Skip to main content

Advertisement

Log in

Impacts of future climatic change (2070–2099) on the potential occurrence of debris flows: a case study in the Massif des Ecrins (French Alps)

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

In this paper we investigate the impacts of future climatic change on the occurrence of debris flows in the Massif des Ecrins (French Alps). Two distinct aspects are discussed: the impact of future climatic change on the evolution of the process, and changes in the spatial distribution. Three climate simulations are presented for the current period (1970–1999) and for future periods (2070–2099) using GCM ARPEGE CLIMAT model developed by Météo-France. Simulated data are then statistically downscaled to obtain a higher spatial resolution. In the first step, we compare occurrence probabilities in the current period and in the next century. In the second step, we estimate which zones would be affected by the process in the future at the scale of the Massif des Ecrins. For the current period, the best model was obtained between debris flows and the number of days between June 15th and October 15th with more than 20 mm calculated either from observed meteorological or simulated data. Results of the ARPEGE model considering the A2 hypothesis (IPCC 2007) showed that the most significant climatic trends for the end of the century will be a decrease in intense rainy events and an increase in temperature. These trends are expected to reduce the occurrence of hill slope debris flows in the Massif des Ecrins. From a spatial point of view, the increase in temperature should result in a shift of the 0°C isotherm to a higher elevation which, in turn, should result in a 20% reduction of the number of slopes affected by the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich JH, Nelson FD (1984) Linear probability, logit, and probit models. Series, Quantitative applications in the social sciences 45. Sage University Paper, Thousand Oaks, 95 pp

  • Bardou E, Delaloye R (2004) Effects of ground freezing and snow avalanche deposits on debris flows in alpine environments. Nat Hazards Earth Syst Sci 4:519–530

    Article  Google Scholar 

  • Blijenberg HM (1998) Rolling stones? Triggering and frequency of hill slope debris flows in the Bachelard Valley, Southern French Alps. PhD Thesis, Utrecht University, 233 pp

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flow. Geogr Ann 62A:23–28

    Article  Google Scholar 

  • Christensen OB, Christensen JH (2004) Intensification of extreme European summer precipitation in a warmer climate. Glob Planet Change 44:107–117

    Article  Google Scholar 

  • De Boor C (2001) A practical guide to splines. Springer Series: Applied Mathematical Sciences, vol 27, 1st ed. 1978. 1st hardcover printing, XVIII, 372 p. ISBN: 978-0-387-95366-3

  • Déqué M (2005) IMFREX. Météo-France, Paris, 55 pp. http://medias.cnrs.fr/imfrex/web/documents/downloads/rapport_final_imfrex.pdf

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Change 57:16–26. doi:10.1016/j.gloplacha.2006.11.030

    Article  Google Scholar 

  • Déqué M, Piedelievre JP (1995) High-resolution climate simulation over Europe. Clim Dyn 11:321–339

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE-IFS atmosphere model: a contribution to the French community climate modeling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • Déqué M, Marquet P, Jones RG (1998) Simulation of climate change over Europe using a global variable resolution general circulation model. Clim Dyn 14:173–189

    Article  Google Scholar 

  • Gärtner H, Stoffel M, Lièvre I, Conus D, Grichting M, Monbaron M (2003) Debris flow frequency derived from tree-ring analyses and geomorphic mapping, Valais, Swizerland. In: Chen R (ed) Debris flow hazards mitigation. Millpress, Rotterdam, pp 207–217

    Google Scholar 

  • Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17

    Article  Google Scholar 

  • Haeberli W, Rickenmann D, Zimmerman M (1990) Investigation of 1987 debris flows in the Swiss Alps: general concept and geophysical soundings. Hydrology in Mountainous regions. II Artificial reservoirs; Water and slopes, vol 194. Proceedings of two Lausanne Symposia, August 1990. IAHS publication, pp 303–310

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, New York

    Google Scholar 

  • Hungr O (2005) Classification and terminology. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin, pp 9–23

    Chapter  Google Scholar 

  • IPCC (2007) Climate change. The scientific basis, contribution of working group I to the third assessment report of the IPCC. Cambridge University Press, Cambridge, UK, 881 pp

    Google Scholar 

  • Iverson R (1997) The physics of debris flows. Rev Geophys 35:245–296

    Article  Google Scholar 

  • Johns TC, Gregory JM, Ingram WJ, Johnson CE, Jones A, Mitchell JFB, Roberts DL, Sexton DMH, Stevenson DS, Tett SFB, Woodage MJ (2001) Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3model under updated emission scenarios. Hadley Centre Technical Note 22:62 pp

    Google Scholar 

  • Jomelli V (1997) Géodynamique des dépôts d’avalanche: analyses morphométriques et sédimentologiques. PhD thesis, University Paris VII, Paris, 252 pp

  • Jomelli V (1999) Caractéristiques morphosédimentaires des dépôts d’avalanches en haute montagne alpine; variations spatio-temporelles de leur mise en place depuis le Petit Age Glaciaire. Géogr Phys Quat 53:199–209

    Google Scholar 

  • Jomelli V, Francou B (2000) Comparing characteristics of rockfall talus and snow avalanche landforms in an alpine environment using a new methodological approach. Geomorphology 35:181–192

    Article  Google Scholar 

  • Jomelli V, Chochillon C, Brunstein D, Pech P (2003) Hillslope debris flows occurrence since the beginning of the 20th century in the French Alps. In: Chen R (ed) Debris flow hazards mitigation. Millpress, Rotterdam, pp 127–137

    Google Scholar 

  • Jomelli V, Pech P, Chochillon C, Brunstein D (2004) Geomorphic variations of debris flows and recent climatic change in the French Alps. Clim Change 64:77–102

    Article  Google Scholar 

  • Jomelli V, Brunstein D, Grancher D, Pech P (2007) Is the response of hill slope debris flows to recent climate change univocal? A case study in the Massif des Ecrins (French Alps). Clim Change 85:119–137

    Article  Google Scholar 

  • Pech P, Jomelli V (2001) Rôle du cône apical dans le déclenchement des coulées de débris alpines du Massif du Dévoluy, Hautes-Alpes, France. Géogr Phys Quat 1:47–61

    Google Scholar 

  • Raible CC, Casty C, Luterbacher J, Pauling A, Esper J, Frank DC, Buntgen U, Roesch AC, Tschuck P, Wild M, Vidale PL, Schar C, Wanne H (2006) Climate variability—observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD. Clim Change 79:9–29

    Article  Google Scholar 

  • Rebetez M, Lugon R, Baeriswyl PA (1997) Climatic change and debris flows in high mountain regions: the case study of the Ritigraben Torrent (Swiss Alps). Clim Change 36:371–389

    Article  Google Scholar 

  • Remaitre A, Maquaire O, Pierre S (2002) Analyse d’une lave torrentielle dans le torrent de Faucon (bassin de Barcelonnette Alpes de Haute-Provence), détermination des zones de déclenchement et de contribution. Géomorphologie 1:71–84

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using Optimum Interpolation. J Climate 7:929–948

    Article  Google Scholar 

  • Rickenmann D, Zimmermann M (1993) The 1987 debris flow in Switzerland: documentation and analysis. Geomorphology 8:175–189

    Article  Google Scholar 

  • Salameh T, Drobinski P, Vrac M, Naveau P (2008) Statistical downscaling of near-surface wind over complex terrain in southern France. Meteorol Atmos Phys 103:253–265

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Stoffel M, Beniston M (2006) On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate: a case study from the Swiss Alps. Geophys Res Lett 33:L16404

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M, Hassler G (2006) Differentiating past events on a cone influenced by debris-flow and snow avalanche activity—a dendrogeomorphological approach. Earth Surf Process Landf 31:1424–1437

    Article  Google Scholar 

  • Strunk H (1992) Reconstructing debris flow frequency in the southern Alps back AD 1500 using dendrogeomorphological analysis. Erosion, debris flow and environment in Mountain Regions. Proceedings of the Chengdu symposium, vol 209. IAHS publ, pp 299–306

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparaison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211

    Article  Google Scholar 

  • Van Steijn H (1991) Frequency of hill slope debris flows in part of the French Alps. Turkish Bull Geomorphology 19:83–90

    Google Scholar 

  • Van Steijn H (1996) Debris flow magnitude–frequency relationships for mountainous regions of central and Northwest Europe. Geomorphology 15:259–273

    Article  Google Scholar 

  • Vrac M, Marbaix P, Paillard D, Naveau P (2007) Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe. Climate of the Past 15:227–239

    Google Scholar 

  • Wood SN (2000) Modelling and smoothing parameter estimation with multiple quadratic penalties. JR Stat Soc B 62(2):413–428

    Article  Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216

    Article  Google Scholar 

  • Zimmerman M, Haeberli W (1992) Climatic change and debris flow activity in high mountains areas. A case study in the Swiss Alps. Catena Suppl 22:59–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jomelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jomelli, V., Brunstein, D., Déqué, M. et al. Impacts of future climatic change (2070–2099) on the potential occurrence of debris flows: a case study in the Massif des Ecrins (French Alps). Climatic Change 97, 171–191 (2009). https://doi.org/10.1007/s10584-009-9616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-009-9616-0

Keywords

Navigation