Skip to main content

Non-FDG PET/CT

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

The major applications for molecular imaging with PET in clinical practice concern cancer imaging. Undoubtedly, 18F-FDG represents the backbone of nuclear oncology as it remains so far the most widely employed positron emitter compound. The acquired knowledge on cancer features, however, allowed the recognition in the last decades of multiple metabolic or pathogenic pathways within the cancer cells, which stimulated the development of novel radiopharmaceuticals. An endless list of PET tracers, substantially covering all hallmarks of cancer, has entered clinical routine or is being investigated in diagnostic trials. Some of them guard significant clinical applications, whereas others mostly bear a huge potential. This chapter summarizes a selected list of non-FDG PET tracers, described based on their introduction into and impact on clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerstaff E, Pflug BR, Nelson JB et al (2001) Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 61:3599–3603

    CAS  PubMed  Google Scholar 

  2. Afshar-Oromieh A, Avtzi E, Giesel FL et al (2015) The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42(2):197–209

    Article  CAS  PubMed  Google Scholar 

  3. Afshar-Oromieh A, Babich JW, Kratochwil C et al (2016) The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med 57:79S–89S

    Article  CAS  PubMed  Google Scholar 

  4. Afshar-Oromieh A, Hetzheim H, Kratochwil C et al (2015) The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med 56:1697–1705

    Article  CAS  PubMed  Google Scholar 

  5. Ahlström H, Eriksson B, Bergstrom M et al (1995) Pancreatic neuroendocrine tumors: diagnosis with PET. Radiology 195:333–337

    Article  PubMed  Google Scholar 

  6. Ahn T, Roberts MJ, Abduljabar A et al (2019) A review of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) in renal cell carcinoma. Mol Imaging Biol. https://doi.org/10.1007/s11307-018-01307-0. (Epub ahead of print)

  7. Albert NL, Winkelmann I, Suchorska B et al (2016) Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20–40 min scans. Eur J Nucl Med Mol Imaging 43:1105–1114

    Article  PubMed  Google Scholar 

  8. Albert NL, Weller M, Suchorscka B, et al (2016) Response assessment in neuro-oncology working group and European association for neuro-oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18(9):1199–1208

    Google Scholar 

  9. Albrecht S, Buchegger F, Soloviev D et al (2007) (11)C-Acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34:185–196

    Article  PubMed  Google Scholar 

  10. Allan RM, Pike VW, Maseri A et al (1981) Myocardial metabolism of 11C-acetate: experimental and patient studies. Circulation 64(Suppl IV):IV–75, (Abst)

    Google Scholar 

  11. Allan RM, Selwyn AP, Pike VW et al (1980) In vivo experimental and clinical studies of normal and ischemic myocardium using 11C-acetate. Circulation 62 (Suppl III):111–174, (Abst)

    Google Scholar 

  12. Ambrosini V, Campana D, Bodei L et al (2010) 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med 51(5):669–673

    Article  PubMed  Google Scholar 

  13. Ambrosini V, Campana D, Tomassetti P et al (2012) 68Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging 39(Suppl 1):S52–S60

    Article  PubMed  CAS  Google Scholar 

  14. Ambrosini V, Fanti S (2014) 68Ga-DOTA-peptides in the diagnosis of NET. PET Clin. 9(1):37–42

    Article  PubMed  Google Scholar 

  15. Ambrosini V, Campana D, Nanni C et al (2012) Is 68Ga-DOTA-NOC PET/CT indicated in patients with clinical, biochemical or radiological suspicion of neuroendocrine tumour? Eur J Nucl Med Mol Imaging 39(8):1278–1283

    Google Scholar 

  16. Ambrosini V, Campana D, Polverani G et al (2015) Prognostic value of 68Ga-DOTANOC PET/CT SUVmax in patients with neuroendocrine tumors of the pancreas. J Nucl Med 56(12):1843–1848

    Google Scholar 

  17. Ambrosini V, Marzola MC, Rubello D et al (2009) (68)Ga-somatostatin analogues PET and (18)F-DOPA PET in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging

    Google Scholar 

  18. Ambrosini V, Tomassetti P, Castellucci P et al (2008) Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 35(8):1431–1438

    Google Scholar 

  19. Antunes P, Ginj M, Zhang H et al (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34(7):982–993

    Article  CAS  PubMed  Google Scholar 

  20. Banerjee SR, Pullambhatla M, Byun Y et al (2010) 68Ga-labeled inhibitors of prostate-specific membrane antigen (PSMA) for imaging prostate cancer. J Med Chem 53:5333–5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrio M, Czernin J, Fanti S et al (2017) The impact of somatostatin receptor-directed PET/CT on the management of patients with neuroendocrine tumor: a systematic review and meta-analysis. J Nucl Med 58(5):756–761

    Google Scholar 

  22. Barthel H, Cleij MC, Collingridge DR et al (2003) 3’-Deoxy-3’-(18F)fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63:3791–3798

    CAS  PubMed  Google Scholar 

  23. Barthel H, Perumal M, Latigo J et al (2005) The uptake of 3’-deoxy-3’-(18F)fluorothymidine into L178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 32(3):257–263

    Article  CAS  PubMed  Google Scholar 

  24. Bauman G, Belhocine T, Kovacs M et al (2012) 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 15:45–55

    Article  CAS  PubMed  Google Scholar 

  25. Becherer A, Szabó M, Karanikas G et al (2004) Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med 45(7):1161–1167

    Google Scholar 

  26. Been LB, Suurmeijer AJH, Cobben DCP et al (2004) (18F) FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31:1659–1672

    Article  PubMed  Google Scholar 

  27. Beer AJ, Haubner R, Sarbia M et al (2006) Positron emission tomography using (18F)galacto-RGD identifi es the level of integrin αvβ3 expression in man. Clin Cancer Res 12:3942–3949

    Article  CAS  PubMed  Google Scholar 

  28. Bell C, Dowson N, Puttick S et al (2015) Increasing feasibility and utility of (18)F-FDOPA PET for the management of glioma. Nucl Med Biol 42(10):788–795

    Google Scholar 

  29. Blake GM, Park-Holohan SJ, Cook GJ et al (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31:28–49

    Article  CAS  PubMed  Google Scholar 

  30. Blau M, Nagler W, Bender MA (1962) A new isotope for bone scanning. J Nucl Med 3:332–334

    CAS  PubMed  Google Scholar 

  31. Bollineni VR, Kramer GM, Jansma EP et al (2016) A systematic review on ((18)F)FLT-PET uptake as a measure of treatment response in cancer patients. Eur J Cancer 55:81–97

    Google Scholar 

  32. Borbély K, Nyáry I, Tóth M et al (2006) Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci 15:85–94

    Article  CAS  Google Scholar 

  33. Borelli MI, Villar MJ, Orezzoli A et al (1997) Presence of DOPA decarboxylase and its localisation in adult rat pancreatic islet cells. Diabetes Metab 23:161–163

    CAS  PubMed  Google Scholar 

  34. Bostwick DG, Pacelli A, Blute M et al (1998) Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82:2256–2261

    Article  CAS  PubMed  Google Scholar 

  35. Brandi G, Nannini M, Pantaleo MA et al (2008) Molecular imaging suggests efficacy of bevacizumab beyond the second line in advanced colorectal cancer patients. Chemotherapy 54(6):421–424

    Article  CAS  PubMed  Google Scholar 

  36. Braun V, Dempf S, Weller R et al (2002) Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data—results of a pilot study in 32 surgical cases. Acta Neurochir 144:777–782

    Article  CAS  PubMed  Google Scholar 

  37. Breeuwsma AJ, Pruim J, Van den Bergh AC et al (2009) Detection of local, regional, and distant recurrence in patients with PSA relapse after external-beam radiotherapy using (11)C-Choline positron emission tomography. Int J Radiat Oncol Biol Phys

    Google Scholar 

  38. Briganti A, Chun FK-H, Salonia A et al (2006) Validation of a nomogram predicting the probability of lymph node invasion among patients undergoing radical prostatectomy and an extended pelvic lymphadenectomy. Eur Urol 49:1019–1027

    Article  PubMed  Google Scholar 

  39. Brown JM (1999) The hypoxic cell: A target for selective cancer therapy—Eighteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 59:5863–5870

    Google Scholar 

  40. Buck AK, Herrmann K, Buschenfelde CM et al (2008) Imaging bone and soft tissue tumors with the proliferation marker (18F)fluorothymidine. Clin Cancer Res 14(10):2970–2977

    Article  CAS  PubMed  Google Scholar 

  41. Buck AK, Hetzel M, Schirrmeister H et al (2005) Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging 32:525–533

    Article  PubMed  Google Scholar 

  42. Buck AK, Schirrmeister H, Hetzel M et al (2002) 3-Deoxy-3-(18F)fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 62:3331–3334

    CAS  PubMed  Google Scholar 

  43. Buck AK, Vogg ATJ, Glatting G et al (2004) (18F)FLT for monitoring response to antiproliferative therapy in a mouse lymphoma xenotransplant model. J Nucl Med 45:434

    Google Scholar 

  44. Cai W, Chen K, Mohamedali KA et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056

    CAS  PubMed  Google Scholar 

  45. Cai W, Gambhir SS, Chen X (2008) Chapter 7. Molecular imaging of tumor vasculature. Methods Enzymol 445:141–176

    Google Scholar 

  46. Caldwell JH, Revenaugh JR, Martin GV et al (1995) Comparison of fluorine-18-fluorodeoxyglucose and tritiated fluoromisonidazole uptake during low-flow ischemia. J Nucl Med 36:1633–1638

    CAS  PubMed  Google Scholar 

  47. Carter RE, Feldman AR, Coyle JT (1996) Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 93:749–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cascini GL, Niccoli Asabella A, Notaristefano A et al (2014) 124 Iodine: a longer-life positron emitter isotope—new opportunities in molecular imaging. Biomed Res Int 2014:672094

    Article  PubMed  PubMed Central  Google Scholar 

  49. Castellucci P, Fuccio C, Rubello D et al (2011) Is there a role for 11C-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase < 1,5 ng/ml? Eur J Nucl Med Mol Imaging 38(1):55–63

    Article  PubMed  Google Scholar 

  50. Castellucci P, Fuccio C, Nanni C et al (2009) Influence of trigger PSA and PSA kinetics on 11C-Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med 50(9):1394–1400

    Google Scholar 

  51. Castilla-Lièvre MA, Franco D, Gervais P et al (2016) Diagnostic value of combining 11C-choline and 18F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 43(5):852–859

    Google Scholar 

  52. Cater DB, Silver IA (1960) Quantitative measurements of oxygen tension in normal tissues and in tumors of patients before and after radiotherapy. Acta Radiol 53:233–256

    Article  CAS  PubMed  Google Scholar 

  53. Chan JL, Lee SW, Fraass BA et al (2002) Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 20(6):1635–1642

    Article  PubMed  Google Scholar 

  54. Chang SS, Reuter VE, Heston WD, Gaudin PB (2001) Metastatic renal cell carcinoma neovasculature expresses prostate-specific membrane antigen. Urology 57:801–805

    Article  CAS  PubMed  Google Scholar 

  55. Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6):945–952

    CAS  PubMed  Google Scholar 

  56. Chen S, Ho C, Feng D et al (2004) Tracer kinetic modeling of 11Cacetate applied in the liver with positron emission tomography. IEEE Trans Med Imaging 23(4):426–432

    Article  PubMed  Google Scholar 

  57. Chen X, Sievers E, Hou Y et al (2005) Integrin avB3–targeted imaging of lung cancer. Neoplasia 7:271–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen W, Delaloye S, Silverman DHS et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with (18F) fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25(30):4714e21

    Google Scholar 

  59. Cheng J, Lei L, Xu J et al (2013) 18F-Fluoromi-sonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med 54:333–340

    Article  CAS  PubMed  Google Scholar 

  60. Cher LM, Murone C, Lawrentschuck N et al (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fl uoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47:410–418

    CAS  PubMed  Google Scholar 

  61. Chierichetti F, Lessi G, Bissoli S et al (2005) Preliminary experience with 11C-Acetate and PET7CT in prostate cancer. J Nucl Med (Supplement 2):46

    Google Scholar 

  62. Cho SY, Gage KL, Mease RC et al (2012) Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med 53:1883–1891

    Article  CAS  PubMed  Google Scholar 

  63. Chung JK, Kim YK, Kim SK et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182

    Article  CAS  PubMed  Google Scholar 

  64. Cimitan M, Bortolus R, Morassut S et al (2006) (18F)fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33(12):1387–1398

    Article  PubMed  Google Scholar 

  65. Cobben DC, Elsinga PH, Hoekstra HJ et al (2004) Is 18F-3’-fl uoro-3’-deoxy-L-thymidine useful for the staging and restaging of non-small cell lung cancer? J Nucl Med 45:1677–1682

    CAS  PubMed  Google Scholar 

  66. Coenen HH, Kling P, Stocklin G (1989) Cerebral metabolism of L-(2-18F)fluorotyrosine, a new PET tracer of protein synthesis. J Nucl Med 30:1367–1372

    CAS  PubMed  Google Scholar 

  67. Comar D, Cartron JC, Maziere M et al (1976) La belling and metabolism of methionine-methyl-11C. Eur J Nucl Med 1:11–14

    Article  CAS  PubMed  Google Scholar 

  68. Cook GJ, Maisey MN, Fogelman I (1999) Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fl uoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 26:1363–1378

    Article  CAS  PubMed  Google Scholar 

  69. Crabtree HG, Cramer W (1933) The action of radium on cancer cells I and II. Some factors determining the susceptibility of cancer cells to radium. Proc R Soc Ser B 113:238–250

    Google Scholar 

  70. De Jong IJ, Pruim J, Elsinga PH et al (2002) Visualization of bladder cancer using 11C-choline PET: first clinical experience. Eur J Nucl Med 29:1283–1288

    Google Scholar 

  71. DeGrado TR, Coleman RE, Wang S et al (2001) Synthesis and evaluation of 18F labeled choline as an oncologic tracer for positron emission tomography: Initial findings in prostate cancer. Cancer Res 61:110–117

    CAS  PubMed  Google Scholar 

  72. Dearling JLD, Lewis JS, Mullen GE et al (1998) Design of hypoxia-targeting radiopharmaceuticals: Selective uptake of copper-64 complexes in hypoxic cells in vitro. Eur J Nucl Med 25:788–792

    Article  CAS  PubMed  Google Scholar 

  73. Dearling JL, Lewis JS, Mullen GE et al (2002) Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem 7:249–259

    Article  CAS  PubMed  Google Scholar 

  74. Dearling JLJ, Lewis JS, Welch MJ et al (1998) Redox-active complexes for imaging hypoxic tissues: Structure-activity relationships in copper(II)bis(thiosemicarbazone) complexes. Chem Commun 22:2531–2533

    Article  Google Scholar 

  75. Dehdashti F, Grigsby PW, Mintun MA et al (2003) Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response—a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–1238

    Article  PubMed  Google Scholar 

  76. Dehdashti F, Mintun MA, Lewis JS et al (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 30:844–850

    Article  CAS  PubMed  Google Scholar 

  77. Delbeke D, Pinson CW (2003) 11C-acetate: a new tracer for the evaluation of hepatocellular carcinoma. J Nucl Med 44:222–223

    PubMed  Google Scholar 

  78. Derlon JM, Bourdet C, Bustany P et al (1989) (11C)L-methionine uptake in gliomas. Neurosurgery 25:720–728

    Article  CAS  PubMed  Google Scholar 

  79. Dimitrakopoulou-Strauss A, Strauss LG (2003) PET imaging of prostate cancer with 11C-acetate. J Nucl Med 44:556–558

    PubMed  Google Scholar 

  80. Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-(18F)fluoro-L-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med 42(2):248–256

    Google Scholar 

  81. Dittman H, Dohmen BM, Paulsen F et al (2003) (18F)FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging 30:1407–1412

    Article  CAS  Google Scholar 

  82. Dunet V, Rossier C, Buck A et al (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med 53:207–214

    Article  CAS  PubMed  Google Scholar 

  83. Eder M, Schafer M, Bauder-Wust U et al (2012) 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 23:688–697

    Article  CAS  PubMed  Google Scholar 

  84. Ehlerding EB, England CG, Majewski RL et al (2017) ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer. Mol Pharm 14(5):1782–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eiber M, Maurer T, Beer AJ et al (2014) Prospective evaluation of PSMA-PET imaging for preoperative lymph node staging in prostate cancer. J Nucl Med 55(Suppl 1):20

    Google Scholar 

  86. Eiber M, Maurer T, Souvatzoglou M et al (2015) Evaluation of hybrid 68Ga-PSMA Ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 56:668–674

    Article  PubMed  Google Scholar 

  87. Eidelberg D (1992) Positron emission tomography studies in parkinsonism. Neurol Clin 10:421–433

    Article  CAS  PubMed  Google Scholar 

  88. Eriksson B, Bergstrom M, Sundin A et al (2002) The role of PET in localization of neuroendocrine and adrenocortical tumors. Ann NY Acad Sci 970:159–169

    Article  CAS  PubMed  Google Scholar 

  89. Eschmann SM, Reischl G, Bilger K et al (2002) Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 29:760–767

    Article  CAS  PubMed  Google Scholar 

  90. Eshuis SA, Jager PL, Maguire RP et al (2009) Direct comparison of FP-CIT SPECT and F- DOPA PET in patients with Parkinson’s disease and healthy controls. Eur J Nucl Med Mol Imaging 36:454–462

    Article  CAS  PubMed  Google Scholar 

  91. Eshuis SA, Maguire RP, Leenders KL et al (2006) Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. Eur J Nucl Med Mol Imaging 33(2):200–209

    Google Scholar 

  92. Evangelista L, Bertoldo F, Boccardo F et al (2016) Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging 43(8):1546–1562

    Article  CAS  PubMed  Google Scholar 

  93. Evangelista L, Briganti A, Fanti S, et al (2016) New clinical indications for (18)F/(11)C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol 70(1):161–175

    Google Scholar 

  94. Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease with 18F-fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  95. Even-Sapir E, Metser U, Mishani E et al (2006) The Detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-Fluoride PET, and 18F-Fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  96. Fanti S, Nanni C, Ambrosini V et al (2007) PET in genitourinary tract cancers. Q J Nucl Med Mol Imaging 51(3):260–271

    CAS  PubMed  Google Scholar 

  97. Farsad M, Schiavina R, Castellucci P et al (2005) Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46(10): 1642–1649

    Google Scholar 

  98. Fedorova OS, Kuznetsova OF, Shatik SV et al (2009) (18)F-labeled tyrosine derivatives: synthesis and experimental studies on accumulation in tumors and abscesses. Bioorg Khim 35(3):334–343

    CAS  PubMed  Google Scholar 

  99. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803

    Article  CAS  PubMed  Google Scholar 

  100. Ferrara N (2004) Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev 25:581–611

    Article  CAS  PubMed  Google Scholar 

  101. Ferrara N (2005) The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 94:209–231

    Google Scholar 

  102. Fiebrich HB, Brouwers AH, Kerstens MN et al (2009) 6-(F-18)Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 94(10):3922–3930

    Google Scholar 

  103. Firnau G, Chiakal R, Garnett ES (1984) Aromatic radiofluorination with 18F fluorine gas: 6-(18F)fluoro-L-dopa. J Nucl Med 25:1228–1233

    CAS  PubMed  Google Scholar 

  104. Floeth FW, Pauleit D, Sabel M et al (2007) Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48:519–527

    Article  CAS  PubMed  Google Scholar 

  105. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat. Rev Drug Discov 6:273–286

    Article  CAS  PubMed  Google Scholar 

  106. Francis DL, Visvikis D, Costa DC et al (2003) Potential impact of (18F)3’-deoxy-3’-fluorothymidine versus (18F)fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Me Mol Imaging 30(7):988–994

    Article  CAS  Google Scholar 

  107. Freudenberg LS, Antoch G, Jentzen W et al (2004) Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 14:2092–2098

    Article  CAS  PubMed  Google Scholar 

  108. Freudenberg LS, Antoch G, Jentzen W et al (2004) Value of (124)I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 14(11):2092–2098

    Google Scholar 

  109. Fuccio C, Castellucci P, Schiavina R et al (2010) Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med 24(6):485–492

    Article  CAS  PubMed  Google Scholar 

  110. Fujibayashi Y, Taniuchi H, Yonekura Y et al (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155–1160

    CAS  PubMed  Google Scholar 

  111. Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48(4):508–518

    Article  CAS  PubMed  Google Scholar 

  112. Gabriel M, Andergassen U, Putzer D et al (2010) Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging 54(1):92–99

    Google Scholar 

  113. Galldiks N, Ullrich R, Schroeter M et al (2010) Volumetry of ((11)C)-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol Imaging 37:84–92

    Article  PubMed  Google Scholar 

  114. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138

    Article  CAS  PubMed  Google Scholar 

  115. Gazdar AF, Helman LJ, Israel MA et al (1988) Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res 48:4078–4082

    CAS  PubMed  Google Scholar 

  116. Giesel FL, Hadaschik B, Cardinale J et al (2016) F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging 44:678–688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Ginj M, Zhang H, Waser B et al (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 103:16436–16441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Giovacchini G, Giovannini E, Riondato M, Ciarmiello A (2018) PET/CT With 68Ga-PSMA in prostate cancer: radiopharmaceutical background and clinical implications. Curr Radiopharm 11(1):4–13

    Article  CAS  PubMed  Google Scholar 

  119. Giovacchini G, Picchio M, Coradeschi E et al (2008) ((11)C)choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35(6):1065–1073

    Google Scholar 

  120. Goldman S, Levivier M, Pirotte B et al (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:1459–1462

    CAS  PubMed  Google Scholar 

  121. Goodman MM, Keil R, Shoup TM et al (1997) Fluorine-18-FPCT: a PET radiotracer for imaging dopamine transporters. J Nucl Med 38:119–126

    CAS  PubMed  Google Scholar 

  122. Gourgiotis L, Sarlis NJ, Reynolds JC et al (2003) Localization of medullary thyroid carcinoma metastasis in a multiple endocrine neoplasia type 2A Patient by 6-(18F)-Fluorodopamine positron emission tomography. J Clin Endocrinol Metab 88(2):637–641

    Google Scholar 

  123. Grant FD, Fahey FH, Packard AB et al (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49(1):68–78

    Google Scholar 

  124. Grassi I, Nanni C, Cicoria G et al (2014) Usefulness of 64Cu-ATSM in head and neck cancer: a preliminary prospective study. Clin Nucl Med 39:e59–e63

    Article  PubMed  Google Scholar 

  125. Gray LH, Conger AD, Ebert M et al (1953) Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    Article  CAS  PubMed  Google Scholar 

  126. Grosu AL, Weber WA, Riedel E et al (2005) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63(1):64–74

    Google Scholar 

  127. Groves AM, Win Th, Ben Haim S et al (2007) Non-(18F)FDG PET in clinical oncology. Lancet Oncol 8:822–830

    Article  PubMed  Google Scholar 

  128. Gumprecht H, Grosu AL, Souvatsoqlou M et al (2007) 11C-Methionine positron emission tomography for preoperative evaluation of suggestive low-grade gliomas. Zentralbl Neurochir 68:19–23

    Article  CAS  PubMed  Google Scholar 

  129. Han S, Woo S, Kim YJ, Suh CH (2018) Impact of 68Ga-PSMA PET on the management of patients with prostate cancer: a systematic review and meta-analysis. Eur Urol 74(2):179–190

    Google Scholar 

  130. Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995

    CAS  PubMed  Google Scholar 

  131. Hara T, Kosaka N, Kishi H (2002) Development of (18F)-Fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187–199

    CAS  PubMed  Google Scholar 

  132. Hara T, Yuasa M, Yoshida H (1997) Automated synthesis of fluorine-18 labeled choline analogue: 2-fluoroethyl- dimethyl-2-oxyethylammonium (abstract). J Nucl Med 38:44P

    Google Scholar 

  133. Hara, T, Kosada N, Kondo T et al (1997) Imaging of brain tumor, lung cancer, esophageal cancer, colon cancer, prostate cancer and bladder cancer with (C-11)choline. J Nucl Med 38:250P (Abstract)

    Google Scholar 

  134. Hara T, Kondo T, Hara T et al (2003) Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 99(3):474–479

    Google Scholar 

  135. Hardy O, Hernandez-Pampaloni M, Saffer JR et al (2007) Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr 150(2):140–145

    Google Scholar 

  136. Hardy OT, Hernandez-Pampaloni M, Saffer JR et al (2007) Accuracy of (18F)fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab 92(12):4706–4711

    Google Scholar 

  137. Haseebuddin M, Dehdashti F, Siegel BA et al (2013) 11C-acetate PET-CT before radical prostatectomy: Nodal staging and treatment failure prediction. J Nucl Med 54(5):699–706

    Article  CAS  PubMed  Google Scholar 

  138. Hatazawa J, Ishiwata K, Itoh M et al (1989) Quantitative evaluation of L-(methyl-C-11)methionine uptake in tumor using positron emission tomography. J Nucl Med 30:1809–1813

    CAS  PubMed  Google Scholar 

  139. Heiss P, Mayer S, Herz M et al (1999) Investigation of transport mechanism and uptake kinetics of O-(2-18F-fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 40:1367–1373

    CAS  PubMed  Google Scholar 

  140. Heiss WD, Wienhard K, Wagner R et al (1996) F-Dopa as an amino acid tracer to detect brain tumours. J Nucl Med 37(7):1180–1182

    CAS  PubMed  Google Scholar 

  141. Herholz K, Hölzer T, Bauer B et al (1998) 11-C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    Article  CAS  PubMed  Google Scholar 

  142. Herrmann K, Bluemel C, Weineisen M et al (2015) Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy. J Nucl Med 56:855–861

    Article  CAS  PubMed  Google Scholar 

  143. Herrmann K, Buck AK, Schuster T et al (2011) Predictive value of initial18F-FLT uptake in patients with aggressive non-hodgkin lymphoma receiving R-CHOP treatment. J Nucl Med 52(5):690–696

    Article  PubMed  Google Scholar 

  144. Herrmann K, Buck AK, Schuster T et al (2014) Week one FLT-PET response predicts complete remission to R-CHOP and survival in DLBCL. Oncotarget 5(12):4050–4059

    Article  PubMed  PubMed Central  Google Scholar 

  145. Herrmann K, Takei T, Kanegae K et al (2009) Clinical value and limitations of 11(C)-Methionine PET for detection and localization of suspected parathyroid adenomas. Mol Imaging Biol 11(5):356–363

    Article  Google Scholar 

  146. Hettich M, Braun F, Bartholoma MD et al (2016) High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 6(10):1629–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hetzel M, Arslandemir C, Konig HH et al (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-eff ectiveness, and impact on patient management. J Bone Miner Res 18:2206–2214

    Article  PubMed  Google Scholar 

  148. Hicks RJ, Rischin D, Fisher R et al (2005) Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 32:1384–1391

    Article  PubMed  Google Scholar 

  149. Higashikawa K, Yagi K, Watanabe K et al (2014) 64Cu-DOTA-Anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-Cell infiltrating tumor tissues. PLoS ONE 9(11):e109866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44:213–221

    PubMed  Google Scholar 

  151. Ho CL, Chen S, Yeung DW et al (2007) Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med 48(6):902–909

    Google Scholar 

  152. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hoeben BAW, Troost EGC, Span PN et al (2013) 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med 54(4):532e40

    Google Scholar 

  154. Hoegerle S, Altehoefer C, Ghanem N et al (2001) Whole Body 18F-DOPA PET for detection of gastrointestinal carcinoid tumors. Radiology 220:373–380

    Article  CAS  PubMed  Google Scholar 

  155. Hoegerle S, Altehoefer C, Ghanem N et al (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28(1):64–71

    Google Scholar 

  156. Hoegerle S, Ghanem N, Altehoefer C et al (2003) 18F-DOPA positron emission tomography for the detection of glomus tumours. Eur J Nucl Med Mol Imaging 30(5):689–694

    Google Scholar 

  157. Hoegerle S, Nitzsche E, Altehoefer C et al (2002) Pheochromocytomas: detection with 18F DOPA whole body PET—initial results. Radiology 222(2):507–512

    Google Scholar 

  158. Hoffman RM (1984) Altered methionine metabolism, DNA methylation and oncogenic expression in carcinogenesis. Biochem Biophys Acta 738:49–87

    CAS  PubMed  Google Scholar 

  159. Hofman MS, Iravani A (2017) Gallium-68Prostate-specific membrane antigen PET imaging. PET Clin 12(2):219–234

    Google Scholar 

  160. Howard BV, Howard WJ (1975) Lipids in normal and tumor cells in culture. Prog Biochem Pharmacol 10:135–166

    CAS  PubMed  Google Scholar 

  161. Huang MC, Shih MH, Chung WY et al (2005) Malignancy of intracerebral lesions evaluated with 11C-methionine-PET. J Clin Neurosci 12:775–780

    Article  CAS  PubMed  Google Scholar 

  162. Husarik DB, Miralbell R, Dubs M et al (2008) Evaluation of ((18)F)-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35(2):253–263

    Google Scholar 

  163. Hustinx R, Pourdehnad M, Kaschten B et al (2005) PET imaging for differentiating recurrent brain tumours from radiation necrosis. Radiol Clin North Am 43:35–47

    Article  PubMed  Google Scholar 

  164. Hwang KH, Choi DJ, Lee SY et al (2009) Evaluation of patients with hepatocellular carcinomas using ((11)C)acetate and ((18)F)FDG PET/CT: A preliminary study. Appl Radiat Isot 67(7–8):1195–1198

    Article  CAS  PubMed  Google Scholar 

  165. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  166. Imani F, Agopian VG, Auerbach MS et al (2009) 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med 50(4):513–519

    Google Scholar 

  167. Israeli RS, Powell CT, Corr JG et al (1994) Expression of the prostate-specific membrane antigen. Cancer Res 54:1807–1811

    CAS  PubMed  Google Scholar 

  168. Ito Y, Fujita M, Shimada S et al (1999) Comparison between the decrease of dopamine transporter and that of L-DOPA uptake for detection of early to advanced stage of Parkinson’s disease in animal models. Synapse 31:178–185

    Article  CAS  PubMed  Google Scholar 

  169. Iwai Y, Yamanaka K, Oda J et al (2001) Tracer accumulation in radiation necrosis of the brain after thallium-201 SPECT and (11C)methionine PET: case report. Neurol Med Chir (Tokyo) 41:415–418

    Article  CAS  Google Scholar 

  170. Iwata Y, Shiomi S, Sasaki N et al (2000) Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors. Ann Nucl Med 14:121–126

    Article  CAS  PubMed  Google Scholar 

  171. Jacob T, Grahek D, Younsi N et al (2003) Positron emission tomography with (18F)FDOPA and (18F)FDG in the imaging of small cell lung carcinoma: preliminary results. Eur J Nucl Med Mol Imaging 30:1266–1269

    Google Scholar 

  172. Jager PL, Vaalburg W, Pruim J et al (2001) Radiolabeled amino acids: Basic aspects and clinical applications in oncology. J Nucl Med 42(3):432–445

    CAS  PubMed  Google Scholar 

  173. Jeong JM, Hong MK, Chang YS et al (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49(5):830–836

    Google Scholar 

  174. De Jong I, Pruim J, Elsinga PH et al (2003) 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44:32–38

    Article  PubMed  Google Scholar 

  175. Josse O, Labar D, Georges B, Gregoire V, Marchand-Brynaert J (2001) Synthesis of (18F)-labeled EF3 (2-(2-Nitroimidazol-1yl)-N-(3,3,3-trifluoropropyl)-acetamide), a Marker fro PET Detection of Hypoxia. Bioorg Med Chem 9:665–675

    Google Scholar 

  176. Kahraman D, Holstein A, Scheffler M et al (2012) Tumor lesion glycolysis and tumor lesion proliferation for response prediction and prognostic differentiation in patients with advanced non-small cell lung cancer treated with erlotinib. Clin Nucl Med 37(11):1058–1064

    Article  PubMed  Google Scholar 

  177. Kaim AH, Weber B, Kurrer MO et al (2002) 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 29:648–654

    Article  CAS  PubMed  Google Scholar 

  178. Kameyama M, Shirane R, Itoh J et al (1990) The accumulation of 11C-methionine in cerebral glioma patients studied with PET. Acta Neurochir (Wien) 104:8–12

    Article  CAS  Google Scholar 

  179. Kang DE, White RL Jr, Zuger JH et al (2004) Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 171:1806–1809

    Article  PubMed  Google Scholar 

  180. Kaschten B, Stevenaert A, Sadzot B et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18- fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    CAS  PubMed  Google Scholar 

  181. Kato TJ, Shinoda N, Oka K et al (2008) Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity. Am J Neuroradiol 29:1867–1871

    Google Scholar 

  182. Kayani I, Groves AM (2006) 18F-fl uorodeoxyglucose PET/CT in cancer imaging. Clin Med 6:240–244

    Article  Google Scholar 

  183. Kelloff GJ, Hoff man JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and drug development. Clin Cancer Res 11:2785–2808

    Article  CAS  PubMed  Google Scholar 

  184. Kenny LM, Vigushin DM, Al-Nahhas A et al (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by (18F)fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65(21):10104–10112

    Article  CAS  PubMed  Google Scholar 

  185. Kerbel R, Folkmal J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739

    Article  CAS  PubMed  Google Scholar 

  186. Kesler M, Levine C, Hershkovitz D et al (2018) 68Ga-PSMA is a novel PET-CT tracer for imaging of hepatocellular carcinoma: a prospective pilot study. J Nucl Med pii: jnumed.118.214833. https://doi.org/10.2967/jnumed.118.214833. (Epub ahead of print)

  187. Khorjekar GR, Van Nostrand D, Garcia C et al (2014) Do negative 124I pretherapy positron emission tomography scans in patients with elevated serum thyroglobulin levels predict negative 131I posttherapy scans? Thyroid 24:1394–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kim S, Chung JK, Im SH et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32:52–59

    Article  CAS  PubMed  Google Scholar 

  189. Kinoshita Y, Kuratsukuri K, Landas S et al (2006) Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg 30:628–636

    Article  PubMed  Google Scholar 

  190. Kirchner J, Schaarschmidt BM, Sawicki LM et al (2017) Evaluation of practical interpretation hurdles in 68Ga-PSMA PET/CT in 55 patients: physiological tracer distribution and incidental tracer uptake. Clin Nucl Med 42:e322–e327

    Article  PubMed  Google Scholar 

  191. Kist JW, de Keizer B, van der Vlies M et al (2016) 124I PET/CT to predict the outcome of blind 131I treatment in patients with biochemical recurrence of differentiated thyroid cancer: results of a multicenter diagnostic cohort study (THYROPET). J Nucl Med 57(5):701–707

    Google Scholar 

  192. Knowles SM, Am Wu (2012) Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol 30(31):3884–3892

    Article  PubMed  PubMed Central  Google Scholar 

  193. Koh WJ, Bergman KS, Rasey JS et al (1995) Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using (F- 18)fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33:391–398

    Article  CAS  PubMed  Google Scholar 

  194. Koh W-J, Rasey JS, Evans ML (1992) Imaging of hypoxia in human tumors with (F-18)fluoromisonidazole. Int J Radiat Oncol Biol Phys 22:199–212

    Article  CAS  PubMed  Google Scholar 

  195. Komar G, Seppaenen M, Eskola O et al (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944–1951

    Article  PubMed  Google Scholar 

  196. Kotzerke J, Prang J, Neumaier B et al (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27:1415–1419

    Article  CAS  PubMed  Google Scholar 

  197. Kotzerke J, Volkmer BJ, Neumaier B et al (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med 29:1380–1384

    Article  CAS  Google Scholar 

  198. Kracht LW, Friese M, Herholz K et al (2003) Methyl-(11C)-lmethionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873

    Article  CAS  PubMed  Google Scholar 

  199. Krause BJ, Souvatzoglou M, Tincel M et al (2008) The detection rate of 11-C choline PET/TC depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35:18–23

    Article  CAS  PubMed  Google Scholar 

  200. Krebs HA (1948) The tricarboxylic acid cycle. Harvey Lect Series 44:165–199

    Google Scholar 

  201. Van Laere K, Ceyssens S, Van Calenbergh F et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:39–51

    Article  CAS  PubMed  Google Scholar 

  202. Laforest R, Dehdashti F, Lewis J et al (2005) Dosimetry of 60/61/62/64 Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med Mol Imaging 32:764–770

    Article  CAS  PubMed  Google Scholar 

  203. Lambrecht RM, Woodhouse N, Phillips R et al (1988) Investigational study of iodine-124 with a positron camera. Am J Physiol Imaging 3(4):197–200

    CAS  PubMed  Google Scholar 

  204. Langen KJ, Hamacher K, Weckesser M et al (2006) O-(2-(18F)fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33(3):287–294

    Google Scholar 

  205. Langsteger W, Heinisch M, Fogelman I (2006) The role of fl uorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fl uoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36:73–92

    Article  PubMed  Google Scholar 

  206. Lapela M, Leskinen-Kallio S, Varpula M et al (1994) Imaging of uterine carcinoma by carbon-11-methionine and PET. J Nucl Med 35(10):1618–1623

    Google Scholar 

  207. Larimer BM, Wehrenberg-Klee E, Caraballo A, Mahmood U (2016) Quantitative CD3 PET imaging predicts tumor growth response to Anti-CTLA-4 therapy. J Nucl Med 57(10):1607–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Laughlin KM, Evans SM, Jenkins WT et al (1996) Biodistribution of the nitroimidazole EF5 (2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide) in mice bearing subcutaneous EMT6 tumors. J Pharmacol Exp Ther 277:1049–1057

    CAS  PubMed  Google Scholar 

  209. Law I, Albert NL, Arbizu J et al (2018) Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and (18F)FDG: version 1.0. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-018-4207-9. (Epub ahead of print)

  210. Lawrentschuk N, Lee FT, Jones G, Rigopoulos A, Mountain A, O’Keefe G, Papenfuss AT, Bolton DM, Davis ID, Scott AM (2011) Investigation of hypoxia and carbonic anhydrase IX expression in a renal cell carcinoma xenograft model with oxygen tension measurements and 124I-cG250 PET/CT. Urol Oncol 29:411–420

    Article  CAS  PubMed  Google Scholar 

  211. Lawrentschuk N, Poon AMT, Foo SS, Jonhs LG, Putra J, Murone C, Davis ID, Bolton DM, Scott AM (2005) Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int 96:540–546

    Article  PubMed  Google Scholar 

  212. Lazzeri M, Lopci E, Lughezzani G et al (2017) Targeted 11C-choline PET-CT/TRUS software fusion-guided prostate biopsy in men with persistently elevated PSA and negative mpMRI after previous negative biopsy. Eur J Hybrid Imaging 1(1):9

    Article  PubMed  Google Scholar 

  213. Lee CS, Samii A, Sossi V et al (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47:493–503

    Article  CAS  PubMed  Google Scholar 

  214. Lee H, Kim S-K, Kim Y-I et al (2014) Early determination of prognosis by interim 30-deoxy-30-18FFluorothymidine PET in patients with non-Hodgkin lymphoma. J Nucl Med 55(2):216e22

    Google Scholar 

  215. Leenders KL, Salmon EP, Tyrrell P et al (1990) The nigro-striatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47:1290–1298

    Article  CAS  PubMed  Google Scholar 

  216. van Leeuwen PJ, Emmett L, Ho B et al (2017) Prospective evaluation of 68Gallium-PSMA positron emission tomography/computerized tomography for preoperative lymph node staging in prostate cancer. BJU Int 119:209–215

    Article  PubMed  CAS  Google Scholar 

  217. Leskinen-Kallio S, Minn H, Joensuu H (1990) PET and (11C)methionine in assessment of response in non-Hodgkin lymphoma. Lancet 336(8724):1188

    Google Scholar 

  218. Leskinen-Kallio S, Någren K, Lehikoinen P et al (1991) Uptake of 11C-methionine in breast cancer studied by PET. An association with the size of S-phase fraction. Br J Cancer 64(6):1121–1124

    Google Scholar 

  219. Leskinen-Kallio S, Någren K, Lehikoinen P et al (1992) Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med 33(5):691–695

    Google Scholar 

  220. Lewis JS, McCarthy DW, McCarthy TJ et al (1999) Evaluation of 64Cu-ATSM in vivo and in vitro in a hypoxic tumor model. J Nucl Med 40:177–183

    CAS  PubMed  Google Scholar 

  221. Lewis JS, Sharp TL, Laforest R et al (2001) Tumor uptake of copper-diacetyl-bis(N4- methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med 42:655–661

    CAS  PubMed  Google Scholar 

  222. Lewis JS, Welch MJ (2001) PET imaging of hypoxia. Q J Nucl Med 45(2):183–188

    Google Scholar 

  223. Leyton J, Latigo J, Perumal M et al (2005) Early detection of tumor response to chemotherapy by 3’-deoxy-3’-(18F)fluorothymidine positron emission tomography: the effect of cisplatin on the fibrosarcoma tumor model in vivo. Cancer Res 65(10):4202–4210

    Article  CAS  PubMed  Google Scholar 

  224. Li S, Peck-Radosavljevic M, Ubl P et al (2017) The value of (11C)-acetate PET and (18F)-FDG PET in hepatocellular carcinoma before and after treatment with transarterial chemoembolization and bevacizumab. Eur J Nucl Med Mol Imaging 44(10):1732–1741

    Google Scholar 

  225. Lilja A, Lundqvist H, Olsson Y et al (1989) Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesions. Acta Radiol 30:121–128

    Article  CAS  PubMed  Google Scholar 

  226. Lindstrom P, Sehlin J (1986) Aromatic amino acids and pancreatic islet function: a comparison of L-tryptophan and L-5-hydroxytryptophan. Mol Cell Endocrinol 48:121–126

    Article  CAS  PubMed  Google Scholar 

  227. Liu RS (2000) Clinical application of (C-11)acetate in oncology (abstract). Clin Positron Imaging 3:185

    Article  CAS  PubMed  Google Scholar 

  228. Liu RS, Chang CP, Chu LS et al (2006) PET imaging of brain astrocytoma with 1-11C-acetate. Eur J Nucl Med Mol Imaging 33:420–427

    Article  PubMed  CAS  Google Scholar 

  229. Lopci E, Grassi I, Chiti A et al (2014) PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Amm J Nucl Med Mol Imaging 4:365–384

    Google Scholar 

  230. Lopci E, Grassi I, Rubello D et al (2016) Prognostic evaluation of disease outcome in solid tumors investigated with 64Cu-ATSM PET/CT. Clin Nucl Med 41:e87–e92

    Article  PubMed  Google Scholar 

  231. Lopci E, Piccardo A, Nanni C et al (2012) 18F-DOPA PET/CT in neuroblastoma: comparison of conventional imaging with CT/MR. Clin Nucl Med 37(4):e73–e78

    Article  PubMed  Google Scholar 

  232. Lopci E, Chiti A, Castellani MR et al (2011) Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging 38(Suppl 1):S28–S40

    Google Scholar 

  233. Lopci E, Torzilli G, Poretti D et al (2015) Diagnostic accuracy of 11C-choline PET/CT in comparison with CT and/or MRI in patients with hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 42(9):1399–1407

    Google Scholar 

  234. Lovenberg W, Weissbach H, Undenfriend S (1962) Aromatic L-amino acid decarboxylase. J Biol Chem 237:89–93

    Article  CAS  PubMed  Google Scholar 

  235. Luong A, Hannah VC, Brown MS et al (2000) Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 275(34):26458–26466

    Article  CAS  PubMed  Google Scholar 

  236. Lyrdal D, Boijsen M, Suurküla M et al (2009) Evaluation of sorafenib treatment in metastatic renal cell carcinoma with 2-fluoro-2-deoxyglucose positron emission tomography and computed tomography. Nucl Med Commun. 30(7):519–524

    Google Scholar 

  237. Lütje S, Gomez B, Cohnen J et al (2017) Imaging of prostate-specific membrane antigen expression in metastatic differentiated thyroid cancer using 68Ga-HBED-CC-PSMA PET/CT. Clin Nucl Med 42(1):20–25

    Google Scholar 

  238. Martiat P, Ferrant A, Labar D et al (1988) In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J Nucl Med 29:1633–1637

    CAS  PubMed  Google Scholar 

  239. Martorana G, Schiavina R, Corti B et al (2006) 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 176:954–960, Discussion 960

    Google Scholar 

  240. Maurer RI, Blower PJ, Dilworth JR et al (2002) Studies on the mechanism of hypoxic selectivity in copper bis(thiosemicarbazone) radiopharmaceuticals. J Med Chem 45:1420–1431

    Article  CAS  PubMed  Google Scholar 

  241. Maute RL, Gordon SR, Mayer AT et al (2015) Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci U S A 112(47):E6506–E6514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. McConathy J, Yu W, Jarkas N et al (2012) Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev 32(4):868–905

    Article  CAS  PubMed  Google Scholar 

  243. Mittendorfer B, Sidossis LS, Walser E et al (1998) Regional acetate kinetics and oxidation in human volunteers. Am J Physiol 274(6 Pt 1):E978–E983

    CAS  PubMed  Google Scholar 

  244. Mongiardi MP (2012) Angiogenesis and hypoxia in glioblastoma: a focus on cancer stem cells. CNS Neurol Disord Drug Targets 11(7):878–883

    Article  CAS  PubMed  Google Scholar 

  245. Morris MJ, Scher HI (2007) 11C-acetate PET imaging in prostate cancer. Eur J Nucl Med Mol Imaging 34(2):181–184

    Article  PubMed  Google Scholar 

  246. Mukherjee S (2010) The emperor of all maladies: a biography of cancer. Scribner, New York

    Google Scholar 

  247. Nanni C, Castellucci P, Farsad M et al (2007) 11C/18F-choline PET or 11C/8F-acetate PET in prostate cancer: may a choice be recommended? Eur J Nucl Med Mol Imaging 34:1704–1705

    Article  PubMed  Google Scholar 

  248. Nanni C, Schiavina R, Brunocilla E et al (2015) 18F-Fluciclovine PET/CT for the detection of prostate cancer relapse. a comparison to 11C-Choline PET/CT. Clin Nucl Med 40:e386–e391

    Article  PubMed  Google Scholar 

  249. Nanni C, Zamagni E, Cavo M et al (2007) 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol 5:68

    Google Scholar 

  250. Narayanan TK, Said S, Mukherjee J et al (2002) A comparative study on the uptake and incorporation of radiolabeled methionine, choline and fluorodeoxyglucose in human astrocytoma. Mol Imaging Biol 4(2):147–156

    Google Scholar 

  251. Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of L-(methyl-11C) methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507

    Article  PubMed  Google Scholar 

  252. Natarajan A, Mayer AT, Reeves RE et al (2017) Development of novel immunoPET tracers to image human PD-1 checkpoint expression on tumor-infiltrating lymphocytes in a humanized mouse model. Mol Imaging Biol 19(6):903–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Natarajan A, Mayer AT, Xu L et al (2015) Novel radiotracer for immunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem 26(10):2062–2069

    Article  CAS  PubMed  Google Scholar 

  254. Ng P, Rajendran JG, Schwartz DL et al (2003) Can (F-18) fluoromisonidazole PET imaging predict treatment response in head and neck cancer? J Nucl Med 44:128P

    Google Scholar 

  255. Nicolas GP, Schreiter N, Kaul F et al (2018) Sensitivity comparison of (68)Ga-OPS202 and (68)Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase II imaging study. J Nucl Med 59:915–921

    Article  CAS  PubMed  Google Scholar 

  256. Nunez R, Macapinlac H, Yeung HWD et al (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43:46–55

    PubMed  Google Scholar 

  257. Nuutinen J, Sonninen P, Lehikoinen P et al (2000) Radiotherapy treatment planning and long-term follow-up with ((11)C)methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48(1):43–52

    Google Scholar 

  258. Ogawa T, Kanno I, Shishido F et al (1991) Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202

    Article  CAS  PubMed  Google Scholar 

  259. Ogawa T, Shishido F, Kanno I et al (1993) Cerebral gliomas: evaluation with methionine-PET. Radiology 186:45–53

    Article  CAS  PubMed  Google Scholar 

  260. Oriuchi N, Tomiyoshi K, Inoue T et al (1996) Independent thallium-201 accumulation and fluorine-18-fluorodeoxyglucose metabolism in glioma. J Nucl Med 37:457–462

    CAS  PubMed  Google Scholar 

  261. Otonkoski T, Veijola R, Huopio H et al (2003) Diagnosis of focal persistent hyperinsulinism of infancy with 18F-fluoro-L-DOPA PET. In: Program of the 42nd annual meeting of the European society for paediatric endocrinology (ESPE), Ljubljana, Slovenia, p 2 (Abstract 5.09)

    Google Scholar 

  262. Oyama N, Akino H, Kanamaru H et al (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43(2):181–186

    CAS  PubMed  Google Scholar 

  263. Oyama N, Akino H, Suzuki Y et al (1999) The increased accumulation of (18F)fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 29:623–629

    Article  CAS  PubMed  Google Scholar 

  264. Oyama N, Miller TR, Dehdashti F et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):556–558

    Google Scholar 

  265. Padhani A (2006) PET imaging of tumour hypoxia. Cancer Imaging 6:S117–S121

    Article  PubMed  PubMed Central  Google Scholar 

  266. Pascali C, Bogni A, Iwata R et al (2000) (11C)methylation on a C18 Sep-Pak cartridge: a convenient way to produce (N-methyl-11C)choline. J Label Comput Radiopharm 43:195–203

    Google Scholar 

  267. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198

    Article  CAS  PubMed  Google Scholar 

  268. Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-(18F)fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687

    Article  PubMed  Google Scholar 

  269. Pauleit D, Zimmermann A, Stoffels G et al (2006) 18F-FET PET compared with 18F-FDG PET and CT in patients with head and neck cancer. J Nucl Med 47(2):256–261

    Google Scholar 

  270. Pauwels E, Cleeren F, Bormans F et al (2018) Somatostatin receptor PET ligands—the next generation for clinical practice. Am J Nucl Med Mol Imaging. 8(5):311–331

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Pearse AG (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 17:303–313

    Article  CAS  PubMed  Google Scholar 

  272. Pentlow KS, Graham MC, Lambrecht RM et al (1996) Quantitative imaging of iodine-124 with PET. J Nucl Med 37(9):1557–1562

    CAS  PubMed  Google Scholar 

  273. Pentlow KS, Finn RD, Larson SM et al (2000) Quantitative imaging of Yttrium-86 with PET. The occurrence and correction of anomalous apparent activity in high density regions. Clin Positron Imaging 3(3):85–90

    Google Scholar 

  274. Perera M, Papa N, Christidis D et al (2016) Sensitivity, specificity, and predictors of positive 68Ga-Prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol 70(6):926–937

    Article  PubMed  Google Scholar 

  275. Phan HT, Jager PL, Paans AM et al (2008) The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 35(5):958–965

    Article  PubMed  PubMed Central  Google Scholar 

  276. Piccardo A, Lopci E, Conte M et al (2012) Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 39:57–71

    Article  CAS  PubMed  Google Scholar 

  277. Picchio M, Landoni C, Messa C et al (2002) Positive 11C-choline and negative (18F)FDG with positron emission tomography in recurrence of prostate cancer. AJR Am J Roentgenol 179:482–484

    Article  CAS  PubMed  Google Scholar 

  278. Picchio M, Messa C, Landoni C et al (2003) Value of (11C)choline positron emission tomography for re-staging prostate cancer: a comparison with (18F)fluorodeoxyglucose positron emission tomography. J Urol 169:1337–1340

    Article  CAS  PubMed  Google Scholar 

  279. Picchio M, Treiber U, Beer AJ et al (2006) Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med 47(6):938–944

    Google Scholar 

  280. Piert M, Machulla HJ, Picchio M et al (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46:106–113

    PubMed  Google Scholar 

  281. Pirotte B, Goldman S, Massager N et al (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45:1293–1298

    CAS  PubMed  Google Scholar 

  282. Podo F (1999) Tumor phospholipid metabolism. NMR Biomed 12:413–414

    Article  CAS  PubMed  Google Scholar 

  283. Ponde DE, Oyama N, Dence CS et al (2003) (18F)-Fluoroacetate, an analogue of C-11 acetate for tumor imaging. J Nucl Med 44:296p

    Google Scholar 

  284. Powles T, Murray I, Brock C et al (2007) Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur Urol 51:1511–1521

    Google Scholar 

  285. Prante O, Blaser D, Maschauer S et al (2007) In vitro characterization of the thyroidal uptake of O-(2-(18F)fluoroethyl)-L-tyrosine. Nucl Med Biol 34:305–314

    Article  CAS  PubMed  Google Scholar 

  286. Prasad V, Ambrosini V, Hommann M et al (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37(1):67–77

    Article  CAS  PubMed  Google Scholar 

  287. Prior JO, Montemurro M, Orcurto MV et al (2009) Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol 27(3):439–445

    Google Scholar 

  288. Pyka T, Okamoto S, Dahlbender M et al (2016) Comparison of bone scintigraphy and 68Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging 43:2114–2121

    Article  CAS  PubMed  Google Scholar 

  289. Pöpperl G, Goldbrunner R, Gildehaus FJ et al (2005) O-(2-(18F)Fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 32:1018–1025

    Article  PubMed  CAS  Google Scholar 

  290. Pöpperl G, Gotz C, Rachinger W et al (2004) Value of O-(2-(18F)fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31:1464–1470

    Article  PubMed  CAS  Google Scholar 

  291. Pöpperl G, Kreth FW, Herms J et al (2006) Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47:393–403

    PubMed  Google Scholar 

  292. Pöpperl G, Kreth FW, Mehrkens JH et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942

    Article  PubMed  Google Scholar 

  293. Rachinger W, Goetz C, Pöpperl G et al (2005) Positron emission tomography with O-(2-(18F)fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57:505–511

    Article  PubMed  Google Scholar 

  294. Rajendran JG, Mankoff DA, O’Sullivan F et al (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by (18F)fluoromisonidazole and (18F)fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10:2245–2252

    Article  CAS  PubMed  Google Scholar 

  295. Rajendran JG, Wilson DC, Conrad EU et al (2003) (18)F)FMISO and ((18)F)FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30:695–704

    Article  CAS  PubMed  Google Scholar 

  296. Rapp M, Heinzel A, Galldiks N et al (2013) Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 54:229–235

    Article  CAS  PubMed  Google Scholar 

  297. Rasey JS, Grunbaum Z, Magee S et al (1987) Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 111:292–304

    Article  CAS  PubMed  Google Scholar 

  298. Rasey JS, Hofstrand PD, Chin LK, Tewson TJ (1999) Characterization of (F-18)fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J Nucl Med 40:1072–1079

    CAS  PubMed  Google Scholar 

  299. Rasey J, Koh W, Evans M et al (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of (18F)fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 24:417–428

    Article  Google Scholar 

  300. Ren J, Yuan L, wen G, Yang J (2016) The value of anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT in the diagnosis of recurrent prostate carcinoma: a meta-analysis. Acta Radiol 57(4):487–493

    Google Scholar 

  301. Reske SN, Deisenhofer S (2006) Is 3’-deoxy-3’-18F-fluorothymidine a better marker for tumour response than 18F-fl uorodeoxyglucose? Eur J Nucl Med Mol Imaging 33:S38–S43

    Article  CAS  Google Scholar 

  302. Reubi JC (2004) Somatostatin and other Peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology 80(Suppl 1):51–56

    Article  CAS  PubMed  Google Scholar 

  303. Reubi JC, Kvols L, Krenning E, Lamberts SW (1990) Distribution of somatostatin receptors in normal and tumor tissue. Metabolism 39:78–81

    Article  CAS  PubMed  Google Scholar 

  304. Ricci PE, Karis JP, Heiserman JE et al (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR 19:407–413

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Rigo P, De Landsheere C, Melon P et al (1990) Imaging of myocardial metabolism by positron emission tomography. Cardiovasc Drugs Ther 4(Suppl 4):847–851

    Article  PubMed  Google Scholar 

  306. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332

    Article  PubMed  Google Scholar 

  307. Rossi S, Toschi L, Castello A et al (2017) Clinical characteristics of patient selection and imaging predictors of outcome in solid tumors treated with checkpoint-inhibitors. Eur J Nucl Med Mol Imaging 44(13):2310–2325

    Article  CAS  PubMed  Google Scholar 

  308. Rubello D, Fanti S, Nanni C et al (2006) 11-C methionine PET/TC in 99m tc-sestamibi negative hyperparathyroidism in patients with renal failure on chronic haemodialysis. Eur J Nucl Med Mol Imaging 33(4):453–459

    Google Scholar 

  309. Salminen A, Jambor I, Merisaari H et al (2018) 11C-acetate PET/MRI in bladder cancer staging and treatment response evaluation to neoadjuvant chemotherapy: a prospective multicenter study (ACEBIB trial). Cancer Imaging. 18(1):25

    Google Scholar 

  310. Sandblom G, Sorensen J, Lundin N et al (2006) Positron emission tomography with 11C-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology 67(5):996–1000

    Article  PubMed  Google Scholar 

  311. Sasaki M, Kuwabara Y, Yoshida T et al (1998) A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med 25:1261–1269

    Article  CAS  PubMed  Google Scholar 

  312. Sato N, Suzuki M, Kuwata N et al (1999) Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev 22:210–214

    Article  CAS  PubMed  Google Scholar 

  313. Sawle GV (1993) The detection of pre-clinical Parkinson’s disease: what is the role of positron emission tomography? Mov Disord 8:271–277

    Article  CAS  PubMed  Google Scholar 

  314. Scattoni V, Picchio M, Suardi N et al (2007) Detection of lymph-node metastases with integrated (11C)choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic- retroperitoneal lymphadenectomy. Eur Urol 52(2):423–429

    Google Scholar 

  315. Schiavina R, Scattoni V, Castellucci P et al (2008) 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 54(2):392–401

    Google Scholar 

  316. Schiepers C, Nuytes J, Bormans G et al (1997) Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 38:1970–1976

    CAS  PubMed  Google Scholar 

  317. Schirrmeinster H, Glatting G, Hetzel J et al (2001) Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaFPET in newly diagnosed lung cancer. J Nucl Med 42:1800–1804

    Google Scholar 

  318. Schnell O, Krebs B, Carlsen J et al (2009) Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by (18F) Galacto-RGD positron emission tomography. Neuro Oncol 11(6):861–870

    Google Scholar 

  319. Schomas DA, Laack NNI, Rao RD et al (2009) Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo clinic. Neuro-Oncology 11(4):437–445

    Article  PubMed  PubMed Central  Google Scholar 

  320. Schonbrunn A, Tashjian H Jr (1978) Characterization of functional receptors for somatostatin in rat pituitary cells in culture. J Biol Chem 253:6473–6483

    Article  CAS  PubMed  Google Scholar 

  321. Schuster DM, Nanni C, Fanti S et al (2014) Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med 55:1986–1992

    Article  CAS  PubMed  Google Scholar 

  322. Schuster DM, Nanni C, Fanti S (2016) PET tracers beyond FDG in prostate cancer. Semin Nucl Med 45:507–521

    Article  Google Scholar 

  323. Schuster D, Nye J, Nieh P et al (2009) Initial experience with the radiotracer anti-1-amino-3-(F-18)fluorocyclobutane-1-carboxylic acid (Anti-(F-18)FACBC) with PET in renal carcinoma. Mol Imaging Biol 11(6):434–438

    Article  PubMed  Google Scholar 

  324. Schuster DM, Savir-Baruch B, Nieh PT et al (2011) Detection of recurrent prostate carcinoma with anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET-CT and 111In-capromab pendetide SPECT/CT. Radiology 259(3):852–861

    Article  PubMed  PubMed Central  Google Scholar 

  325. Schuster D, Votaw J, Nieh P et al (2007) Initial experience with the radiotracer anti-1-amino-3-F-18-fluorocyclobutane-1-carboxylic acid with PET-CT in prostate carcinoma. J Nucl Med 48(1):56–63

    CAS  PubMed  Google Scholar 

  326. Schwarzenberg J, Czernin J, Cloughesy TF et al (2014) Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res 20:3550–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Shields AF (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8:141–150

    Article  PubMed  Google Scholar 

  328. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with (18F)FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  CAS  PubMed  Google Scholar 

  329. Shreve P, Chiao PC, Humes HD et al (1995) Carbon-11-acetate PET imaging in renal disease. J Nucl Med 36:1595–1601

    CAS  PubMed  Google Scholar 

  330. Silver DA, Pellicer I, Fair WR et al (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85

    CAS  PubMed  Google Scholar 

  331. Siva S, Callahan J, Pryor D et al (2017) Utility of 68Ga prostate specific membrane antigen—positron emission tomography in diagnosis and response assessment of recurrent renal cell carcinoma. J Med Imaging Radiat Oncol 61(3):372–378

    Google Scholar 

  332. Soloviev D, Fini A, Chierichetti F et al (2008) PET imaging with 11C-acetate in prostate cancer: a biochemical, radiochemical and clinical perspective. Eur J Nucl Med Mol Imaging 35(5):942–949

    Article  PubMed  Google Scholar 

  333. Stadlbauer A, Prante O, Nimsky C et al (2008) Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-L-tyrosine PET and proton magnetic resonance spectroscopic imaging. J Nucl Med 49(5):721–729

    Google Scholar 

  334. Sun A, Sörensen J, Karlsson M et al (2007) 1-(11C)-acetate PET imaging in head and neck cancer—a comparison with 18F-FDG-PET: implications for staging and radiotherapy planning. Eur J Nucl Med Mol Imaging 34(5):651–657

    Article  PubMed  Google Scholar 

  335. Sutinen E, Nurmi M, Roivainen A et al (2003) Kinetics of (11C)choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 31:317–324

    Article  PubMed  CAS  Google Scholar 

  336. Swinnen JV, Van Veldhoven PP, Timmermans L et al (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898–903

    Article  CAS  PubMed  Google Scholar 

  337. Szabo Z, Mena E, Rowe SP et al (2015) Initial evaluation of ((18)F)DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol 17:565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Sörensen J, Andrén B, Blomquist G et al (2006) The central circulation in congestive heart failure non-invasively evaluated with dynamic positron emission tomography. Clin Physiol Funct Imaging 26(3):171–177

    Article  PubMed  Google Scholar 

  339. Takahashi N, Fujibayashi Y, Yonekura Y et al (2000) Evaluation of 62Cu labeled diacetyl-bis(N4-methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer. Ann Nucl Med 14:323–328

    Article  CAS  PubMed  Google Scholar 

  340. Talbot JN, Fartoux L, Balogova S et al (2010) Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med 51(11):1699–1706

    Article  PubMed  Google Scholar 

  341. Talbot JN, Gutman F, Fartoux L et al (2006) PET/CT in patients with hepatocellular carcinoma using ((18)F))fluorocholine: preliminary comparison with ((18)F)FDG PET/CT. Eur J Nucl Med Mol Imaging 33(11):1285–1289

    Article  PubMed  Google Scholar 

  342. Taneja SS (2004) ProstaScint® Scan: contemporary use in clinical practice. Rev Urol 6(Suppl 10):S19–S28

    PubMed  PubMed Central  Google Scholar 

  343. Tang BN, Moreno-reyes R, Blocket D et al (2008) Accurate preoperative localization of pathological parathyroid glands using 11C- methionine PET/TC. Contrast Media Mol Imaging 3(4):157–163

    Google Scholar 

  344. Tannock I, Guttman P (1981) Responses of Chinese hamster ovary cells to anticancer drugs under aerobic and hypoxic conditions. Br J Cancer 42:245–248

    Article  Google Scholar 

  345. Tateichi K, Tateishi U, Sato M et al (2013) Application of 62Cu-diacetyl-bis(N4-methylthiosemicarbazone) PET imaging to predict highly malignant tumor grades and hypoxia-inducible factor-1a expression in patients with glioma. AJNR Am J Neuroradiol 34:92–99

    Article  Google Scholar 

  346. Tavare R, Escuin-Ordinas H, Mok S et al (2016) An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res 76(1):73–82

    Article  CAS  PubMed  Google Scholar 

  347. Terakawa Y, Tsuyuguchi1 N, Iwai Y et al (2008) Diagnostic accuracy of 11C-Methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699

    Google Scholar 

  348. Testa C, Schiavina R, Lodi R et al (2007) Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11Ccholine PET/CT. Radiology 244:797–806

    Article  PubMed  Google Scholar 

  349. Tian M, Zhang H, Higuchi T et al (2004) Oncological diagnosis using (11)C-choline-positron emission tomography in comparison with 2-deoxy-2-((18)F) fluoro-D-glucose-positron emission tomography. Mol Imaging Biol 6(3):172–179

    Article  PubMed  Google Scholar 

  350. Tolmachev V, Stone-Elander V (2010) Radiolabelled proteins for positron emission tomography: pros and cons of labelling methods. Biochim Biophys Acta 1800(5):487–510

    Article  CAS  PubMed  Google Scholar 

  351. Torii K, Tsuyuguchi N, Kawabe J et al (2005) Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med 19:677–683

    Article  PubMed  Google Scholar 

  352. Tsuyuguchi N, Sunada I, Iwai Y et al (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98(5):1056–1064

    Google Scholar 

  353. Tsuyuguchi N, Takami T, Sunada I et al (2004): Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery–in malignant glioma. Ann Nucl Med 18(4):291–296

    Google Scholar 

  354. Turkbey B, Mana E, Shih J et al (2014) Localised prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology 270:849–856

    Article  PubMed  Google Scholar 

  355. Umbehr MH, Muntener M, Hany T et al (2013) The role of 11C-choline and 18F-fluorocholine positron emission tomograhy (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 64:106–117

    Article  PubMed  Google Scholar 

  356. Vallabhajosula S (2007) 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med (37):400–419

    Google Scholar 

  357. Vanderhoek M, Juckett MB, Perlman SB et al (2011) Early assessment of treatment response in patients with AML using (18F)FLT PET imaging. Leuk Res 35(3):310e6

    Google Scholar 

  358. Vargas HA, Akin O, Schöder H et al (2012). Prospective evaluation of MRI, 11C-acetate PET/CT and contrast-enhanced CT for staging of bladder cancer. Eur J Radio 81(12):4131–4137

    Google Scholar 

  359. Verel I, Visser GW, Boellaard R et al (2003) 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med 44(8):1271–1281

    CAS  PubMed  Google Scholar 

  360. Vesselle H, Grierson J, Muzi M et al (2002) In vivo validation of 3’deoxy-3’-(18F)fluorothymidine ((18F)FLT) as a proliferation imaging tracer in humans: correlation of (18F)FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 8:3315–3323

    CAS  PubMed  Google Scholar 

  361. Volker JF et al (1940) The absorption of fluorides by enamel, dentin, bone, and hydroxyapatite as shown by the radioactive isotope. J Biol Chem 134:543–548

    Article  CAS  Google Scholar 

  362. De Vries EFJ, Luurtsema G, Brussermann M et al (1999) Fully automated synthesis module for the high yield one-pot preparation of 6-(18F)fluoro-L-DOPA. Appl Radiat Isot 51:389–394

    Article  Google Scholar 

  363. van Waarde A, Cobben DC, Suurmeijer AJ et al (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45(4):695–700

    PubMed  Google Scholar 

  364. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  365. Weber W, Bartenstein P, Gross MW et al (1997) Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 38:802–808

    CAS  PubMed  Google Scholar 

  366. Weber DC, Zilli T, Buchegger F et al (2008) ((18)F)Fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 3:44

    Google Scholar 

  367. Weckesser M, Langen KJ, Rickert CH et al (2005) O-(2-(18F)Fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 32:422–429

    Article  CAS  PubMed  Google Scholar 

  368. Wells P, Gunn RN, Alison M et al (2002) Assessment of proliferation in vivo using 2-(11C)thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res 62:5698–5702

    CAS  PubMed  Google Scholar 

  369. Wester HJ, Herz M, Weber W et al (1999) Synthesis and radiopharmacology of O-(2-18F-fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212

    CAS  PubMed  Google Scholar 

  370. Whal L, Nahmias C (1997) Modeling of fluorine-18-6-fluoro-L-Dopa in humans. J Nucl Med 37(3):432–437

    Google Scholar 

  371. Wienhard K, Herholz K, Coenen HH et al (1991) Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine (see comments). J Nucl Med 32:1338–1346

    CAS  PubMed  Google Scholar 

  372. Wierts R, Brans B, Havekes B et al (2016) Dose-response relationship in differentiated thyroid cancer patients undergoing radioiodine treatment assessed by means of 124I PET/CT. J Nucl Med 57(7):1027–1032

    Google Scholar 

  373. Wild D, Fani M, Behe M et al (2011) First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med 52:1412–1417

    Article  CAS  PubMed  Google Scholar 

  374. De Witte O, Levivier M, Violon P et al (1996) Prognostic value positron emission tomography with (18F)fluoro-2-deoxy-d-glucose in the low-grade glioma. Neurosurgery 39(3):470–477

    PubMed  Google Scholar 

  375. Wong TZ, Van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumours. Neuroimaging Clin N Am 12:615–626

    Article  PubMed  Google Scholar 

  376. Yamaguchi T, Lee J, Uemura H et al (2005) Prostate cancer: a comparative study of (11)C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 32:742–748

    Article  CAS  PubMed  Google Scholar 

  377. Yamamoto Y, Nishiyama Y, Kameyama R et al (2008) Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18-F-FDG PET. J Nucl Med 49(8):1245–1248

    Google Scholar 

  378. Yamamoto Y, Nishiyama Y, Kimura N et al (2008) 11C-Acetate PET in the Evaluation of Brain Glioma: comparison with 11C-Methionine and 18F-FDG-PET. Mol Imaging Biol 10:281–287

    Google Scholar 

  379. Yamane T, Sakamoto S, Senda M (2009) Clinical impact of (11)C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging

    Google Scholar 

  380. Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, Podoloff DA (1995) Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 194:795–800

    Article  CAS  PubMed  Google Scholar 

  381. Yoshimoto M, Waki A, Yonekura Y et al (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28:117–122

    Article  CAS  PubMed  Google Scholar 

  382. Zeisel SH (1981) Dietary choline: biochemistry, physiology and pharmacology. Annu Rev Nutr 1:95–121

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egesta Lopci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopci, E., Fanti, S. (2020). Non-FDG PET/CT. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics