Skip to main content
Log in

Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Different therapeutic options for the management of prostate cancer (PC) have been developed, and some are successful in providing crucial improvement in both survival and quality of life, especially in patients with metastatic castration-resistant PC. In this scenario, diverse combinations of radiopharmaceuticals (for targeting bone, cancer cells and receptors) and nuclear medicine modalities (e.g. bone scan, SPECT, SPECT/CT, PET and PET/CT) are now available for imaging bone metastases. Some radiopharmaceuticals are approved, currently available and used in the routine clinical setting, while others are not registered and are still under evaluation, and should therefore be considered experimental. On the other hand, radiologists have other tools, in addition to CT, that can better visualize bone localization and medullary involvement, such as multimodal MRI. In this review, the authors provide an overview of current management of advanced PC and discuss the choice of diagnostic modality for the detection of metastatic skeletal lesions in different phases of the disease. In addition to detection of bone metastases, the evaluation of response to therapy is another critical issue, since it remains one of the most important open questions that a multidisciplinary team faces when optimizing the management of PC. The authors emphasize the role of nuclear modalities that can presently be used in clinical practice, and also look at future perspectives based on relevant clinical data with novel radiopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gater A, Abetz-Webb L, Battersby C, Parasuraman B, McIntosh S, Nathan F, et al. Pain in castration-resistant prostate cancer with bone metastases: a qualitative study. Health Qual Life Outcomes. 2011;9:88. doi:10.1186/1477-7525-9-88.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract. 2011;65:1180–92. doi:10.1111/j.1742-1241.2011.02799.x.

    Article  CAS  PubMed  Google Scholar 

  3. Lee RJ, Saylor PJ, Smith MR. Contemporary therapeutic approaches targeting bone complications in prostate cancer. Clin Genitourin Cancer. 2010;8:29–36. doi:10.3816/CGC.2010.n.005.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lipton A, Cook R, Brown J, Body JJ, Smith M, Coleman R. Skeletal-related events and clinical outcomes in patients with bone metastases and normal levels of osteolysis: exploratory analyses. Clin Oncol (R Coll Radiol). 2013;25:217–26. doi:10.1016/j.clon.2012.11.004.

    Article  CAS  Google Scholar 

  5. Saad F, Clarke N, Colombel M. Natural history and treatment of bone complications in prostate cancer. Eur Urol. 2006;49:429–40. doi:10.1016/j.eururo.2005.12.045.

    Article  CAS  PubMed  Google Scholar 

  6. Smith MR, Kabbinavar F, Saad F, Hussain A, Gittelman MC, Bilhartz DL, et al. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J Clin Oncol. 2005;23:2918–25. doi:10.1200/JCO.2005.01.529.

    Article  PubMed  Google Scholar 

  7. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12:6243s–9s. doi:10.1158/1078-0432.CCR-06-0931.

    Article  PubMed  Google Scholar 

  8. Crawford ED, Eisenberger MA, McLeod DG, Spaulding JT, Benson R, Dorr FA, et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med. 1989;321:419–24. doi:10.1056/NEJM198908173210702.

    Article  CAS  PubMed  Google Scholar 

  9. Doctor SM, Tsao CK, Godbold JH, Galsky MD, Oh WK. Is prostate cancer changing?: evolving patterns of metastatic castration-resistant prostate cancer. Cancer. 2014;120:833–9. doi:10.1002/cncr.28494.

    Article  PubMed  Google Scholar 

  10. Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sorensen HT. Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol. 2010;184:162–7. doi:10.1016/j.juro.2010.03.034.

    Article  PubMed  Google Scholar 

  11. Oefelein MG, Ricchiuti V, Conrad W, Resnick MI. Skeletal fractures negatively correlate with overall survival in men with prostate cancer. J Urol. 2002;168:1005–7. doi:10.1097/01.ju.0000024395.86788.cc.

    Article  PubMed  Google Scholar 

  12. Onukwugha E, Yong C, Mullins CD, Seal B, McNally D, Hussain A. Skeletal-related events and mortality among older men with advanced prostate cancer. J Geriatr Oncol. 2014;5:281–9. doi:10.1016/j.jgo.2014.03.002.

    Article  PubMed  Google Scholar 

  13. Oster G, Lamerato L, Glass AG, Richert-Boe KE, Lopez A, Chung K, et al. Natural history of skeletal-related events in patients with breast, lung, or prostate cancer and metastases to bone: a 15-year study in two large US health systems. Support Care Cancer. 2013;21:3279–86. doi:10.1007/s00520-013-1887-3.

    Article  PubMed  Google Scholar 

  14. Sabbatini P, Larson SM, Kremer A, Zhang ZF, Sun M, Yeung H, et al. Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol. 1999;17:948–57.

    CAS  PubMed  Google Scholar 

  15. Sathiakumar N, Delzell E, Morrisey MA, Falkson C, Yong M, Chia V, et al. Mortality following bone metastasis and skeletal-related events among women with breast cancer: a population-based analysis of U.S. Medicare beneficiaries, 1999–2006. Breast Cancer Res Treat. 2012;131:231–8. doi:10.1007/s10549-011-1721-x.

    Article  CAS  PubMed  Google Scholar 

  16. Soloway MS, Hardeman SW, Hickey D, Raymond J, Todd B, Soloway S, et al. Stratification of patients with metastatic prostate cancer based on extent of disease on initial bone scan. Cancer. 1988;61:195–202.

    Article  CAS  PubMed  Google Scholar 

  17. Tait C, Moore D, Hodgson C, Brown M, Morris T, Growcott J, et al. Quantification of skeletal metastases in castrate-resistant prostate cancer predicts progression-free and overall survival. BJU Int. 2014;114:E70–3. doi:10.1111/bju.12717.

    Article  CAS  PubMed  Google Scholar 

  18. Vargas HA, Wassberg C, Fox JJ, Wibmer A, Goldman DA, Kuk D, et al. Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology. 2014;271:220–9. doi:10.1148/radiol.13130625.

    Article  PubMed  Google Scholar 

  19. Beheshti M, Mottaghy FM, Payche F, Behrendt FF, Van den Wyngaert T, Fogelman I, et al. (18)F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42:1767–77. doi:10.1007/s00259-015-3138-y.

    Article  CAS  PubMed  Google Scholar 

  20. Heidenreich A, Aus G, Bolla M, Joniau S, Matveev VB, Schmid HP, et al. EAU guidelines on prostate cancer. Eur Urol. 2008;53:68–80. doi:10.1016/j.eururo.2007.09.002.

    Article  PubMed  Google Scholar 

  21. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology. Prostate cancer. 2015. Available at: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed 21 Oct 2015.

  22. Miller DC, Hafez KS, Stewart A, Montie JE, Wei JT. Prostate carcinoma presentation, diagnosis, and staging: an update from the National Cancer Data Base. Cancer. 2003;98:1169–78. doi:10.1002/cncr.11635.

    Article  PubMed  Google Scholar 

  23. Jacobs SC. Spread of prostatic cancer to bone. Urology. 1983;21:337–44.

    Article  CAS  PubMed  Google Scholar 

  24. Scher HI, Morris MJ, Kelly WK, Schwartz LH, Heller G. Prostate cancer clinical trial end points: “RECIST”ing a step backwards. Clin Cancer Res. 2005;11:5223–32. doi:10.1158/1078-0432.CCR-05-0109.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, et al. Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol. 2000;31:578–83.

    Article  CAS  PubMed  Google Scholar 

  26. Freedland SJ, Richhariya A, Wang H, Chung K, Shore ND. Treatment patterns in patients with prostate cancer and bone metastasis among US community-based urology group practices. Urology. 2012;80:293–8. doi:10.1016/j.urology.2012.04.007.

    Article  PubMed  Google Scholar 

  27. Tofe AJ, Francis MD, Harvey WJ. Correlation of neoplasms with incidence and localization of skeletal metastases: an analysis of 1355 diphosphonate bone scans. J Nucl Med. 1975;16:986–9.

    CAS  PubMed  Google Scholar 

  28. Wang CY, Wu GY, Shen MJ, Cui KW, Shen Y. Comparison of distribution characteristics of metastatic bone lesions between breast and prostate carcinomas. Oncol Lett. 2013;5:391–7. doi:10.3892/ol.2012.1005.

    PubMed  Google Scholar 

  29. Wilson MA, Calhoun FW. The distribution of skeletal metastases in breast and pulmonary cancer: concise communication. J Nucl Med. 1981;22:594–7.

    CAS  PubMed  Google Scholar 

  30. Sher HI. The Prostate Cancer Working Group 3 (PCWG3) consensus for trials in castration-resistant prostate cancer (CRPC). ASCO Annual Meeting 2015. Chicago; 2015.

  31. Ottewell PD, Wang N, Meek J, Fowles CA, Croucher PI, Eaton CL, et al. Castration-induced bone loss triggers growth of disseminated prostate cancer cells in bone. Endocr Relat Cancer. 2014;21:769–81. doi:10.1530/ERC-14-0199.

    Article  CAS  PubMed  Google Scholar 

  32. Wang N, Docherty FE, Brown HK, Reeves KJ, Fowles AC, Ottewell PD, et al. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models. J Bone Miner Res. 2014;29:2688–96. doi:10.1002/jbmr.2300.

    Article  CAS  PubMed  Google Scholar 

  33. Goltzman D. Mechanisms of the development of osteoblastic metastases. Cancer. 1997;80:1581–7.

    Article  CAS  PubMed  Google Scholar 

  34. Clarke NW, McClure J, George NJ. Morphometric evidence for bone resorption and replacement in prostate cancer. Br J Urol. 1991;68:74–80.

    Article  CAS  PubMed  Google Scholar 

  35. Roudier MP, Morrissey C, True LD, Higano CS, Vessella RL, Ott SM. Histopathological assessment of prostate cancer bone osteoblastic metastases. J Urol. 2008;180:1154–60. doi:10.1016/j.juro.2008.04.140.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fang J, Xu Q. Differences of osteoblastic bone metastases and osteolytic bone metastases in clinical features and molecular characteristics. Clin Transl Oncol. 2015;17:173–9. doi:10.1007/s12094-014-1247-x.

    Article  CAS  PubMed  Google Scholar 

  37. Jayasekera J, Onukwugha E, Bikov K, Mullins CD, Seal B, Hussain A. The economic burden of skeletal-related events among elderly men with metastatic prostate cancer. Pharmacoeconomics. 2014;32:173–91. doi:10.1007/s40273-013-0121-y.

    Article  CAS  PubMed  Google Scholar 

  38. Boccardo F. The MAINSAIL trial: an expected failure. Lancet Oncol. 2015;16:355–6. doi:10.1016/S1470-2045(15)70058-6.

    Article  PubMed  Google Scholar 

  39. Horwich A, Parker C, de Reijke T, Kataja V, Group EGW. Prostate cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24 Suppl 6:vi106–14. doi:10.1093/annonc/mdt208.

    Article  PubMed  Google Scholar 

  40. James MD, Sydes MR, Mason MD. Docetaxel (DOC) +/− zoledronic acid for hormone-naive prostate cancer: first available results from STAMPEDE and treatment effects within subgroups (NCT00268476). Eur J Cancer. 2015;51:abstract 19LBC:S719.

  41. Petrylak DP, Tangen CM, Hussain MH, Lara Jr PN, Jones JA, Taplin ME, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351:1513–20. doi:10.1056/NEJMoa041318.

    Article  CAS  PubMed  Google Scholar 

  42. Sweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373:737–46. doi:10.1056/NEJMoa1503747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351:1502–12. doi:10.1056/NEJMoa040720.

    Article  CAS  PubMed  Google Scholar 

  44. van Soest RJ, Nieuweboer AJ, de Morree ES, Chitu D, Bergman AM, Goey SH, et al. The influence of prior novel androgen receptor targeted therapy on the efficacy of cabazitaxel in men with metastatic castration-resistant prostate cancer. Eur J Cancer. 2015;51:2562–9. doi:10.1016/j.ejca.2015.07.037.

  45. Attard G, Reid AH, A’Hern R, Parker C, Oommen NB, Folkerd E, et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J Clin Oncol. 2009;27:3742–8. doi:10.1200/JCO.2008.20.0642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33. doi:10.1056/NEJMoa1405095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364:1995–2005. doi:10.1056/NEJMoa1014618.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sartor O, Coleman R, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol. 2014;15:738–46. doi:10.1016/S1470-2045(14)70183-4.

    Article  CAS  PubMed  Google Scholar 

  49. Parker C, Gillessen S, Heidenreich A, Horwich A, Committee EG. Cancer of the prostate: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26 Suppl 5:v69–77. doi:10.1093/annonc/mdv222.

    Article  PubMed  Google Scholar 

  50. Saad F, McKiernan J, Eastham J. Rationale for zoledronic acid therapy in men with hormone-sensitive prostate cancer with or without bone metastasis. Urol Oncol. 2006;24:4–12. doi:10.1016/j.urolonc.2005.06.020.

    Article  CAS  PubMed  Google Scholar 

  51. Chow E, Harris K, Fan G, Tsao M, Sze WM. Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol. 2007;25:1423–36. doi:10.1200/JCO.2006.09.5281.

    Article  PubMed  Google Scholar 

  52. Lutz S, Berk L, Chang E, Chow E, Hahn C, Hoskin P, et al. Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys. 2011;79:965–76. doi:10.1016/j.ijrobp.2010.11.026.

    Article  PubMed  Google Scholar 

  53. Fairchild A, Barnes E, Ghosh S, Ben-Josef E, Roos D, Hartsell W, et al. International patterns of practice in palliative radiotherapy for painful bone metastases: evidence-based practice? Int J Radiat Oncol Biol Phys. 2009;75:1501–10. doi:10.1016/j.ijrobp.2008.12.084.

    Article  PubMed  Google Scholar 

  54. Hartsell WF, Scott CB, Bruner DW, Scarantino CW, Ivker RA, Roach 3rd M, et al. Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst. 2005;97:798–804. doi:10.1093/jnci/dji139.

    Article  PubMed  Google Scholar 

  55. Konski A. Radiotherapy is a cost-effective palliative treatment for patients with bone metastasis from prostate cancer. Int J Radiat Oncol Biol Phys. 2004;60:1373–8. doi:10.1016/j.ijrobp.2004.05.053.

    Article  PubMed  Google Scholar 

  56. Ricardi U, Filippi AR, Franco P. New concepts and insights into the role of radiation therapy in extracranial metastatic disease. Expert Rev Anticancer Ther. 2013;13:1145–55. doi:10.1586/14737140.2013.846829.

    Article  CAS  PubMed  Google Scholar 

  57. Yoon F, Morton GC. Single fraction radiotherapy versus multiple fraction radiotherapy for bone metastases in prostate cancer patients: comparative effectiveness. Cancer Manag Res. 2014;6:451–7. doi:10.2147/CMAR.S44940.

    Article  PubMed  PubMed Central  Google Scholar 

  58. van den Beuken-van Everdingen MH, de Rijke JM, Kessels AG, Schouten HC, van Kleef M, Patijn J. Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol. 2007;18:1437–49. doi:10.1093/annonc/mdm056.

    Article  Google Scholar 

  59. Portenoy RK, Koh M. Cancer pain syndromes. In: Bruera E, Portenoy RK, editors. Cancer pain assessment and management. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  60. van Herk R, van Dijk M, Baar FP, Tibboel D, de Wit R. Observation scales for pain assessment in older adults with cognitive impairments or communication difficulties. Nurs Res. 2007;56:34–43.

    Article  PubMed  Google Scholar 

  61. Smith DC, Dunn RL, Strawderman MS, Pienta KJ. Change in serum prostate-specific antigen as a marker of response to cytotoxic therapy for hormone-refractory prostate cancer. J Clin Oncol. 1998;16:1835–43.

    CAS  PubMed  Google Scholar 

  62. Thuret R, Massard C, Gross-Goupil M, Escudier B, Di Palma M, Bossi A, et al. The postchemotherapy PSA surge syndrome. Ann Oncol. 2008;19:1308–11. doi:10.1093/annonc/mdn062.

    Article  CAS  PubMed  Google Scholar 

  63. Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26:1148–59. doi:10.1200/JCO.2007.12.4487.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Costa L, Demers LM, Gouveia-Oliveira A, Schaller J, Costa EB, de Moura MC, et al. Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status. J Clin Oncol. 2002;20:850–6.

    Article  CAS  PubMed  Google Scholar 

  65. Koizumi M, Yonese J, Fukui I, Ogata E. The serum level of the amino-terminal propeptide of type I procollagen is a sensitive marker for prostate cancer metastasis to bone. BJU Int. 2001;87:348–51.

    Article  CAS  PubMed  Google Scholar 

  66. Koopmans N, de Jong IJ, Breeuwsma AJ, van der Veer E. Serum bone turnover markers (PINP and ICTP) for the early detection of bone metastases in patients with prostate cancer: a longitudinal approach. J Urol. 2007;178:849–53. doi:10.1016/j.juro.2007.05.029.

    Article  CAS  PubMed  Google Scholar 

  67. Zafeirakis AG, Papatheodorou GA, Limouris GS. Clinical and imaging correlations of bone turnover markers in prostate cancer patients with bone only metastases. Nucl Med Commun. 2010;31:249–53. doi:10.1097/MNM.0b013e328335a5ed.

    Article  PubMed  Google Scholar 

  68. Coleman RE, Major P, Lipton A, Brown JE, Lee KA, Smith M, et al. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol. 2005;23:4925–35. doi:10.1200/JCO.2005.06.091.

    Article  CAS  PubMed  Google Scholar 

  69. Cook RJ, Coleman R, Brown J, Lipton A, Major P, Hei YJ, et al. Markers of bone metabolism and survival in men with hormone-refractory metastatic prostate cancer. Clin Cancer Res. 2006;12:3361–7. doi:10.1158/1078-0432.CCR-06-0269.

    Article  CAS  PubMed  Google Scholar 

  70. Smith MR, Cook RJ, Coleman R, Brown J, Lipton A, Major P, et al. Predictors of skeletal complications in men with hormone-refractory metastatic prostate cancer. Urology. 2007;70:315–9. doi:10.1016/j.urology.2007.03.071.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Metwalli AR, Rosner IL, Cullen J, Chen Y, Brand T, Brassell SA, et al. Elevated alkaline phosphatase velocity strongly predicts overall survival and the risk of bone metastases in castrate-resistant prostate cancer. Urol Oncol. 2014;32:761–8. doi:10.1016/j.urolonc.2014.03.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brasso K, Christensen IJ, Johansen JS, Teisner B, Garnero P, Price PA, et al. Prognostic value of PINP, bone alkaline phosphatase, CTX-I, and YKL-40 in patients with metastatic prostate carcinoma. Prostate. 2006;66:503–13. doi:10.1002/pros.20311.

    Article  CAS  PubMed  Google Scholar 

  73. Michaelson MD, Marujo RM, Smith MR. Contribution of androgen deprivation therapy to elevated osteoclast activity in men with metastatic prostate cancer. Clin Cancer Res. 2004;10:2705–8.

    Article  CAS  PubMed  Google Scholar 

  74. Bauer D, Krege J, Lane N, Leary E, Libanati C, Miller P, et al. National Bone Health Alliance Bone Turnover Marker Project: current practices and the need for US harmonization, standardization, and common reference ranges. Osteoporos Int. 2012;23:2425–33. doi:10.1007/s00198-012-2049-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Coleman R, Costa L, Saad F, Cook R, Hadji P, Terpos E, et al. Consensus on the utility of bone markers in the malignant bone disease setting. Crit Rev Oncol Hematol. 2011;80:411–32. doi:10.1016/j.critrevonc.2011.02.005.

    Article  PubMed  Google Scholar 

  76. Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420. doi:10.1007/s00198-010-1501-1.

    Article  CAS  PubMed  Google Scholar 

  77. Lecouvet FE, Geukens D, Stainier A, Jamar F, Jamart J, d’Othee BJ, et al. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol. 2007;25:3281–7. doi:10.1200/JCO.2006.09.2940.

    Article  PubMed  Google Scholar 

  78. Ketelsen D, Rothke M, Aschoff P, Merseburger AS, Lichy MP, Reimold M, et al. Detection of bone metastasis of prostate cancer – comparison of whole-body MRI and bone scintigraphy. Rofo. 2008;180:746–52. doi:10.1055/s-2008-1027479.

    Article  CAS  PubMed  Google Scholar 

  79. Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62:68–75. doi:10.1016/j.eururo.2012.02.020.

    Article  PubMed  Google Scholar 

  80. Luboldt W, Kufer R, Blumstein N, Toussaint TL, Kluge A, Seemann MD, et al. Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology. 2008;249:1017–25. doi:10.1148/radiol.2492080038.

    Article  PubMed  Google Scholar 

  81. Venkitaraman R, Cook GJ, Dearnaley DP, Parker CC, Khoo V, Eeles R, et al. Whole-body magnetic resonance imaging in the detection of skeletal metastases in patients with prostate cancer. J Med Imaging Radiat Oncol. 2009;53:241–7. doi:10.1111/j.1754-9485.2009.02070.x.

    Article  CAS  PubMed  Google Scholar 

  82. Wang X, Zhang C, Jiang X. Prospective study of bone metastasis from prostate cancer: comparison between large field diffusion-weighted imaging and bone scintigraphy. Chin J Radiol. 2009;43:131–5.

    Google Scholar 

  83. Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili A, Scherr P, et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skelet Radiol. 2010;39:333–43. doi:10.1007/s00256-009-0789-4.

    Article  Google Scholar 

  84. Mosavi F, Johansson S, Sandberg DT, Turesson I, Sorensen J, Ahlstrom H. Whole-body diffusion-weighted MRI compared with (18)F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am J Roentgenol. 2012;199:1114–20. doi:10.2214/AJR.11.8351.

    Article  PubMed  Google Scholar 

  85. Stecco A, Lombardi M, Leva L, Brambilla M, Negru E, Delli Passeri S, et al. Diagnostic accuracy and agreement between whole-body diffusion MRI and bone scintigraphy in detecting bone metastases. Radiol Med. 2013;118:465–75. doi:10.1007/s11547-012-0870-2.

    Article  CAS  PubMed  Google Scholar 

  86. Galasko CS. Diagnosis of skeletal metastases and assessment of response to treatment. Clin Orthop Relat Res. 1995;312:64–75.

    PubMed  Google Scholar 

  87. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22:2942–53. doi:10.1200/JCO.2004.08.181.

    Article  PubMed  Google Scholar 

  88. Bauerle T, Semmler W. Imaging response to systemic therapy for bone metastases. Eur Radiol. 2009;19:2495–507. doi:10.1007/s00330-009-1443-1.

    Article  PubMed  Google Scholar 

  89. Costelloe CM, Chuang HH, Madewell JE, Ueno NT. Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J Cancer. 2010;1:80–92.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schmidt GP, Reiser MF, Baur-Melnyk A. Whole-body MRI for the staging and follow-up of patients with metastasis. Eur J Radiol. 2009;70:393–400. doi:10.1016/j.ejrad.2009.03.045.

    Article  PubMed  Google Scholar 

  91. Pasoglou V, Michoux N, Peeters F, Larbi A, Tombal B, Selleslagh T, et al. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology. 2015;275:155–66. doi:10.1148/radiol.14141242.

    Article  PubMed  Google Scholar 

  92. Koh DM, Takahara T, Imai Y, Collins DJ. Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci. 2007;6:211–24.

    Article  PubMed  Google Scholar 

  93. Reischauer C, Froehlich JM, Koh DM, Graf N, Padevit C, John H, et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps – initial observations. Radiology. 2010;257:523–31. doi:10.1148/radiol.10092469.

    Article  PubMed  Google Scholar 

  94. Koh DM, Blackledge M, Collins DJ, Padhani AR, Wallace T, Wilton B, et al. Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol. 2009;19:2728–38. doi:10.1007/s00330-009-1469-4.

    Article  PubMed  Google Scholar 

  95. Fitzpatrick JM, Bellmunt J, Fizazi K, Heidenreich A, Sternberg CN, Tombal B, et al. Optimal management of metastatic castration-resistant prostate cancer: highlights from a European Expert Consensus Panel. Eur J Cancer. 2014;50:1617–27. doi:10.1016/j.ejca.2014.03.010.

    Article  PubMed  Google Scholar 

  96. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:11–20. doi:10.1007/s00259-013-2525-5.

    Article  CAS  PubMed  Google Scholar 

  97. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  98. Nanni C, Schiavina R, Brunocilla E, Borghesi M, Ambrosini V, Zanoni L, et al. 18F-FACBC compared with 11C-choline PET/CT in patients with biochemical relapse after radical prostatectomy: a prospective study in 28 patients. Clin Genitourin Cancer. 2014;12:106–10. doi:10.1016/j.clgc.2013.08.002.

    Article  PubMed  Google Scholar 

  99. Briganti A, Passoni N, Ferrari M, Capitanio U, Suardi N, Gallina A, et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol. 2010;57:551–8. doi:10.1016/j.eururo.2009.12.023.

    Article  PubMed  Google Scholar 

  100. Dennis ER, Jia X, Mezheritskiy IS, Stephenson RD, Schoder H, Fox JJ, et al. Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol. 2012;30:519–24. doi:10.1200/JCO.2011.36.5791.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ulmert D, Kaboteh R, Fox JJ, Savage C, Evans MJ, Lilja H, et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the bone scan index. Eur Urol. 2012;62:78–84. doi:10.1016/j.eururo.2012.01.037.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gamez-Cenzano C, Pino-Sorroche F. Standardization and quantification in FDG-PET/CT imaging for staging and restaging of malignant disease. PET Clin. 2014;9:117–27. doi:10.1016/j.cpet.2013.10.003.

    Article  PubMed  Google Scholar 

  103. Garcia JR, Moreno C, Valls E, Cozar P, Bassa P, Soler M, et al. Diagnostic performance of bone scintigraphy and (11)C-choline PET/CT in the detection of bone metastases in patients with biochemical recurrence of prostate cancer. Rev Esp Med Nucl Imagen Mol. 2015;34:155–61. doi:10.1016/j.remn.2014.08.001.

    CAS  PubMed  Google Scholar 

  104. Poulsen MH, Petersen H, Hoilund-Carlsen PF, Jakobsen JS, Gerke O, Karstoft J, et al. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [18F]choline positron emission tomography(PET)/computed tomography (CT) and [18F]NaF PET/CT. BJU Int. 2014;114:818–23. doi:10.1111/bju.12599.

    Article  CAS  PubMed  Google Scholar 

  105. Iagaru A, Mittra E, Dick DW, Gambhir SS. Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol. 2012;14:252–9. doi:10.1007/s11307-011-0486-2.

    Article  PubMed  Google Scholar 

  106. Damle NA, Bal C, Bandopadhyaya GP, Kumar L, Kumar P, Malhotra A, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013;31:262–9. doi:10.1007/s11604-013-0179-7.

    Article  PubMed  Google Scholar 

  107. Palmedo H, Marx C, Ebert A, Kreft B, Ko Y, Turler A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41:59–67. doi:10.1007/s00259-013-2532-6.

    Article  CAS  PubMed  Google Scholar 

  108. Withofs N, Grayet B, Tancredi T, Rorive A, Mella C, Giacomelli F, et al. (18)F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun. 2011;32:168–76. doi:10.1097/MNM.0b013e3283412ef5.

    Article  PubMed  Google Scholar 

  109. Takesh M, Odat Allh K, Adams S, Zechmann C. Diagnostic role of (18)F-FECH-PET/CT compared with bone scan in evaluating the prostate cancer patients referring with biochemical recurrence. ISRN Oncol. 2012;2012:815234. doi:10.5402/2012/815234.

    PubMed  PubMed Central  Google Scholar 

  110. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Hammer J, et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2009;11:446–54. doi:10.1007/s11307-009-0217-0.

    Article  PubMed  Google Scholar 

  111. Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med. 2006;36:73–92. doi:10.1053/j.semnuclmed.2005.09.002.

    Article  PubMed  Google Scholar 

  112. McCarthy M, Siew T, Campbell A, Lenzo N, Spry N, Vivian J, et al. (18)F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging. 2011;38:14–22. doi:10.1007/s00259-010-1579-x.

    Article  PubMed  Google Scholar 

  113. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74. doi:10.1007/s00259-008-0788-z.

    Article  PubMed  Google Scholar 

  114. Fuccio C, Castellucci P, Schiavina R, Santi I, Allegri V, Pettinato V, et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med. 2010;24:485–92. doi:10.1007/s12149-010-0390-x.

    Article  CAS  PubMed  Google Scholar 

  115. Picchio M, Spinapolice EG, Fallanca F, Crivellaro C, Giovacchini G, Gianolli L, et al. [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:13–26. doi:10.1007/s00259-011-1920-z.

    Article  CAS  PubMed  Google Scholar 

  116. Kitajima K, Murphy RC, Nathan MA, Froemming AT, Hagen CE, Takahashi N, et al. Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med. 2014;55:223–32. doi:10.2967/jnumed.113.123018.

    Article  CAS  PubMed  Google Scholar 

  117. Hetzel M, Hetzel J, Arslandemir C, Nussle K, Schirrmeister H. Reliability of symptoms to determine use of bone scans to identify bone metastases in lung cancer: prospective study. BMJ. 2004;328:1051–2. doi:10.1136/bmj.328.7447.1051.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Schirrmeister H, Arslandemir C, Glatting G, Mayer-Steinacker R, Bommer M, Dreinhofer K, et al. Omission of bone scanning according to staging guidelines leads to futile therapy in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2004;31:964–8. doi:10.1007/s00259-004-1492-2.

    Article  PubMed  Google Scholar 

  119. Steinborn MM, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr. 1999;23:123–9.

    Article  CAS  PubMed  Google Scholar 

  120. Caffo O, Maines F, Donner D, Veccia A, Chierichetti F, Galligioni E. Impact of enzalutamide administration on primary prostate cancer volume: a metabolic evaluation by choline positron emission tomography in castration-resistant prostate cancer patients. Clin Genitourin Cancer. 2014;12:312–6. doi:10.1016/j.clgc.2014.03.004.

    Article  PubMed  Google Scholar 

  121. De Giorgi U, Caroli P, Scarpi E, Conteduca V, Burgio SL, Menna C, et al. (18)F-Fluorocholine PET/CT for early response assessment in patients with metastatic castration-resistant prostate cancer treated with enzalutamide. Eur J Nucl Med Mol Imaging. 2015;42:1276–83. doi:10.1007/s00259-015-3042-5.

    Article  PubMed  CAS  Google Scholar 

  122. De Giorgi U, Caroli P, Burgio SL, Menna C, Conteduca V, Bianchi E, et al. Early outcome prediction on 18F-fluorocholine PET/CT in metastatic castration-resistant prostate cancer patients treated with abiraterone. Oncotarget. 2014;5:12448–58.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ceci F, Castellucci P, Graziani T, Schiavina R, Renzi R, Borghesi M, et al. (11)C-Choline PET/CT in castration-resistant prostate cancer patients treated with docetaxel. Eur J Nucl Med Mol Imaging. 2016:43:84–91. doi:10.1007/s00259-015-3177-4.

    Article  CAS  PubMed  Google Scholar 

  124. Cookson MS, Roth BJ, Dahm P, Engstrom C, Freedland SJ, Hussain M, et al. Castration-resistant prostate cancer: AUA guideline. American Urological Association; 2015.

  125. Sternberg CN, Petrylak DP, Sartor O, Witjes JA, Demkow T, Ferrero JM, et al. Multinational, double-blind, phase III study of prednisone and either satraplatin or placebo in patients with castrate-refractory prostate cancer progressing after prior chemotherapy: the SPARC trial. J Clin Oncol. 2009;27:5431–8. doi:10.1200/JCO.2008.20.1228.

    Article  CAS  PubMed  Google Scholar 

  126. Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med. 2011;52:81–9. doi:10.2967/jnumed.110.077941.

    Article  PubMed  Google Scholar 

  127. Wade AA, Scott JA, Kuter I, Fischman AJ. Flare response in 18F-fluoride ion PET bone scanning. AJR Am J Roentgenol. 2006;186:1783–6. doi:10.2214/AJR.05.0225.

    Article  PubMed  Google Scholar 

  128. McNamara MA, George DJ. Pain, PSA flare, and bone scan response in a patient with metastatic castration-resistant prostate cancer treated with radium-223, a case report. BMC Cancer. 2015;15:371. doi:10.1186/s12885-015-1390-y.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Jadvar H, Desai B, Ji L, Groshen S, Mills J, Murray R, et al. Prediction of hormonal resistance in metastatic prostate cancer with FDG PET/CT. J Nucl Med. 2015;56 Suppl 3:Abstract 1451.

  130. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209. doi:10.1007/s00259-014-2949-6.

    Article  CAS  PubMed  Google Scholar 

  131. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014;41:887–97. doi:10.1007/s00259-013-2660-z.

    Article  CAS  PubMed  Google Scholar 

  132. Maurer T, Weirich G, Schottelius M, Weineisen M, Frisch B, Okur A, et al. Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur Urol. 2015;68:530–4. doi:10.1016/j.eururo.2015.04.034.

    Article  PubMed  Google Scholar 

  133. Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015;56:1185–90. doi:10.2967/jnumed.115.160382.

    Article  CAS  PubMed  Google Scholar 

  134. Castellucci P, Fuccio C, Rubello D, Schiavina R, Santi I, Nanni C, et al. Is there a role for (11)C-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5 ng/ml? Eur J Nucl Med Mol Imaging. 2011;38:55–63. doi:10.1007/s00259-010-1604-0.

    Article  PubMed  Google Scholar 

  135. Ceci F, Castellucci P, Graziani T, Schiavina R, Chondrogiannis S, Bonfiglioli R, et al. 11C-choline PET/CT identifies osteoblastic and osteolytic lesions in patients with metastatic prostate cancer. Clin Nucl Med. 2015;40:e265–70. doi:10.1097/RLU.0000000000000783.

    Article  PubMed  Google Scholar 

  136. Cimitan M, Evangelista L, Hodolic M, Mariani G, Baseric T, Bodanza V, et al. Gleason score at diagnosis predicts the rate of detection of 18F-choline PET/CT performed when biochemical evidence indicates recurrence of prostate cancer: experience with 1000 patients. J Nucl Med. 2015;56:209–15. doi:10.2967/jnumed.114.141887.

    Article  CAS  PubMed  Google Scholar 

  137. Evangelista L, Cimitan M, Zattoni F, Guttilla A, Zattoni F, Saladini G. Comparison between conventional imaging (abdominal-pelvic computed tomography and bone scan) and [(18)F]choline positron emission tomography/computed tomography imaging for the initial staging of patients with intermediate- to high-risk prostate cancer: a retrospective analysis. Scand J Urol. 2015;49:345–53. doi:10.3109/21681805.2015.1005665.

    Article  CAS  PubMed  Google Scholar 

  138. Mitchell CR, Lowe VJ, Rangel LJ, Hung JC, Kwon ED, Karnes RJ. Operational characteristics of (11)C-choline positron emission tomography/computerized tomography for prostate cancer with biochemical recurrence after initial treatment. J Urol. 2013;189:1308–13. doi:10.1016/j.juro.2012.10.069.

    Article  PubMed  Google Scholar 

  139. Gillessen S, Omlin A, Attard G, de Bono JS, Efstathiou E, Fizazi K, et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol. 2015;26:1589–604. doi:10.1093/annonc/mdv257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the following specialists who participated in the discussion of this proposal. Gianluigi Ciocia, MD, Nuclear Medicine Department, Humanitas Gavazzeni, Bergamo, Italy; Marialuisa De Rimini, MD, U.O.C. of Nuclear Medicine, A.O.R.N. Monaldi, Naples, Italy; Stefano Fanti, MD, Nuclear Medicine Department, Azienda Ospedaliera Universitaria di Bologna, Bologna, Italy; Chiara Maria Grana, MD, Nuclear Medicine Division, Istituto Europeo di Oncologia, Milan, Italy; Lorenzo Maffioli, MD, Nuclear Medicine Department, Ospedale Civile di Legnano, Legnano (Milan), Italy; Marcello Rodari, MD, Nuclear Medicine Department, Humanitas Clinical and Research Institute, Rozzano (Milan), Italy; Rosa Sciuto, MD, Department of Nuclear Medicine, Regina Elena National Cancer Institute, Roma, Italy; Francesco Scopinaro, MD, Unit of Nuclear Medicine, Sant’Andrea Hospital, Rome, Italy, and Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy. All authors attended an editorial meeting hosted by Health Publishing & Services srl to discuss topics for inclusion. The entire project was made possible thanks to unconditional support from Bayer. Editorial assistance for the manuscript was provided by Dr. Patrick Moore, on behalf of Health Publishing & Services srl and supported by Bayer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Bombardieri.

Ethics declarations

Funding

None.

Conflicts of interest

None.

Ethical approval

This article does not describe any studies with human participants or animals performed by any of the authors.

Informed consent

Not necessary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evangelista, L., Bertoldo, F., Boccardo, F. et al. Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging 43, 1546–1562 (2016). https://doi.org/10.1007/s00259-016-3350-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3350-4

Keywords

Navigation