Skip to main content

Advertisement

Log in

Global research trends in landslides during 1991–2014: a bibliometric analysis

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

A bibliometric analysis was conducted to evaluate landslide research from different perspectives during the period 1991–2014 based on the Science Citation Index-Expanded and Social Sciences Citation Index databases. Based on a sample of 10,567 articles that were related to landslides, the bibliometric analysis revealed the scientific outputs, science categories, source titles, global geographical distribution of the authors, productive authors, international collaborations, institutions, and temporal evolution of keyword frequencies. Landslide-related research has undergone notable growth during the past two decades. Multidisciplinary Geosciences, Geological Engineering, and Water Resources were the three major science categories, and Geomorphology was the most active journal during the surveyed period. The major author clusters and research regions are located in North America, Western Europe, and East Asia. The USA was a leading contributor to global landslide research, with the most independent and collaborative articles, and its dominance was also confirmed in the national/regional collaboration network. The Chinese Academy of Sciences, US Geological Survey, and Italian National Research Council were the three major contributing institutions. Guzzetti F from the Italian National Research Council was the most productive author, with the most high-quality articles. A keyword analysis found that landslide susceptibility assessment, rainfall- and earthquake-induced landslide stability, and effective research technologies and methods were consistent topics that attracted the most attention during the study period. Several keywords, such as “landslide susceptibility”, “earthquake”, “GIS”, “remote sensing”, and “logistic regression”, received dramatically increased attention during the study period, possibly signalling future research trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble decision tree-based chi-squared automatic interaction detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 11(6):1063–1078. doi:10.1007/s10346-014-0466-0

    Article  Google Scholar 

  • Antolini F, Barla M (2015) Combining finite-discrete numerical modelling and radar interferometry for rock landslide early warning systems. In: Lollino G, Giordan D, Thuro K, Carranza-Torres C, Wu F, Marinos P, Delgado C (eds) Engineering geology for society and territory 6. Springer International Publishing, Switzerland, pp 705–708

    Google Scholar 

  • Barla M, Antolini F (2015) An integrated methodology for landslides’ early warning systems. Landslides. doi:10.1007/s10346-015-0563-8

    Google Scholar 

  • Bois T, Tric E, Lebourg T (2014) Influence of inherited topography on gravitational slope failure: three-dimensional numerical modelling of the La Clapière slope, Alpes—Maritimes, France. Terra Nov. 26(5):354–362. doi:10.1111/ter.12105

  • Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geogr Ann A 62(1/2):23–27. doi:10.2307/520449

    Article  Google Scholar 

  • Campbell D, Côté G, Grant J, Knapp M, Mehta A (2015) Comparative performance of adult social care research, 1996–2011: a bibliometric assessment. Br J Soc Work. doi:10.1093/bjsw/bcv022

    Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7(3):291–301. doi:10.1007/s10346-010-0215-y

    Article  Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102(3):164–177. doi:10.1016/j.enggeo.2008.03.016

    Article  Google Scholar 

  • Chen C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 57(3):359–377. doi:10.1002/asi.20317

    Article  Google Scholar 

  • Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118(3):225–238. doi:10.1016/j.geomorph.2010.01.003

    Article  Google Scholar 

  • Chiu WT, Ho YS (2007) Bibliometric analysis of tsunami research. Scientometrics 73(1):3–17. doi:10.1007/s11192-005-1523-1

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263. doi:10.1007/s10064-013-0538-8

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation, special report 247. Transportation Research Board, Washington, DC, pp 36–75

    Google Scholar 

  • De Bakker FG, Groenewegen P, Den Hond F (2005) A bibliometric analysis of 30 years of research and theory on corporate social responsibility and corporate social performance. Bus Soc 44(3):283–317. doi:10.1177/0007650305278086

    Article  Google Scholar 

  • Fahimnia B, Sarkis J, Davarzani H (2015) Green supply chain management: a review and bibliometric analysis. Int J Prod Econ 162:101–114. doi:10.1016/j.ijpe.2015.01.003

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102(3):85–98. doi:10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Gokceoglu C, Sezer E (2009) A statistical assessment on international landslide literature (1945–2008). Landslides 6(4):345–351. doi:10.1007/s10346-009-0166-3

    Article  Google Scholar 

  • Grossi F, Belvedere O, Rosso R (2003) Geography of clinical cancer research publications from 1995 to 1999. Eur J Cancer 39(1):106–111. doi:10.1016/S0959-8049(02)00239-3

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31(1):181–216. doi:10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112(1):42–66. doi:10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Ho YS, Satoh H, Lin SY (2010) Japanese lung cancer research trends and performance in science citation index. Intern Med 49(20):2219–2228. doi:10.2169/internalmedicine.49.3687

    Article  Google Scholar 

  • Lampe HW, Hilgers D (2015) Trajectories of efficiency measurement: a bibliometric analysis of DEA and SFA. Eur J Oper Res 240(1):1–21. doi:10.1016/j.ejor.2014.04.041

    Article  Google Scholar 

  • Liu XJ, Zhan FB, Hong S, Niu BB, Liu YL (2012) A bibliometric study of earthquake research: 1900–2010. Scientometrics 92(3):747–765. doi:10.1007/s11192-011-0599-z

    Article  Google Scholar 

  • Nandi A, Shakoor A (2008) Application of logistic regression model for slope instability prediction in Cuyahoga river watershed, Ohio, USA. Georisk 2(1):16–27. doi:10.1080/17499510701842221

    Google Scholar 

  • Nederhof AJ (2006) Bibliometric monitoring of research performance in the social sciences and the humanities: a review. Scientometrics 66(1):81–100. doi:10.1007/s11192-006-0007-2

    Article  Google Scholar 

  • Neri M, Milazzo D, Ugolini D, Milic M, Campolongo A, Pasqualetti P, Bonassi S (2015) Worldwide interest in the comet assay: a bibliometric study. Mutagenesis 30(1):155–163. doi:10.1093/mutage/geu061

    Article  Google Scholar 

  • Niu R, Wu X, Yao D, Peng L, Ai L, Peng J (2014) Susceptibility assessment of landslides triggered by the Lushan earthquake, April 20, 2013, China. IEEE J-Stars 7(9):3979–3992. doi:10.1109/JSTARS.2014.2308553

    Google Scholar 

  • Notti D, Meisina C, Zucca F, Balduzzi G, Colombo A (2015) Map numerical modelling of landslides using data from different monitoring systems: the example of Rosone (Western Alps). In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory 2. Springer International Publishing, Switzerland, pp 1455–1459

    Google Scholar 

  • Palladino MR, Turconi L, Luino F, Brunetti MT, Peruccacci S, Guzzetti F (2015) Influence of geological, morphological and climatic factors in the initiation of shallow landslides in north western Italy. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory 2. Springer International Publishing, Switzerland, pp 1389–1392

    Google Scholar 

  • Petschko H, Brenning A, Bell R, Goetz J, Glade T (2014) Assessing the quality of landslide susceptibility maps—case study lower Austria. Nat Hazards Earth Syst 14(1):95–118. doi:10.5194/nhessd-1-1001-2013

    Article  Google Scholar 

  • Pradhan B (2010) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45(10):1244–1256. doi:10.1016/j.asr.2010.01.006

    Article  Google Scholar 

  • Pritchard A (1969) Statistical bibliography or bibliometrics? J Doc 25(4):348–349

    Google Scholar 

  • Regmi NR, Giardino JR, McDonald EV, Vitek JD (2014) A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides 11(2):247–262. doi:10.1007/s10346-012-0380-2

    Article  Google Scholar 

  • Ren F, Wu X, Zhang K, Niu R (2015) Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the three gorges, China. Environ Earth Sci 73(8):4791–4804. doi:10.1007/s12665-014-3764-x

    Article  Google Scholar 

  • Salvati L, Carlucci M (2015) Towards sustainability in agro-forest systems? Grazing intensity, soil degradation and the socioeconomic profile of rural communities in Italy. Ecol Econ 112:1–13. doi:10.1016/j.ecolecon.2015.02.001

    Article  Google Scholar 

  • Sassa K, Tsuchiya S, Fukuoka H, Mikos M, Doan L (2015) Landslides: review of achievements in the second 5-year period (2009–2013). Landslides 12(2):213–223. doi:10.1007/s10346-015-0567-4

    Article  Google Scholar 

  • Sousa RL, Karam K, Einstein HH (2014) Exploration analysis for landslide risk management. Georisk Assess Manag Risk Eng Syst Geohazard 8(3):155–170. doi:10.1080/17499518.2014.958174

    Article  Google Scholar 

  • Sun J, Wang MH, Ho YS (2012) A historical review and bibliometric analysis of research on estuary pollution. Mar Pollut Bull 64(1):3–21. doi:10.1016/j.marpolbul.2011.10.034

    Article  Google Scholar 

  • Thiebes B, Bell R, Glade T, Jäger S, Mayer J, Anderson M, Holcombe L (2014) Integration of a limit-equilibrium model into a landslide early warning system. Landslides 11(5):859–875. doi:10.1007/s10346-013-0416-2

    Article  Google Scholar 

  • Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS (2014) Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in west Sumatera province, Indonesia. Catena 118:124–135. doi:10.1016/j.catena.2014.02.005

    Article  Google Scholar 

  • van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184. doi:10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3):112–131. doi:10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. In: Natural hazards 3. United Nations Educational, Scientific and Cultural Organization, Paris 63

  • Vranken L, Vantilt G, Van Den Eeckhaut M, Vandekerckhove L, Poesen J (2014) Landslide risk assessment in a densely populated hilly area. Landslides. doi:10.1007/s10346-014-0506-9

    Google Scholar 

  • Wu X, Niu R, Ren F, Peng L (2013) Landslide susceptibility mapping using rough sets and back-propagation neural networks in the three gorges, China. Environ Earth Sci 70(3):1307–1318. doi:10.1007/s12665-013-2217-2

    Article  Google Scholar 

  • Wu X, Ren F, Niu R (2014) Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the three gorges of China. Environ Earth Sci 71(11):4725–4738. doi:10.1007/s12665-013-2863-4

    Article  Google Scholar 

  • Zakaria Z, Hirnawan F, Widayati S (2015) Rain and earthquake-induced landslides in west Java, Indonesia, case study in Subang area near the Baribis Fault, with implications for an early warning system. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory 2. Springer International Publishing, Switzerland, pp 637–640

    Google Scholar 

  • Zyoud SH, Al-Jabi SW, Sweileh WM (2015) Worldwide research productivity of paracetamol (acetaminophen) poisoning: a bibliometric analysis (2003–2012). Hum Exp Toxicol 34(1):12–23. doi:10.1177/0960327114531993

    Article  Google Scholar 

Download references

Acknowledgments

This study is jointly supported by the NSFC (41271455), the Open Fund of the Key Laboratory of Urban Land Resources Monitoring and Simulation, the Ministry of Land and Resources (KF-2015-01-006), and the Open Research Fund of the State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing (13S01), the State Key Laboratory of Resources and Environmental Information System, and the Changjiang Soil and Water Conservation Monitoring Centre, WRC, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Chen, X., Zhan, F.B. et al. Global research trends in landslides during 1991–2014: a bibliometric analysis. Landslides 12, 1215–1226 (2015). https://doi.org/10.1007/s10346-015-0624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0624-z

Keywords

Navigation