

Part of the book series: ICL Contribution to Landslide Disaster Risk Reduction ((CLDRR))

Included in the following conference series:

Abstract

The general assumptions and the most popular methods used to assess landslide hazard and for risk evaluation have not changed significantly in recent decades. Some of these assumptions have conceptual weakness, and the methods have revealed limitations. In this work, I deal with populations of landslides i.e. numerous landslides caused in an area by a single trigger (e.g. a rainstorm, an earthquake, a rapid snowmelt event), or by multiple events in a short or long period. Following an introduction on what we need to predict to assess landslide hazard and risk, I introduce the strategies and the main methods currently used to detect and map landslides, to predict populations of landslides in space and time, and to anticipate the numerosity and size characteristics of the expected landslides. For landslide detection and mapping, I consider traditional methods based on the visual interpretation of aerial photographs, and modern approaches that exploit the visual, semi-automatic or automatic analysis of remotely sensed images. For landslide spatial prediction, I discuss the results of a global review of statistical, classification-based methods for landslide susceptibility assessment. For the temporal prediction, leveraging on a global analysis of geographical landslide forecasting and early warning systems, I discuss short term forecast capabilities and their limitations. Next, I discuss long term landslide projections considering the impact of climate variations on landslide projections. For landslide numerosity and size characteristics, I discuss existing statistics of landslide area and volume obtained from large populations of event-triggered landslides. This is followed by an analysis of the landslide consequences, with emphasis on a spatial-temporal model of societal landslide risk in Italy. I end offering recommendations on what I think we should do to make significant progress in our collective ability to predict the hazard posed by populations of landslides, and to mitigate their risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. B Eng Geol Environ 58(1):21–44

    Article  Google Scholar 

  • Alexander ED (1999) Vulnerability. In: Alexander ED, Fairbridge RW (eds) Encyclopedia of environmental science. Kluwer Academic Publishers, pp 663–664

    Google Scholar 

  • Alexander ED (2000) Confronting catastrophe: new perspectives on natural disasters. Terra Publishing

    Google Scholar 

  • Alexander ED (2005) Vulnerability to landslides. In: Glade T, Anderson MG, Crozier MJ (eds) Landslide risk assessment. John Wiley, pp 175–198

    Google Scholar 

  • Alfieri L, Salamon P, Pappenberger F, Wetterhall F, Thielen J (2012) Operational early warning systems for water-related hazards in Europe. Environ Sci Policy 21:35–49

    Article  Google Scholar 

  • Alvioli M, Baum RL (2016) Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ Modell Soft 81:122–135

    Article  Google Scholar 

  • Alvioli M, Guzzetti F, Rossi M (2014) Scaling properties of rainfall induced landslides predicted by a physically based model. Geomorphology 213:38–47

    Article  Google Scholar 

  • Alvioli M, Marchesini I, Reichenbach P, Rossi M, Ardizzone F, Fiorucci F, Guzzetti F (2016) Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling. Geosci Model Dev 9:3975–3991

    Article  Google Scholar 

  • Alvioli M, Melillo M, Guzzetti F, Rossi M, Palazzi E, von Hardenberg J, Brunetti MT, Peruccacci S (2018) Implications of climate change on landslide hazard in Central Italy. Sci Total Environ 630:1528–1543

    Article  Google Scholar 

  • Anagnostopoulos GG, Burlando P (2012) An Object-oriented computational framework for the simulation of variably saturated flow in soils, using a reduced complexity model. Environ Modell Soft 38:191–202

    Article  Google Scholar 

  • Anagnostopoulos GG, Fatichi S, Burlando P (2015) An advanced process-based distributed model for the investigation of rainfall-induced landslides: the effect of process representation and boundary conditions. Water Resour Res 51:7501–7523

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazard Earth Sys 2:3–14

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR. Nat Hazard Earth Sys 7(6):637–650

    Article  Google Scholar 

  • Bach Kirschbaum D, Adler RF, Hong Y, Hill S, Lerner-Lam A (2009) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazards 52:561–575

    Article  Google Scholar 

  • Badoux A, Andres N, Techel F, Hegg C (2016) Natural hazard fatalities in Switzerland from 1946 to 2015. Nat Hazard Earth Sys 16(12):2747–2768

    Article  Google Scholar 

  • Baum RL, Godt JW (2013) Correction to “Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration”. J Geophys Res-Earth 118(3):1999–1999

    Article  Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2002) TRIGRS—a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. Open-File Report 02-0424

    Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2008) TRIGRS - a Fortran Program for Transient Rainfall Infiltration and Grid-based Regional Slope-stability Analysis. Version 2.0. US Geological Survey Open-File Report 2008–1159

    Google Scholar 

  • Baum RL, Godt JW, Savage WZ (2010) Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. J Geophys Res-Earth 115(F3):F03013

    Google Scholar 

  • Bellugi D, Dietrich WE, Stock JD, McKean JA, Kazian B, Hargrove P (2011) Spatially Explicit Shallow Landslide Susceptibility Mapping Over Large Areas. It J Eng Geol Environ 399–407

    Google Scholar 

  • Bellugi D, Milledge DG, Dietrich WE, McKean JA, Perron JT, Sudderth EB, Kazian B (2015a) A spectral clustering search algorithm for predicting shallow landslide size and location. J Geophys Res-Earth 120:300–324

    Article  Google Scholar 

  • Bellugi D, Milledge DG, Dietrich WE, Perron JT, McKean J (2015b) Predicting shallow landslide size and location across a natural landscape: Application of a spectral clustering search algorithm. J Geophys Res-Earth 120:2015JF003520

    Google Scholar 

  • Benda L, Zhang W (1990) Accounting for the stochastic occurrences of landslides when predicting sediment yields. Proceedings Fiji Symposium, IAHS-AISH Publication 192:115–127

    Google Scholar 

  • Bíl M, Müller I (2008) The origin of shallow landslides in Moravia (Czech Republic) in the spring of 2006. Geomorphology 99(1):246–253

    Article  Google Scholar 

  • Borga M, Dalla Fontana G, De Ros D (1998) Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol 35:81–88

    Article  Google Scholar 

  • Borga M, Dalla Fontana G, Cazorzi F (2002a) Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. J Hydrol 268:56–71

    Article  Google Scholar 

  • Borga M, Dalla Fontana G, De Ros D, Marchi L (2002b) Assessment of shallow landsliding by using a physically based model of hillslope stability. Hydrol Process 17(2):505–508

    Google Scholar 

  • Borgatti L, Soldati M (2010) Landslides as a geomorphological proxy for climate change: a record from the Dolomites (northern Italy). Geomorphology 120:56–64

    Article  Google Scholar 

  • Borghuis AM, Chang K, Lee HY (2007) Comparison between automated and manual mapping of typhoon-triggered landslides from SPOT-5 imagery. Int J Remote Sens 28:1843–1856

    Article  Google Scholar 

  • Boschi E, Guidoboni E, Ferrari G, Valensise G, Gasperini P (1997) Catalogo dei forti terremoti in Italia dal 461 a.C. al 1990. ING-SGA, Bologna

    Google Scholar 

  • Bovis MJ, Jones P (1992) Holocene history of earthflow mass movements in southcentral British Columbia: the influence of hydroclimatic changes. Can J Earth Sci 29:1746–1754

    Article  Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard mapping. Proceedings 4th International Symposium of Landslides. Toronto 1:307–324

    Google Scholar 

  • Brabb EE (1989) Landslides: Extent and economic significance in the United States. Proceedings 28th International Geological Congress, Symposium on Landslides, pp 25–50

    Google Scholar 

  • Brabb EE (1991) The world landslide problem. Episodes 14(1):52–61

    Article  Google Scholar 

  • Brardinoni F, Church M (2004) Representing the landslide magnitude-frequency relation: Capilano River basin, British Columbia. Earth Surf Proc Land 29:115–124

    Article  Google Scholar 

  • Brien DL, Reid ME (2007) Modeling 3-D slope stability of coastal Bluffs using 3-D Ground-Water flow. US Geological Survey, Scientific Investigations Report 2007–509, Washington DC

    Google Scholar 

  • Brien DL, Reid ME (2008) Assessing deep-seated landslide susceptibility using 3-D groundwater and slope-stability analyses, southwestern Seattle. Geological Society America, Washington DC, Washington. Landslides and Engineering Geology of the Seattle Area

    Book  Google Scholar 

  • Broeckx J, Vanmaercke M, Duchateau R, Poesen J (2018) A data-based landslide susceptibility map of Africa. Earth-Sci Rev 185:102–121

    Article  Google Scholar 

  • Brunetti MT, Guzzetti F, Rossi M (2009) Probability distributions of landslide volumes. Nonlinear Proc Geoph 16:179–188

    Article  Google Scholar 

  • Brunetti MT, Peruccacci S, Rossi M, Melillo M, Rossi M, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazard Earth Sys 10:447–458

    Article  Google Scholar 

  • Brunetti MT, Melillo M, Peruccacci S, Ciabatta L, Brooca L (2018) How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sens Environ 210:65–75

    Article  Google Scholar 

  • Bucci F, Santangelo M, Cardinali M, Fiorucci F, Guzzetti F (2016) Landslide distribution and size in response to quaternary fault activity: the Peloritani range, NE Sicily, Italy. Earth Surf Proc Land 41:711–720

    Article  Google Scholar 

  • Buma J, Dehn M (1998) A method for predicting the impact of climate change on slope stability. Environ Geol 35(2–3):190–196

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler A 62:23–27

    Google Scholar 

  • Calvello M (2017) Early warning strategies to cope with landslide risk. Rivista Italiana Geotecnica 2:63–69

    Google Scholar 

  • Campbell RH (1975) Soil slips, debris flows, and rainstorms in the santa monica mountains and vicinity. US Geological Survey Professional Paper, Southern California, p 851

    Google Scholar 

  • Cannon SH (1988) Regional rainfall-threshold conditions for abundant debris-flow activity. In: Ellen SD, Wieczorek GF (eds) Landslides, floods, and marine effects of the storm of January 3–5, 1982, in the San Francisco Bay Region, California. US Geological Survey Professional Paper 1434, pp 35–42

    Google Scholar 

  • Cannon SH, Gartner JE (2005) Wildfire-related debris flow from a hazards perspective. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin, pp 363–385

    Chapter  Google Scholar 

  • Cardinali M, Ardizzone F, Galli M, Guzzetti F, Reichenbach P (2000) Landslides triggered by rapid snow melting: the December 1996-January 1997 event in Central Italy. Proceedings EGS Plinius Conf, Maratea, pp 439–448

    Google Scholar 

  • Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazard Earth Sys 2:57–72

    Article  Google Scholar 

  • Carrara A (1983) Multivariare models for landslide hazard evaluation. Math Geol 15(3):403–426

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16(5):427–445

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC Journal 2:172–183

    Google Scholar 

  • Chacón J, Irigaray C, Fernandez T, El Hamdouni R (2006) Eng Geol maps: landslides and geographical information systems. B Eng Geol Environ 65(4):341–411

    Article  Google Scholar 

  • Chang S-H, Chiang K-T (2011) The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010-2099. Geomorphology 133:143–151

    Article  Google Scholar 

  • Chen A, Darbon J, Morel J-M (2014) Landscape evolution models: a review of their fundamental equations. Geomorphology 219:68–86

    Article  Google Scholar 

  • Cheng G, Han J (2016) A survey on object detection in optical remote sensing images. ISPRS J Photogramm 117:11–28

    Article  Google Scholar 

  • Chiarle M, Iannotti S, Mortara G, Deline P (2007) Recent debris flow occurrences associated with glaciers in the Alps. Global Planet Change 56:123–136

    Article  Google Scholar 

  • Chiarle M, Coviello V, Arattano M, Silvestri P, Nigrelli G (2015) High elevation rock falls and their climatic control: a case study in the Conca di Cervinia (NW Italian Alps). In: Lollino G, Manconi A, Clague J, Shan W, Chiarle M (eds) Eng Geol for Society and Territory, 1, Climate Change Engineering Geology, pp 423–443

    Google Scholar 

  • Chorlton LB (2007) Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. Geological Survey Canada, OF, p 5529

    Book  Google Scholar 

  • Chung C-JF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. ISPRS J Photogramm 65:1389–1399

    Google Scholar 

  • Ciabatta L, Camici S, Brocca L, Ponziani F, Stelluti F, Berni N, Moramarco T (2016) Assessing the impact of climate-change scenarios on landslide occurrence in Umbria Region, Italy. J Hydrol 541(A):285–295

    Google Scholar 

  • Coe JA (2012) Regional moisture balance control of landslide motion: Implications for landslide forecasting in a changing climate. Geology 40(4):323–326

    Article  Google Scholar 

  • Coe JA, Godt JW (2012) Review of approaches for assessing the impact of climate change on landslide hazards. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Landslides and engineered slopes, protecting society through improved understanding: proceedings 11th international and 2nd North American symposium on landslides and engineered slopes, banff, 1. Taylor & Francis, London, pp 371–377

    Google Scholar 

  • Collison A, Wade S, Griffiths J, Dehn M (2000) Modelling the impact of predicted climate change on landslide frequency and magnitude in SE England. Eng Geol 5:205–218

    Article  Google Scholar 

  • Comegna L, Picarelli L, Bucchignani E, Mercogliano P (2013) Potential effects of incoming climate changes on the behaviour of slow active landslides in clay. Landslides 10(4):373–391

    Article  Google Scholar 

  • Corominas J (2000) Landslides and climate. In: Bromhead E, Dixon N, Ibsen ML (eds) Proceedings 8th international symposium on landslides. Balkema, Cardiff, 4:1–33

    Google Scholar 

  • Corominas J, Moya J (1999) Reconstructing recent land- slide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30:79–93

    Article  Google Scholar 

  • Crosta GB (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ Geol 35(2–3):131–145

    Article  Google Scholar 

  • Crosta GB, Dal Negro P (2003) Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1988 event. Nat Hazard Earth Sys 3(1–2):53–69

    Article  Google Scholar 

  • Crosta GB, Frattini P (2001) Rainfall thresholds for triggering soil slips and debris flow. In: Mugnai A, Guzzetti F, Roth G (eds) Mediterranean storms. Proc 2nd EGS Plinius Conference on Mediterranean Storms. Siena, pp 463–487

    Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazard Earth Sys 3:81–93

    Article  Google Scholar 

  • Crozier MJ (1997) The climate landslide couple: a Southern Hemisphere perspective. Paleoclimate Res 19(12):329–350

    Google Scholar 

  • Crozier MJ (2010) Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124:260–267

    Article  Google Scholar 

  • Cruden DM, Fell R (1997) Landslide Risk Assessment. CRC Press

    Google Scholar 

  • D’Odorico P, Fagherazzi S (2003) A probabilistic model of rainfall-triggered shallow landslides in hollows: a long-term analysis. Water Resour Res 39:9

    Google Scholar 

  • Dehn M (1999) Application of an analog downscaling technique to the assessment of future landslide activity - a case study in the Italian Alps. Clim Res 13:103–113

    Article  Google Scholar 

  • Densmore AL, Anderson RS, McAdoo BG, Ellis MA (1997) Hillslope evolution by bedrock landslides. Science 275(5298):369–372

    Article  Google Scholar 

  • Di Biagio E, Kjekstad O (2007) In: Early warning, instrumentation and monitoring landslides. 2nd Regional Training Course, RECLAIM II. Phuket

    Google Scholar 

  • Dietrich EW, Reiss R, Hsu M-L, Montgomery DR (1995) A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrol Process 9:383–400

    Article  Google Scholar 

  • Dietrich WE, Bellugi D, Real de Asua R (2001) Validation of the Shallow Landslide Model, SHALSTAB, for forest management. In: Wigmosta MS, Burges SJ (eds) Water science and application. American Geophysical Union, Washington DC, pp 195–227

    Google Scholar 

  • Dikau R, Schrott L (1999) The temporal stability and activity of landslides in Europe with respect to climatic change (TESLEC): main objectives and results. Geomorphology 30:1–12

    Article  Google Scholar 

  • Dixon N, Brook E (2007) Impact of predicted climate change on landslide reactivation: case study of Mam Tor, UK. Landslides 4:137–147

    Article  Google Scholar 

  • Dondi F, Moser F (2015) University and the risk society. Toxicol Environ Chem 86(9):997–1012

    Article  Google Scholar 

  • Doocy S, Daniels A, Murray S, Kirsch TD (2013a) The human impact of floods: a historical review of events 1980–2009 and systematic literature review. 1st edn, PLOS Currents Disasters

    Google Scholar 

  • Doocy S, Daniels A, Packer C, Dick A, Kirsch TD (2013b) The human impact of earthquakes: a historical review of events 1980–2009 and systematic literature review. 1st edn, PLoS Currents Disasters

    Google Scholar 

  • Dowling CA, Santi PM (2014) Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat Hazards 71(1):203–227

    Article  Google Scholar 

  • Duhart P, Sepúlveda V, Garrido N, Mella M, Quiroz D, Hermosilla G, Roa H (2018) The Santa LucÍa landslide disaster, Chaitén-Chile (43.4°SL): origin and effects. Proceedings XV Congreso Geológico Chileno, Concepción, Chile

    Google Scholar 

  • Dunne T (1991) Stochastic aspects of the relations between climate, hydrology and landform evolution. Tran Japan Geomorph Union 12:1–24

    Google Scholar 

  • Dymond JR, Jessen MR, Lovell LR (1999) Computer simulation of shallow landsliding in New Zealand hill country. Int J Appl Earth Obs 1(2):122–131

    Google Scholar 

  • EEA (2010) Mapping the impacts of Nat Hazards and technological accidents in Europe: an overview of the last decade. European Environmental Agency Technical Report 13. Office for Official Publications of the European Union, Luxembourg

    Google Scholar 

  • Einstein HH (1998) Special lecture: landslide risk assessment procedure. In: Bonnard C (ed) Landslides. Balkema, Rotterdam, pp 1075–1090

    Google Scholar 

  • Endo T (1970) Probable distribution of the amount of rainfall causing landslides, Annual Report 1968. Hokkaido Branch, Forestry Experimental Station, Sapporo, pp 122–136

    Google Scholar 

  • Evans SG, Clague JJ (1994) Recent climatic changes and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128

    Article  Google Scholar 

  • Fan X, Scaringi G, Korup O et al (2019) Earthquake‐Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Rev Geoph 83

    Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission, Rev Geophy 45:RG2004

    Google Scholar 

  • Fell R, Hartford D (1997) Landslide risk management. In: Cruden D, Fell R (eds), Landslide risk assessment. Balkema, Rotterdam, pp 51–109

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008a) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008b) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Commentary. Eng Geol 102:99–111

    Article  Google Scholar 

  • Fiorucci F, Giordan D, Santangelo M, Dutto F, Rossi M, Guzzetti F (2018) Criteria for the optimal selection of remote sensing optical images to map event landslides. Nat Hazard Earth Sys 18:405–417

    Article  Google Scholar 

  • Flageollet J-C, Maquaire O, Martin B, Weber D (1999) Landslides and climatic conditions in the Barcelonnette and Vars basins (Southern French Alps, France). Geomorphology 30:65–78

    Article  Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazard Earth Sys 18:2161–2181

    Article  Google Scholar 

  • Galli M, Guzzetti F (2007) Vulnerability to landslides in Umbria, central Italy. Environ Manage 40:649–664

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268–289

    Article  Google Scholar 

  • Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth-Sci Rev 162:227–252

    Article  Google Scholar 

  • Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015a) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665

    Article  Google Scholar 

  • Gariano SL, Petrucci O, Guzzetti F (2015b) Changes in the occurrence of rainfall-induced landslides in Calabria, southern Italy, in the 20th century. Nat Hazard Earth Sys 15:2313–2330

    Article  Google Scholar 

  • Gariano SL, Petrucci O, Rianna G, Santini M, Guzzetti F (2017) Impacts of past and future land changes on landslides in southern Italy. Reg Environ Change 1–13

    Google Scholar 

  • Gassner C, Promper C, Begueria S, Glade T (2015) Climate change impact for spatial landslide susceptibility. In: Lollino G, Manconi A, Clague J, Shan W, Chiarle M (eds) Eng Geol for Society and Territory, vol 1, Climate Change and Engineering Geology, Springer, pp 429–433

    Google Scholar 

  • Geyer A, Martí J (2008) The new worldwide collapse caldera database (CCDB): a tool for studying and understanding caldera processes. J Volcanol Geoth Res 175:334–354

    Article  Google Scholar 

  • Giannecchini R (2005) Rainfall triggering soil slips in the southern Apuane Alps (Tuscany, Italy). Adv Geosc 2:21–24

    Article  Google Scholar 

  • Giannecchini R, Galanti Y, D’Amato Avanzi G, Barsanti M (2016) Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape. Geomorphology 257:94–107

    Article  Google Scholar 

  • Giardini D, Grünthal G, Shedlock KM, Zhang P (2003) The GSHAP global seismic hazard map. In: Lee W, Kanamori H, Jennings P, Kisslinger C (eds) International handbook earthquake engineering seismology, International Geophysics Series 81 B. Academic Press, Amsterdam, pp 1233–1239

    Google Scholar 

  • Glade T (2001) Landslide hazard assessment and historical landslide data—an inseparable couple. In: Glade T, Albini P, Francés F (eds) The use of historical data in natural hazard assessments. Kluwer AP, Dordrecht, pp 153–168

    Google Scholar 

  • Glade T, Albini P, Francés F (eds) (2001) The use of historical data in natural hazard assessments. Kluwer AP, Dordrecht

    Google Scholar 

  • Glade T, Anderson MG, Crozier MJ (eds) (2005) Landslide hazard and risk. John Wiley Sons, ISBN-13:978-0471486633

    Google Scholar 

  • Godt JW, Coe JA, Baum RL, Highland LM, Keaton JR, Roth Jr RJ (2012) Prototype landslide hazard map of the conterminous United States. In: Eberhardt E, Froese C, Turner K, Leroueil S (eds) Landslides and engineered slopes: protecting society through improved understanding. Taylor & Francis Group, London

    Google Scholar 

  • Godt JW, Coe JA, Baum RL, Highland LM, Keato JR, Roth RJ (2012) Prototype landslide hazard map of the conterminous United States. In: Eberhardt E, Froese C, Turner K, Leroueil S (eds), Landslides and engineered slopes: protecting society through improved understanding. Taylor & Francis Group, London

    Google Scholar 

  • González Díez A, Salas L, Díaz de Terán JR, Cendrero A (1996) Late Quaternary climate changes and mass movement frequency and magnitude in the Cantabrian regionm, Spain. Geomorphology 15(3–4):291–309

    Article  Google Scholar 

  • Govi M, Sorzana PF (1980) Landslide susceptibility as function of critical rainfall amount in Piedmont basin (North-Western Italy). Studia Geomorphologica Carpatho-Balcanica 14:43–60

    Google Scholar 

  • Grahn T, Jaldell H (2017) Assessment of data availability for the development of landslide fatality curves. Landslides 14(3):1113–1126

    Article  Google Scholar 

  • Greco R, Pagano L (2017) Basic features of the predictive tools of early warning systems for water-related Nat Hazards: examples for shallow landslides. Nat Hazard Earth Sys 17:2213–2227

    Article  Google Scholar 

  • Guidicini G, Iwasa OY (1977) Tentative correlation between rainfall and landslides in a humid tropical environment. Bull Int Assoc Eng Geol 16:13–20

    Article  Google Scholar 

  • Guthrie R (2013) Socio-economic significance—Canadian technical guidelines and best practices related to landslides: a national initiative for loss reduction. Geological Survey of Canada, Open File 7311:19

    Google Scholar 

  • Guthrie RH, Evans SG (2004) Magnitude and frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia. Nat Hazard Earth Sys 4:475–483

    Article  Google Scholar 

  • Guzzetti F (1998) Preface. Hydrological triggers of diffused landsliding. Environ Geol 35(2–3):79–80

    Google Scholar 

  • Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58:89–107

    Article  Google Scholar 

  • Guzzetti F (2005) Landslide hazard and risk assessment, Ph.D Thesis, Mathematisch-Naturwissenschaftlichen Fakultat der Rheinischen Friedrich-Wilhelms-Universitat, University of Bonn, Bonn

    Google Scholar 

  • Guzzetti F (2015) Forecasting Nat Hazards, performance of scientists, ethics, and the need for transparency. Toxicol Environ Chem 98:1043–1059

    Article  Google Scholar 

  • Guzzetti F (2018) Rischi naturali: l’urgenza di una scienza nuova. In: Caporale C, Maffei L, Marchis V, de Martin JC (eds) Europa: Le sfide della scienza. Istituto Enciclopedia Italiana, Roma, pp 127–133

    Google Scholar 

  • Guzzetti F, Tonelli G (2004) Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Nat Hazard Earth Sys 4:213–223

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P (1994) The AVI project: a bibliographical and archive inventory of landslides and floods in Italy. Env Manag 18:623–633

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River Basin, Central Italy. Env Manag 25(3):247–363

    Article  Google Scholar 

  • Guzzetti F, Crosta GB, Detti R, Agliardi F (2002a) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28:1079–1093

    Article  Google Scholar 

  • Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002b) Power-law correlations of landslide areas in central Italy. Earth Planet Sc Lett 195:169–183

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005a) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299

    Article  Google Scholar 

  • Guzzetti F, Stark CP, Salvati P (2005b) Evaluation of flood and landslide risk to the population of Italy. Env Manag 36:15–36

    Article  Google Scholar 

  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006a) Landslide hazard assessment in the Collazzone area, Umbria, central Italy. Nat Hazard Earth Sys 6:115–131

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006b) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17

    Article  Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sc Lett 279:222–229

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:42–66

    Article  Google Scholar 

  • Guzzetti F, Gariano SL, Peruccacci S, Brunetti MT, Marchesini I, Rossi M, Melillo M (2020) Geographical landslide early warning systems. Earth-Sci Rev 2020:102973

    Article  Google Scholar 

  • Hammond CJ, Prellwitz RW, Miller SM (1992) Landslide hazard assessment using Monte Carlo Simulation. In: Bell DH (ed) Proc 6th international symposium landslides. Balkema, Christchurch, pp 959–964

    Google Scholar 

  • Herrera G, Mateos RM, García-Davalillo JC et al (2018) Landslide databases in the Geological Surveys of Europe. Landslides 15:359–379

    Article  Google Scholar 

  • Hong Y, Adler RF (2008) Predicting global landslide spatiotemporal distribution: integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates. Int J Sediment Res 23(3):249–257

    Article  Google Scholar 

  • Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25:231–234

    Article  Google Scholar 

  • Hovius N, Stark CP, Hao-Tsu C, Jinn-Chuan L (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range. Taiwan. J Geol 108:73–89

    Article  Google Scholar 

  • Huabin W, Gangjun L, Gonghui W (2005) GIS-based landslide hazard assessment: an overview. Prog Phys Geog 29(4):548–567

    Article  Google Scholar 

  • Huggel C, Khabarov N, Obersteiner M, Ramírez JM (2010) Implementation and integrated numerical modeling of a landslide early warning system: a pilot study in Colombia. Nat Hazards 52:501–518

    Article  Google Scholar 

  • Huggel S, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Proc Land 37:77–91

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  • Hurst MD, Ellis MA, Royse KR, Lee KA, Freeborough K (2013) Controls on the magnitude-frequency scaling of an inventory of secular landslides. Earth Surf Dynam 1:67–78

    Article  Google Scholar 

  • Ibsen ML, Brunsden D (1996) The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 15:241–258

    Article  Google Scholar 

  • Innes JL (1983) Debris flows. Prog Phys Geog 7:469–501

    Article  Google Scholar 

  • Innes JL (1985) Lichenometric dating of debris-flow deposits on alpine colluvial fans in southwest Norway. Earth Surf Proc Land 10:519–524

    Article  Google Scholar 

  • ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale (2018) Landslides and floods in Italy: hazard and risk indicators. Summary report 2018, ISPRA, Rome

    Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Jackson LE Jr, Bobrowsky PT, Bichler A (2012) Identification, maps and mapping—Canadian technical guide lines and best practices related to landslides: a national initiative for loss reduction. Geological Survey of Canada, Open File 7059:33

    Google Scholar 

  • Jakob M, Lambert S (2009) Climate change effects on landslides along the southwest coast of British Columbia. Geomorphology 107:275–284

    Article  Google Scholar 

  • Jibson RW (1989) Debris flow in southern Porto Rico. Geological Society America, Special paper 236:29–55

    Article  Google Scholar 

  • Jomelli V, Pech VP, Chochillon C, Brunstein D (2004) Geomorphic variations of debris flows and recent climatic change in the French Alps. Clim Change 64:77–102

    Article  Google Scholar 

  • Jomelli V, Brunstein D, Déqué M, Vrac M, Grancher D (2009) Impacts of future climatic change (2070-2099) on the potential occurrence of debris flows: a case study in the Massif des Ecrins (French Alps). Clim Change 97:171–191

    Article  Google Scholar 

  • Keefer DK, Wilson RC, Mark RK, Brabb EE, Brown WM-III, Ellen SD, Harp EL, Wieczorek GF, Alger CS, Zatkin RS (1987) Real-time landslide warning during heavy rainfall. Science 238:921–925

    Article  Google Scholar 

  • Kirschbaum D, Adler R, Hong Y, Lerner-Lam A (2009) Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat Hazard Earth Sys 9(3):673–686

    Article  Google Scholar 

  • Korup O (2005) Distribution of landslides in southwest New Zealand. Landslides 2:43–51

    Article  Google Scholar 

  • Lan HX, Lee CF, Zhou CH, Martin CD (2005) Dynamic characteristics analysis of shallow landslides in response to rainfall event using GIS. Environ Geol 47:254–267

    Article  Google Scholar 

  • Lateltin O, Beer C, Raetzo H, Caron C (1997) Landslides in flysch terranes of Switzerland: causal factors and climate change. Eclogae Geol Helv 90:401–406

    Google Scholar 

  • Lavé J, Burbank D (2004) Denudation processes and rates in the transverse ranges, southern California: erosional response of a transitional landscape to external and anthropogenic forcing. J Geophys Res 109:F01006

    Google Scholar 

  • Lombardo L, Opitz T, Huser R (2018) Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster. Stoc Env Res Risk A 32(7):2179–2198

    Article  Google Scholar 

  • Lombardo L, Opitz T, Ardizzone F, Guzzetti F, Huser R (2020) Space-time landslide predictive modelling, Earth-Sci Rev 209:103318

    Google Scholar 

  • Lu P, Stumpf A, Kerle N, Casagli N (2011) Object-oriented change detection for landslide rapid mapping. Geosci Remote Sens Lett IEEE 8:701–705

    Article  Google Scholar 

  • Lumb P (1975) Slope failure in Hong Kong. Q J Eng Geol 8:31–65

    Article  Google Scholar 

  • Mal S, Singh RB, Huggel C, Grover A (2018) Introducing linkages between climate change, extreme events, and disaster risk reduction. Springer, Cham, pp 1–14

    Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004a) Landslides, earthquakes and erosion. Earth Planet Sc Lett 229:45–59

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004b) Landslide inventories and their statistical properties. Earth Surf Proc Land 29:687–711

    Article  Google Scholar 

  • Marchesini I, Ardizzone F, Alvioli M, Rossi M, Guzzetti F (2014) Non-susceptible landslide areas in Italy and in the Mediterranean region. Nat Hazard Earth Sys 14:2215–2231

    Article  Google Scholar 

  • Margielewski W (1998) Landslide phases in the polish outer carpathians and their relation to the climatic changes in the late glacial and the holocene. Quatern Stud Poland 15:37–53

    Google Scholar 

  • Martelloni G, Segoni S, Fanti R, Catani F (2011) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9(4):485–495

    Article  Google Scholar 

  • Martelloni G, Segoni S, Lagomarsino D, Fanti R, Catani F (2013) Snow accumulation/melting model (SAMM) for integrated use in regional scale landslide early warning systems. Hydrol Earth Syst Sc 17:1229–1240

    Article  Google Scholar 

  • Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36

    Article  Google Scholar 

  • Martha TR, Kerle N, Van Westen CJ, Jetten V, Kumar KV (2011) Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. Geosci Remote Sens IEEE Trans 49:4928–4943

    Article  Google Scholar 

  • Martha TR, Kerle N, Van Westen CJ, Jetten V, Kumar KV (2012) Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories. ISPRS J Photogramm 67:105–119

    Article  Google Scholar 

  • Matthews JA, Dahl SO, Dresser PQ, Berrisford MS, Lie O, Nesje A, Owen G (2009) Radiocarbon chronology of holocene colluvial (debris-flow) events at Sletthamm, Jotunheimen, southern Norway: a window on the changing frequency of extreme climatic events and their landscape impact. Holocene 19(8):1107–1129

    Article  Google Scholar 

  • McInnes R, Jakeways J, Fairbank H, Mathie E (eds) (2007) Landslides and Climate Change: challenges and solutions. Proceedings of the international conference on landslides and climate change. Taylor & Francis, Ventnor

    Google Scholar 

  • Medina-Cetina Z, Nadim F (2008) Stochastic design of an early warning system. Georisk 2:223–236

    Google Scholar 

  • Melchiorre C, Frattini P (2012) Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway. Clim Change 113:413–436

    Article  Google Scholar 

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2015) An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 12:311–320

    Article  Google Scholar 

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2016) Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides 13(1):165–172

    Article  Google Scholar 

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Roccati A, Guzzetti F (2018) A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environ Modell Softw 105:230–243

    Article  Google Scholar 

  • Mergili M, Marchesini I, Alvioli M, Metz M, Schneider-Muntau B, Rossi M, Guzzetti F (2014a) A strategy for GIS-based 3-D slope stability modelling over large areas. Geosci Model Dev 7:2969–2982

    Article  Google Scholar 

  • Mergili M, Marchesini I, Rossi M, Guzzetti F, Fellin W (2014b) Spatially distributed three-dimensional slope stability modelling in a raster GIS. Geomorphology 206:178–195

    Article  Google Scholar 

  • Michie D, Spiegelhalter DJ, Taylor CC (eds) (1994) Machine Learning, Neural and Statistical Classification

    Google Scholar 

  • Milledge DG, Bellugi D, McKean JA, Densmore AL, Dietrich WE (2015) A multidimensional stability model for predicting shallow landslide size and shape across landscapes. J Geophys Res-Earth 119:2481–2504

    Article  Google Scholar 

  • Mondini AC, Chang K-T (2014) Combining spectral and geoenvironmental information for probabilistic event landslide mapping. Geomorphology 213:183–189

    Article  Google Scholar 

  • Mondini AC, Chang K-T, Yin H-Y (2011a) Combining multiple change detection indices for mapping landslides triggered by typhoons. Geomorphology 134:440–451

    Article  Google Scholar 

  • Mondini AC, Guzzetti F, Reichenbach P, Rossi M, Cardinali M, Ardizzone F (2011b) Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens Environ 115:1743–1757

    Article  Google Scholar 

  • Mondini AC, Marchesini I, Rossi M, Chang K-T, Pasquariello G, Guzzetti F (2013) Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data. Geomorphology 201:135–147

    Article  Google Scholar 

  • Mondini AC, Chang K-T, Chiang S-H, Schlögel R, Notarnicola C, Saito H (2017) Automatic mapping of event landslides at basin scale in Taiwan using a Montecarlo approach and synthetic land cover fingerprints. Int J Appl Earth Obs 63:112–121

    Google Scholar 

  • Mondini AC, Santangelo M, Rocchetti M, Rossetto E, Manconi A, Monserrat O (2019) Sentinel-1 SAR amplitude imagery for rapid landslide detection. Remote Sensing 11:760

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Murillo-García FG, Alcántara-Ayala I, Ardizzone F, Cardinali M, Fiourucci F, Guzzetti F (2014) Satellite stereoscopic pair images of very high resolution: a step forward for the development of landslide inventories. Landslides 12:277–291

    Article  Google Scholar 

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173

    Article  Google Scholar 

  • NGDC/WDC (2011) Historical tsunami database, Boulder, USA. National Geophysical Data Center, World Data Center

    Google Scholar 

  • Okimura T, Kawatani T (1987) Mapping of the potential surface-failure sites on granite slopes. In: Gardiner E (ed) International geomorphology 1986. Part I, John Wiley, Chichester, pp 121–138

    Google Scholar 

  • Onodera T, Yoshinaka R, Kazama H (1974) Slope failures caused by heavy rainfall in Japan. Proceedings 2nd international congress international association engineering geololgy. San Paulo, 11:1–10

    Google Scholar 

  • Palladino MR, Viero A, Turconi L et al (2018) Rainfall thresholds for the activation of shallow landslides in the Italian Alps: the role of environmental conditioning factors. Geomorphology 303:53–67

    Article  Google Scholar 

  • Paranunzio R, Laio F, Chiarle M, Nigrelli G, Guzzetti F (2016) Climate anomalies associated with the occurrence of rockfalls at high-elevation in the Italian Alps. Nat Hazard Earth Sys 16:2085–2106

    Article  Google Scholar 

  • Pardeshi SD, Autade SE, Pardeshi SS (2013) Landslide hazard assessment: recent trends and techniques. SpringerPlus 2(1):523

    Article  Google Scholar 

  • Pedrozzi G (2004) Triggering of landslides in Canton Ticino (Switzerland) and prediction by the rainfall intensity and duration method. Bull Eng Geol Environ 63(4):281–291

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sc 11:1633–1644

    Article  Google Scholar 

  • Pereira S, Zêzere JL, Quaresma ID, Santos PP, Santos M (2015) Mortality patterns of hydro-geomorphologic disasters. Risk Anal 1–23

    Google Scholar 

  • Pereira S, Zêzere JL, Quaresma I (2017) Landslide societal risk in Portugal in the period 1865–2015. World Landslide Forum, pp 491–499

    Google Scholar 

  • Peruccacci S, Brunetti MT, Luciani S, Vennari C, Guzzetti F (2012) Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 139–140:79–90

    Article  Google Scholar 

  • Peruccacci S, Brunetti MT, Luciani S, Calzolari MC, Bartolini D, Guzzetti F (2014) Topographic and pedological rainfall thresholds for the prediction of shallow landslides in Central Italy. World Landslide Forum 3, Beijing. Springer, pp 299–304

    Google Scholar 

  • Peruccacci S, Brunetti MT, Gariano SL, Melillo M, Rossi M, Guzzetti F (2017) Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290:39–57

    Article  Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930

    Article  Google Scholar 

  • Piciullo L, Gariano SL, Melillo M, Brunetti MT, Peruccacci S, Guzzetti F, Calvello M (2017) Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides 14:995–1008

    Article  Google Scholar 

  • Piciullo L, Calvello M, Cepeda JM (2018) Territorial early warning systems for rainfall-induced landslides. Earth-Sci Rev 179:228–247

    Article  Google Scholar 

  • Polemio M, Lonigro T (2015) Trends in climate, short-duration rainfall, and damaging hydrogeological events (Apulia, Southern Italy). Nat Hazards 75:515–540

    Article  Google Scholar 

  • Polemio M, Petrucci O (2010) Occurrence of landslide events and the role of climate in the twentieth century in Calabria, southern Italy. Q J Eng Geol Hydroge 43:403–415

    Article  Google Scholar 

  • Porter M, Morgenstern N (2013) Landslide risk evaluation—canadian technical guidelines and best practices related to landslides: a national initiative for loss reduction. Geol Surv Can, Open File 7312:21

    Google Scholar 

  • Raia S, Alvioli M, Rossi M, Baum R, Godt J, Guzzetti F (2014) Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geosci Model Dev 7(2):495–514

    Article  Google Scholar 

  • Rebetez M, Lugon R, Baeriswyl P-A (1997) Climatic change and debris flows in high mountain regions: the case study of the Ritigraben torrent (Swiss Alps). Clim Change 36:371–389

    Article  Google Scholar 

  • Reichenbach P, Cardinali M, De Vita P, Guzzetti F (1998) Regional hydrological thresholds for landslides and floods in the Tiber River Basin (central Italy). Environ Geol 35:146–159

    Article  Google Scholar 

  • Reichenbach P, Galli M, Cardinali M, Guzzetti F, Ardizzone F (2005) Geomorphological Mapping to assess landslide risk: concepts, methods and applications in the umbria region of central Italy. In: Glade T, Anderson MG, Crozier MJ (eds) Landslide Hazard and Risk. John Wiley, pp 429–468

    Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility. Earth-Sci Rev 180:60–91

    Article  Google Scholar 

  • Reid M, Christian S, Brien D, Henderson S (2015) Scoops 3d software to analyze three-dimensional slope stability throughout a digital landscape. Chap. A1. US Geological Survey Techniques and Methods, Book 14

    Google Scholar 

  • Rianna G, Zollo AL, Tommasi P, Paciucci M, Comegna L, Mercogliano P (2014) Evaluation of the effects of climate changes on landslide activity of Orvieto clayey slope. Proced Earth Plan Sci 9:54–63

    Article  Google Scholar 

  • Rice RM, Corbett ES, Bailey RG (1969) Soil slips related to vegetation, topography, and soil in Southern California. Water Resour Res 5(3):647–659

    Article  Google Scholar 

  • Rosi A, Segoni S, Catani F, Casagli N (2012) Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy). J Geogr Sci 22(4):617–629

    Article  Google Scholar 

  • Rosi A, Lagomarsino D, Rossi G, Segoni S, Battistini A, Casagli N (2015) Updating EWS rainfall thresholds for the triggering of landslides. Nat Hazards 78:297–308

    Article  Google Scholar 

  • Rosi A, Peternel T, Jemec-Auflič M, Komac M, Segoni S, Casagli N (2016) Rainfall thresholds for rainfall-induced landslides in Slovenia. Landslides 13:1571–1577

    Article  Google Scholar 

  • Rossi M, Reichenbach P (2016) LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0. Geosci Model Dev 9:3533–3543

    Article  Google Scholar 

  • Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S (2010a) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114:129–142

    Article  Google Scholar 

  • Rossi M, Witt A, Guzzetti F, Malamud BD, Peruccacci S (2010b) Analysis of historical landslide time series in the Emilia-Romagna region, northern Italy. Earth Surf Proc Land 35:1123–1137

    Article  Google Scholar 

  • Rossi M, Kirschbaum D, Valigi D, Mondini AC, Guzzetti F (2017) Comparison of satellite rainfall estimates and rain gauge measurements in italy, and impact on landslide modeling. Climate 5:90

    Article  Google Scholar 

  • Rossi M, Guzzetti F, Salvati P, Donnini M, Napolitano E, Bianchi C (2019) A predictive model of societal landslide risk in Italy. Earth-Sci Rev 196:102849

    Article  Google Scholar 

  • Roth RA (1983) Factors affecting landslide susceptibility in San Mateo County. California. Assoc Eng Geols Bull 20(4):353–372

    Google Scholar 

  • Salvati P, Bianchi C, Rossi M, Guzzetti F (2010) Societal landslide and flood risk in Italy. Nat Hazard Earth Sys 10:465–483

    Article  Google Scholar 

  • Salvati P, Marchesini I, Balducci V, Bianchi C, Guzzetti F (2013) A new digital catalogue of harmful landslides and floods in Italy. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 409–414

    Chapter  Google Scholar 

  • Salvati P, Bianchi C, Fiorucci F, Giostrella P, Marchesini I, Guzzetti F (2014) Perception of flood and landslide risk in Italy: a preliminary analysis. Nat Hazard Earth Sys 14:2589–2603

    Article  Google Scholar 

  • Salvati P, Rossi M, Bianchi C, Guzzetti F (2016) Landslide risk to the population of Italy and its geographical and temporal variations. In: Chavez M, Ghil M, Urrutia- Fucugauchi J (eds) Extreme events: observations, modeling, and economics. John Wiley, Geophysical Monograph Series, pp 177–194

    Google Scholar 

  • Salvati P, Petrucci O, Rossi M, Bianchi C, Pasqua AA, Guzzetti F (2018) Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Sci Total Environ 610–611:867–879

    Article  Google Scholar 

  • Samia J, Temme AJAM, Bregt AK, Wallinga J, Guzzetti F, Ardizzone F, Rossi M (2017a) Characterization and quantification of path dependency in landslide susceptibility. Geomorphology 292:16–24

    Article  Google Scholar 

  • Samia J, Temme AJAM, Bregt AK, Wallinga J, Stuiver J, Guzzetti F, Ardizzone F, Rossi M (2017b) Do landslides follow landslides? Insights in path dependency from a multi-temporal landslide inventory. Landslides 14:547–558

    Article  Google Scholar 

  • Samia J, Temme AJAM, Bregt AK, Wallinga J, Guzzetti F, Ardizzone F, Rossi M (2018) Implementing landslide path dependency in landslide susceptibility modelling. Landslides 15:2129–2144

    Article  Google Scholar 

  • Samia J, Temme AJAM, Bregt AK, Wallinga J, Guzzetti F, Ardizzone F (2019) Dynamic path dependent landslide susceptibility modelling. Nat Hazard Earth Sys 2019

    Google Scholar 

  • Santangelo M, Marchesini I, Bucci F, Cardinali M, Fiorucci F, Guzzetti F (2015) An approach to reduce mapping errors in the production of landslide inventory maps. Nat Hazard Earth Sys 15:2111–2126

    Article  Google Scholar 

  • Savage W, Godt J, Baum R (2003) A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration. Proceedings 3rd International Conference on Debris Flow Hazards, Davos, September 10–13, 2003, pp 179–187

    Google Scholar 

  • Savage W, Godt J, Baum R (2004) Modeling time-dependent aerial slope stability. In: Lacerda W, Erlich M, Fontoura S, Sayao A (eds) Proceedings 9th International Symposium on Landslides. Balkema, London, pp 23–36

    Google Scholar 

  • Schmidt J, Dikau R (2004) Modeling historical climate variability and slope stability. Geomorphology 60:433–447

    Article  Google Scholar 

  • Schmidt J, Glade T (2003) Linking global circulation model outputs to regional geomorphic models: a case study of landslide activity in New Zealand. Clim Res 25:135–150

    Article  Google Scholar 

  • Schulte SM, Mooney WD (2005) An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts. Geophys J Int 161:707–721

    Article  Google Scholar 

  • Segoni S, Rosi A, Rossi G, Catani F, Casagni N (2014a) Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional scale warning systems. Nat Hazard Earth Sys 14:2637–2648

    Article  Google Scholar 

  • Segoni S, Rossi G, Rosi A, Catani F (2014b) Landslides triggered by rainfall: a semiautomated procedure to define consistent intensity-duration thresholds. Comput Geosci 63:123–131

    Article  Google Scholar 

  • Segoni S, Battistini A, Rossi G, Rosi A, Lagomarsino D, Catani F, Moretti S, Casagli N (2015a) Technical note: an operational landslide early warning system at regional scale based on space-time-variable rainfall thresholds. Nat Hazard Earth Sys 15:853–861

    Article  Google Scholar 

  • Segoni S, Lagomarsino D, Fanti R, Moretti S, Casagli N (2015b) Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides 12:773–785

    Article  Google Scholar 

  • Segoni S, Piciullo L, Gariano SL (2018a) Preface: landslide early warning systems: monitoring systems, rainfall thresholds, warning models, performance evaluation and risk perception. Nat Hazard Earth Sys 18:3179–3186

    Article  Google Scholar 

  • Segoni S, Piciullo L, Gariano SL (2018b) A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15:1483–1501

    Article  Google Scholar 

  • Sewell RJ, Parry S, Millis SW, Wang N, Rieser U, DeWit R (2015) Dating of debris flow fan complexes from Lantau Island, Hong Kong, China: The potential relationship between landslide activity and climate change. Geomorphology 248:205–227

    Article  Google Scholar 

  • Sharp P, Hockfield S (2017) Convergence: The future of health. Science 355:589.1–589

    Google Scholar 

  • Sharp P, Jacks T, Hockfield S (2016) Convergence: the future of health. ConvergenceRevolution.net, Cambridge, Massachusetts

    Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. Water Resource Monograph Series 18, AGU, Washington

    Google Scholar 

  • Simkin T, Siebert L, Blong R (2001) Volcano fatalities-lessons from the historical record. Science 291:255

    Article  Google Scholar 

  • Simonett DS (1967) Landslide distribution and earthquakes in the Bewani and Torricelli Mountains, New Guinea. In: Jennings JN, Mabbutt JA (eds) Landform studies from Australia and New Guinea. Cambridge University Press, Cambridge, pp 64–84

    Google Scholar 

  • Simoni S, Zanotti F, Bertoldi G, Rigon R (2008) Modeling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS. Hydrol Process 22:532–545

    Article  Google Scholar 

  • Soldati M, Corsini A, Pasuto A (2004) Landslides and climate change in the Italian Dolomites since the Late glacial. CATENA 55:141–161

    Article  Google Scholar 

  • Stähli M, Sättele M, Huggel C, McArdell BW, Lehmann P, Van Herwijnen A, Berne A, Schleiss M, Ferrari A, Kos A, Or D, Springman SM (2015) Monitoring and prediction in early warning systems for rapid mass movements. Nat Hazard Earth Sys 15:905–917

    Article  Google Scholar 

  • Stark CP, Guzzetti F (2009) Landslide rupture and the probability distribution of mobilized debris volumes. J Geophys Res 114:F00A02

    Google Scholar 

  • Stark CP, Hovius N (2001) The characterization of landslide size distributions. Geophys Res Lett 28:1091–1094

    Article  Google Scholar 

  • Stoffel M, Beniston M (2006) On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate: A case study from the Swiss Alps. Geophys Res Lett 33:L16404

    Article  Google Scholar 

  • Stoffel M, Tiranti D, Huggel C (2014) Climate change impacts on mass movements—case studies from the European Alps. Sci Total Environ 493:1255–1266

    Article  Google Scholar 

  • Stucchi M, Rovida A, Gomez Capera AA et al (2013) The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. J Seismol 17:523–544

    Article  Google Scholar 

  • Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using Random Forests. Remote Sens Environ 115:2564–2577

    Article  Google Scholar 

  • Tacher L, Bonnard C (2007) Hydromechanical modelling of a large landslide considering climate change conditions. In: McInnes R, Jakeways J, Fairbank H, Mathie E (eds) Landslides and climate change: challenges and solutions, proceedings international conference on landslides and climate change, Ventnor, Taylor & Francis, pp 131–141

    Google Scholar 

  • Taylor D (1948) Fundamentals of soil mechanics. Wiley, New York

    Book  Google Scholar 

  • Taylor FE, Malamud BD, Witt A, Guzzetti F (2018) Landslide shape, ellipticity and length-to-width ratios. Earth Surf Proc Land 43:3164–3189

    Article  Google Scholar 

  • Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35:124–130

    Article  Google Scholar 

  • Terlien MTJ, van Westen CJ, van Asch ThWJ (1995) Deterministic modelling in GIS-based landslide hazard assessment. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing nat hazards. Kluwer AP, Dordrecht, pp 57–77

    Google Scholar 

  • Tiranti D, Rabuffetti D (2010) Estimation of rainfall thresholds triggering shallow implementation. Landslides 7:471–481

    Article  Google Scholar 

  • Trauth MH, Alonso RA, Haselton KR, Hermanns RL, Strecker MR (2000) Climate change and mass movements in the NW Argentine Andes. Earth Planet Sc Lett 179(2):243–256

    Article  Google Scholar 

  • Trigila A, Iadanza C, Spizzichino D (2010) Quality assessment of the Italian landslide inventory using GIS processing. Landslides 7:455–470

    Article  Google Scholar 

  • Turkington T, Remaître A, Ettema J, Hussin H, van Westen C (2016) Assessing debris flow activity in a changing climate. Climate Change

    Google Scholar 

  • UNISDR (2006) Platform for the promotion of early warning—developing early warning systems: a checklist. In: Proc. of EWC III, Third International Conference on Early Warning, From Concept to Action, UN Secretariat of the International Strategy for Disaster Reduction, Bonn

    Google Scholar 

  • United Nations (2016) Report of the open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction

    Google Scholar 

  • van Asch Th WJ, Buma J, van Beek LPH (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30(1–2):25–32

    Article  Google Scholar 

  • Van Den Eeckhaut M, Hervás J (2012) State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558

    Article  Google Scholar 

  • Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet J-P, Montanarella L, Nadim F (2012a) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9:357–369

    Article  Google Scholar 

  • Van Den Eeckhaut M, Kerle N, Poesen JAW, Hervás J (2012b) Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data. Geomorphology 173–174:30–42

    Article  Google Scholar 

  • van Westen CJ, Castellanos Abella EA (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article  Google Scholar 

  • VanDine DF, Moore G, Wise M, Vanbuskirk C, Gerath R (2004) Technical terms and methods. In: Wise M, Moore G, VanDine D (eds) Landslide risk case studies in forest development planning and operations. BC, Ministry of Forests, Forest Science Program, Land management handbook 56, pp 13–26

    Google Scholar 

  • Varnes DJ, and the IAEG Commission on Landslides and other Mass-Movements (1984) Landslide hazard zonation: a review of principles and practice. UNESCO Press, Paris

    Google Scholar 

  • Vennari C, Gariano SL, Antronico L, Brunetti MT, Iovine GGR, Peruccacci S, Terranova OG, Guzzetti F (2014) Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat Hazard Earth Sys 14:317–330

    Article  Google Scholar 

  • Vessia G, Parise M, Brunetti MT, Peruccacci S, Rossi M, Vennari C, Guzzetti F (2014) Automated reconstruction of rainfall events responsible for shallow landslides. Nat Hazard Earth Sys 14:2399–2408

    Article  Google Scholar 

  • Vieira BC, Fernandes NF, Filho OA (2010) Shallow landslide prediction in the Serra do Mar, São Paulo. Nat Hazard Earth Sys 10:1829–1837

    Article  Google Scholar 

  • Villani V, Rianna G, Mercogliano P, Zollo AL (2015) Statistical approaches versus weather generator to downscale rcm outputs to slope scale for stability assessment: a comparison of performances. Electr J Geotech Eng 20(4):1495–1515

    Google Scholar 

  • Ward TJ, Li RM, Simons DB (1981) Use of a mathematical model for estimating potential landslide sites in steep forested drainage basins. IAHS Publication 132:21–41

    Google Scholar 

  • Ward TJ, Li RM, Simons DB (1982) Mapping landslides in forested watersheds. J Geotech Eng-ASCE 8:319–324

    Google Scholar 

  • Wilde M, Günther A, Reichenbach P, Malet J-P, Hervás J (2018) Pan-European landslide susceptibility mapping: ELSUS Version 2. J Maps 14:97–104

    Article  Google Scholar 

  • Wilson RC, Jayko AS (1997) Preliminary maps showing rainfall thresholds for debris-flow activity, San Francisco Bay Region, California. US Geological Survey Open-File Report 97–745 F

    Google Scholar 

  • Wilson RC, Torikai JD, Ellen SD (1992) Development of rainfall thresholds for debris flows in the Honolulu District, Oahu. US Geological Survey Open-File Report 92–521

    Google Scholar 

  • Witham CS (2005) Volcanic disasters and incidents: a new database. J Volcanol Geoth Res 148:191–233

    Article  Google Scholar 

  • Witt A, Malamud BD, Rossi M, Guzzetti F, Peruccacci S (2010) Temporal correlations and clustering of landslides. Earth Surf Proc Land 35:1138–1156

    Article  Google Scholar 

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31:2097–2110

    Article  Google Scholar 

  • Wu X, Chen X, Zhan FB, Hong S (2015) Global research trends in landslides during 1991-2014: a bibliometric analysis. Landslides 12(6):1215–1226

    Article  Google Scholar 

  • Wyllie DC, Mah CW (2004) Rock Slope Engineering: civil and mining. Spon, London

    Google Scholar 

  • Yang X, Chen L (2010) Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides. Int J Appl Earth Obs 12:488–496

    Google Scholar 

  • Yin Z, Qin X, Yin Y, Zhao W, Wei G (2014) Landslide developmental characteristics and response to climate change since the last glacial in the upper reaches of the Yellow river. NE Tibetan plateau. Acta Geologica Sinica 88(2):635–646

    Article  Google Scholar 

  • Zêzere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazard Earth Sys 5:331–344

    Article  Google Scholar 

Download references

Acknowledgements

The paper distils results of research work I have done in the last three decades mainly with colleagues of the Geomorphology Research Group of the Research Institute for Geo-Hydrological Protection (IRPI), of the Italian National Research Council (CNR). Without their enduring efforts, the research I have conducted, and this article, would not have been possible. The article, and the talk on which the article is based, further benefited from comments, suggestions, and discussions with several colleagues at CNR IRPI, and particularly Paolo Allasia, Mauro Cardinali, Stefano L. Gariano, Daniele Giordan, Piernicola Lollino, Lorenzo Marchi, Alessandro C. Mondini, and Paola Reichenbach. I thank all of them for their comments, insight and wisdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Guzzetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guzzetti, F. (2021). On the Prediction of Landslides and Their Consequences. In: Sassa, K., Mikoš, M., Sassa, S., Bobrowsky, P.T., Takara, K., Dang, K. (eds) Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer, Cham. https://doi.org/10.1007/978-3-030-60196-6_1

Download citation

Publish with us

Policies and ethics