Skip to main content

Involvement of Heparanase in Endothelial Cell-Cardiomyocyte Crosstalk

  • Chapter
  • First Online:
Heparanase

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

Traditionally, the management of diabetes has focused mainly on controlling high blood glucose levels. Unfortunately, despite valiant efforts to normalize this blood glucose, poor medication management predisposes these patients to heart failure. Following diabetes, how the heart utilizes different sources of fuel for energy is key to the development of heart failure. The diabetic heart switches from using both glucose and fats, to predominately using fats as an energy resource for maintaining its activities. This transformation to using fats as an exclusive source of energy is helpful in the initial stages of the disease and is tightly controlled. However, over the progression of diabetes, there is a loss of this controlled supply and use of fats, which ultimately has terrible consequences since the uncontrolled use of fats produces toxic by-products which weaken heart function and cause heart disease. Heparanase is a key player that directs how much fats are provided to the heart and does so in association with several partners like LPL and VEGFs. Together, they regulate the amount of fats supplied, and their subsequent breakdown to provide energy. Following diabetes, there is a disruption in this network resulting in fat oversupply and cell death. Understanding how the heparanase-LPL-VEGFs “ensemble” cooperates, and its dysfunction in the diabetic heart would be useful in restoring metabolic equilibrium and limiting diabetes-related cardiac damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aasum, E., Belke, D. D., Severson, D. L., Riemersma, R. A., Cooper, M., Andreassen, M., & Larsen, T. S. (2002). Cardiac function and metabolism in type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. American Journal of Physiology Heart and Circulatory Physiology, 283(3), H949–H957. https://doi.org/10.1152/ajpheart.00226.2001.

    Article  CAS  PubMed  Google Scholar 

  2. Abboud-Jarrous, G., Atzmon, R., Peretz, T., Palermo, C., Gadea, B. B., Joyce, J. A., & Vlodavsky, I. (2008). Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. The Journal of Biological Chemistry, 283(26), 18167–18176. https://doi.org/10.1074/jbc.M801327200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abboud-Jarrous, G., Rangini-Guetta, Z., Aingorn, H., Atzmon, R., Elgavish, S., Peretz, T., & Vlodavsky, I. (2005). Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. Journal of Biological Chemistry, 280(14), 13568–13575. https://doi.org/10.1074/jbc.M413370200.

    Article  CAS  PubMed  Google Scholar 

  4. Abel, E. D. (2004). Glucose transport in the heart. Frontiers in Bioscience: A Journal and Virtual Library, 9, 201–215.

    Article  CAS  Google Scholar 

  5. Adameova, A., & Dhalla, N. S. (2014). Role of microangiopathy in diabetic cardiomyopathy. Heart Failure Reviews, 19(1), 25–33. https://doi.org/10.1007/s10741-013-9378-7.

    Article  PubMed  Google Scholar 

  6. Aerni-Flessner, L., Abi-Jaoude, M., Koenig, A., Payne, M., & Hruz, P. W. (2012). GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovascular Diabetology, 11, 63. https://doi.org/10.1186/1475-2840-11-63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allan, C. M., Larsson, M., Jung, R. S., Ploug, M., Bensadoun, A., Beigneux, A. P., Fong, L. G., & Young, S. G. (2017). Mobility of "HSPG-bound" LPL explains how LPL is able to reach GPIHBP1 on capillaries. Journal of Lipid Research, 58(1), 216–225. https://doi.org/10.1194/jlr.M072520.

    Article  CAS  PubMed  Google Scholar 

  8. An, D., Pulinilkunnil, T., Qi, D., Ghosh, S., Abrahani, A., & Rodrigues, B. (2005). The metabolic "switch" AMPK regulates cardiac heparin-releasable lipoprotein lipase. American Journal of Physiology Endocrinology and Metabolism, 288(1), E246–E253. https://doi.org/10.1152/ajpendo.00211.2004.

    Article  CAS  PubMed  Google Scholar 

  9. An, D., & Rodrigues, B. (2006). Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. American Journal of Physiology Heart and Circulatory Physiology, 291(4), H1489–H1506. https://doi.org/10.1152/ajpheart.00278.2006.

    Article  CAS  PubMed  Google Scholar 

  10. Anisimov A, Leppanen VM, Tvorogov D, Zarkada G, Jeltsch M, Holopainen T, Kaijalainen S, Alitalo K (2013) The basis for the distinct biological activities of vascular endothelial growth factor receptor-1 ligands. Science Signaling 6 (282):ra52. doi:https://doi.org/10.1126/scisignal.2003905

  11. Arjunan P, Lin X, Tang Z, Du Y, Kumar A, Liu L, Yin X, Huang L, Chen W, Chen Q, Ye Z, Wang S, Kuang H, Zhou L, Xu K, Chen X, Zeng H, Lu W, Cao Y, Liu Y, Zhao C, Li X (2018) VEGF-B is a potent antioxidant. Proceedings of the National Academy of Sciences of the United States of America 115 (41):10351–10356. doi:https://doi.org/10.1073/pnas.1801379115

  12. Augustus, A. S., Buchanan, J., Park, T. S., Hirata, K., Noh, H. L., Sun, J., Homma, S., D’Armiento, J., Abel, E. D., & Goldberg, I. J. (2006). Loss of lipoprotein lipase-derived fatty acids leads to increased cardiac glucose metabolism and heart dysfunction. The Journal of Biological Chemistry, 281(13), 8716–8723. https://doi.org/10.1074/jbc.M509890200.

    Article  CAS  PubMed  Google Scholar 

  13. Azimi-Nezhad, M. (2014). Vascular endothelial growth factor from embryonic status to cardiovascular pathology. Reports of biochemistry & molecular biology, 2(2), 59–69.

    Google Scholar 

  14. Bame, K. J. (2001). Heparanases: Endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology, 11(6), 91R–98R.

    Article  CAS  PubMed  Google Scholar 

  15. Batool, T., Fang, J., Barash, U., Moustakas, A., Vlodavsky, I., & Li, J. P. (2017). Overexpression of heparanase attenuated TGF-beta-stimulated signaling in tumor cells. FEBS Open Bio, 7(3), 405–413. https://doi.org/10.1002/2211-5463.12190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Belke, D. D., Larsen, T. S., Gibbs, E. M., & Severson, D. L. (2000). Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. American Journal of Physiology Endocrinology and Metabolism, 279(5), E1104–E1113. https://doi.org/10.1152/ajpendo.2000.279.5.E1104.

    Article  CAS  PubMed  Google Scholar 

  17. Borradaile, N. M., & Schaffer, J. E. (2005). Lipotoxicity in the heart. Current Hypertension Reports, 7(6), 412–417.

    Article  CAS  PubMed  Google Scholar 

  18. Boudina, S., & Abel, E. D. (2010). Diabetic cardiomyopathy, causes and effects. Reviews in Endocrine & Metabolic Disorders, 11(1), 31–39. https://doi.org/10.1007/s11154-010-9131-7.

    Article  Google Scholar 

  19. Bry, M., Kivela, R., Leppanen, V. M., & Alitalo, K. (2014). Vascular endothelial growth factor-B in physiology and disease. Physiological Reviews, 94(3), 779–794. https://doi.org/10.1152/physrev.00028.2013.

    Article  CAS  PubMed  Google Scholar 

  20. Bugger, H., & Abel, E. D. (2009). Rodent models of diabetic cardiomyopathy. Disease Models & Mechanisms, 2(9–10), 454–466. https://doi.org/10.1242/dmm.001941.

    Article  CAS  Google Scholar 

  21. Bugger, H., Riehle, C., Jaishy, B., Wende, A. R., Tuinei, J., Chen, D., Soto, J., Pires, K. M., Boudina, S., Theobald, H. A., Luptak, I., Wayment, B., Wang, X., Litwin, S. E., Weimer, B. C., & Abel, E. D. (2012). Genetic loss of insulin receptors worsens cardiac efficiency in diabetes. Journal of Molecular and Cellular Cardiology, 52(5), 1019–1026. https://doi.org/10.1016/j.yjmcc.2012.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai, J., Jiang, W. G., Ahmed, A., & Boulton, M. (2006). Vascular endothelial growth factor-induced endothelial cell proliferation is regulated by interaction between VEGFR-2, SH-PTP1 and eNOS. Microvascular Research, 71(1), 20–31. https://doi.org/10.1016/j.mvr.2005.10.004.

    Article  CAS  PubMed  Google Scholar 

  23. Cai, L., Li, W., Wang, G., Guo, L., Jiang, Y., & Kang, Y. J. (2002). Hyperglycemia-induced apoptosis in mouse myocardium: Mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes, 51(6), 1938–1948.

    Article  CAS  PubMed  Google Scholar 

  24. Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., & Nagy, A. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380(6573), 435–439. https://doi.org/10.1038/380435a0.

    Article  CAS  PubMed  Google Scholar 

  25. Chabowski A, Gorski J, Glatz JF, JJ PL, Bonen A (2008) Protein-mediated fatty acid uptake in the heart. Current Cardiology Reviews 4 (1):12–21. doi:https://doi.org/10.2174/157340308783565429

  26. Chiu, A. P., Wan, A., Lal, N., Zhang, D., Wang, F., Vlodavsky, I., Hussein, B., & Rodrigues, B. (2016). Cardiomyocyte VEGF regulates endothelial cell GPIHBP1 to relocate lipoprotein lipase to the coronary lumen during diabetes mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(1), 145–155. https://doi.org/10.1161/ATVBAHA.115.306774.

    Article  CAS  PubMed  Google Scholar 

  27. de Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., & Williams, L. T. (1992). The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science, 255(5047), 989–991.

    Article  PubMed  Google Scholar 

  28. Desvergne, B., Michalik, L., & Wahli, W. (2006). Transcriptional regulation of metabolism. Physiological Reviews, 86(2), 465–514. https://doi.org/10.1152/physrev.00025.2005.

    Article  CAS  PubMed  Google Scholar 

  29. Devaux, Y., Vausort, M., Azuaje, F., Vaillant, M., Lair, M. L., Gayat, E., Lassus, J., Ng, L. L., Kelly, D., Wagner, D. R., & Squire, I. B. (2012). Low levels of vascular endothelial growth factor B predict left ventricular remodeling after acute myocardial infarction. Journal of Cardiac Failure, 18(4), 330–337. https://doi.org/10.1016/j.cardfail.2012.01.010.

    Article  CAS  PubMed  Google Scholar 

  30. Diabetes Canada (2018) Diabetes in Canada. Diabetes Canada,

    Google Scholar 

  31. Doolittle, M. H., Ben-Zeev, O., Elovson, J., Martin, D., & Kirchgessner, T. G. (1990). The response of lipoprotein lipase to feeding and fasting. Evidence for posttranslational regulation. The Journal of Biological Chemistry, 265(8), 4570–4577.

    CAS  PubMed  Google Scholar 

  32. Eccles, S. A. (1999). Heparanase: Breaking down barriers in tumors. Nature Medicine, 5(7), 735–736. https://doi.org/10.1038/10455.

    Article  CAS  PubMed  Google Scholar 

  33. Eckel, R. H. (1989). Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. The New England Journal of Medicine, 320(16), 1060–1068. https://doi.org/10.1056/NEJM198904203201607.

    Article  CAS  PubMed  Google Scholar 

  34. Einarson, T. R., Acs, A., Ludwig, C., & Panton, U. H. (2018). Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovascular Diabetology, 17(1), 83. https://doi.org/10.1186/s12933-018-0728-6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Enerback, S., & Gimble, J. M. (1993). Lipoprotein lipase gene expression: Physiological regulators at the transcriptional and post-transcriptional level. Biochimica et Biophysica Acta, 1169(2), 107–125.

    Article  CAS  PubMed  Google Scholar 

  36. Fairbanks, M. B., Mildner, A. M., Leone, J. W., Cavey, G. S., Mathews, W. R., Drong, R. F., Slightom, J. L., Bienkowski, M. J., Smith, C. W., Bannow, C. A., & Heinrikson, R. L. (1999). Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. The Journal of Biological Chemistry, 274(42), 29587–29590.

    Article  CAS  PubMed  Google Scholar 

  37. Fang, Z. Y., Prins, J. B., & Marwick, T. H. (2004). Diabetic cardiomyopathy: Evidence, mechanisms, and therapeutic implications. Endocrine Reviews, 25(4), 543–567. https://doi.org/10.1210/er.2003-0012.

    Article  CAS  PubMed  Google Scholar 

  38. Fantin, A., Vieira, J. M., Plein, A., Denti, L., Fruttiger, M., Pollard, J. W., & Ruhrberg, C. (2013). NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood, 121(12), 2352–2362. https://doi.org/10.1182/blood-2012-05-424713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrara, N. (2004). Vascular endothelial growth factor: Basic science and clinical progress. Endocrine Reviews, 25(4), 581–611. https://doi.org/10.1210/er.2003-0027.

    Article  CAS  PubMed  Google Scholar 

  40. Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., Powell-Braxton, L., Hillan, K. J., & Moore, M. W. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380(6573), 439–442. https://doi.org/10.1038/380439a0.

    Article  CAS  PubMed  Google Scholar 

  41. Ferrara, N., Gerber, H. P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669–676. https://doi.org/10.1038/nm0603-669.

    Article  CAS  PubMed  Google Scholar 

  42. Fong, G. H., Rossant, J., Gertsenstein, M., & Breitman, M. L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376(6535), 66–70. https://doi.org/10.1038/376066a0.

    Article  CAS  PubMed  Google Scholar 

  43. Frustaci, A., Kajstura, J., Chimenti, C., Jakoniuk, I., Leri, A., Maseri, A., Nadal-Ginard, B., & Anversa, P. (2000). Myocardial cell death in human diabetes. Circulation Research, 87(12), 1123–1132.

    Article  CAS  PubMed  Google Scholar 

  44. Garfinkel, A. S., Kempner, E. S., Ben-Zeev, O., Nikazy, J., James, S. J., & Schotz, M. C. (1983). Lipoprotein lipase: Size of the functional unit determined by radiation inactivation. Journal of Lipid Research, 24(6), 775–780.

    CAS  PubMed  Google Scholar 

  45. Gingis-Velitski, S., Zetser, A., Kaplan, V., Ben-Zaken, O., Cohen, E., Levy-Adam, F., Bashenko, Y., Flugelman, M. Y., Vlodavsky, I., & Ilan, N. (2004). Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. The Journal of Biological Chemistry, 279(42), 44084–44092. https://doi.org/10.1074/jbc.M402131200.

    Article  CAS  PubMed  Google Scholar 

  46. Glatz, J. F., Bonen, A., Ouwens, D. M., & Luiken, J. J. (2006). Regulation of sarcolemmal transport of substrates in the healthy and diseased heart. Cardiovascular Drugs and Therapy, 20(6), 471–476. https://doi.org/10.1007/s10557-006-0582-8.

    Article  CAS  PubMed  Google Scholar 

  47. Gleissner, C. A., Galkina, E., Nadler, J. L., & Ley, K. (2007). Mechanisms by which diabetes increases cardiovascular disease. Drug discovery today Disease mechanisms, 4(3), 131–140. https://doi.org/10.1016/j.ddmec.2007.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Haemmerle, G., Moustafa, T., Woelkart, G., Buttner, S., Schmidt, A., van de Weijer, T., Hesselink, M., Jaeger, D., Kienesberger, P. C., Zierler, K., Schreiber, R., Eichmann, T., Kolb, D., Kotzbeck, P., Schweiger, M., Kumari, M., Eder, S., Schoiswohl, G., Wongsiriroj, N., Pollak, N. M., Radner, F. P., Preiss-Landl, K., Kolbe, T., Rulicke, T., Pieske, B., Trauner, M., Lass, A., Zimmermann, R., Hoefler, G., Cinti, S., Kershaw, E. E., Schrauwen, P., Madeo, F., Mayer, B., & Zechner, R. (2011). ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nature Medicine, 17(9), 1076–1085. https://doi.org/10.1038/nm.2439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hagberg, C. E., Falkevall, A., Wang, X., Larsson, E., Huusko, J., Nilsson, I., van Meeteren, L. A., Samen, E., Lu, L., Vanwildemeersch, M., Klar, J., Genove, G., Pietras, K., Stone-Elander, S., Claesson-Welsh, L., Yla-Herttuala, S., Lindahl, P., & Eriksson, U. (2010). Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature, 464(7290), 917–921. https://doi.org/10.1038/nature08945.

    Article  CAS  PubMed  Google Scholar 

  50. Hinkel, R., Howe, A., Renner, S., Ng, J., Lee, S., Klett, K., Kaczmarek, V., Moretti, A., Laugwitz, K. L., Skroblin, P., Mayr, M., Milting, H., Dendorfer, A., Reichart, B., Wolf, E., & Kupatt, C. (2017). Diabetes mellitus-induced microvascular destabilization in the myocardium. Journal of the American College of Cardiology, 69(2), 131–143. https://doi.org/10.1016/j.jacc.2016.10.058.

    Article  CAS  PubMed  Google Scholar 

  51. Huusko, J., Lottonen, L., Merentie, M., Gurzeler, E., Anisimov, A., Miyanohara, A., Alitalo, K., Tavi, P., & Yla-Herttuala, S. (2012). AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Molecular therapy: the journal of the American Society of Gene Therapy, 20(12), 2212–2221. https://doi.org/10.1038/mt.2012.145.

    Article  CAS  Google Scholar 

  52. Ibrahimi, A., Bonen, A., Blinn, W. D., Hajri, T., Li, X., Zhong, K., Cameron, R., & Abumrad, N. A. (1999). Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. The Journal of Biological Chemistry, 274(38), 26761–26766.

    Article  CAS  PubMed  Google Scholar 

  53. International Diabetes Federation. (2017). IDF diabetes atlas (8th ed.). Brussels: International Diabetes Federation.

    Google Scholar 

  54. Iozzo, R. V. (2001). Heparan sulfate proteoglycans: Intricate molecules with intriguing functions. The Journal of Clinical Investigation, 108(2), 165–167. https://doi.org/10.1172/JCI13560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iozzo, R. V., & San Antonio, J. D. (2001). Heparan sulfate proteoglycans: Heavy hitters in the angiogenesis arena. The Journal of Clinical Investigation, 108(3), 349–355. https://doi.org/10.1172/JCI13738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jia, G., DeMarco, V. G., & Sowers, J. R. (2016). Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nature Reviews Endocrinology, 12(3), 144–153. https://doi.org/10.1038/nrendo.2015.216.

    Article  CAS  PubMed  Google Scholar 

  57. Jia, G., Hill, M. A., & Sowers, J. R. (2018). Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circulation Research, 122(4), 624–638. https://doi.org/10.1161/CIRCRESAHA.117.311586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Karar, J., & Maity, A. (2011). PI3K/AKT/mTOR pathway in angiogenesis. Frontiers in Molecular Neuroscience, 4, 51. https://doi.org/10.3389/fnmol.2011.00051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karpanen, T., Bry, M., Ollila, H. M., Seppanen-Laakso, T., Liimatta, E., Leskinen, H., Kivela, R., Helkamaa, T., Merentie, M., Jeltsch, M., Paavonen, K., Andersson, L. C., Mervaala, E., Hassinen, I. E., Yla-Herttuala, S., Oresic, M., & Alitalo, K. (2008). Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circulation Research, 103(9), 1018–1026. https://doi.org/10.1161/CIRCRESAHA.108.178459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., & Connolly, D. T. (1989). Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science, 246(4935), 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  61. Kessler, G., & Friedman, J. (1998). Metabolism of fatty acids and glucose. Circulation, 98(13), 1351.

    Article  CAS  PubMed  Google Scholar 

  62. Kim, M. S., Wang, Y., & Rodrigues, B. (2012). Lipoprotein lipase mediated fatty acid delivery and its impact in diabetic cardiomyopathy. Biochimica et Biophysica Acta, 1821(5), 800–808. https://doi.org/10.1016/j.bbalip.2011.10.001.

    Article  CAS  PubMed  Google Scholar 

  63. Kivela, R., Bry, M., Robciuc, M. R., Rasanen, M., Taavitsainen, M., Silvola, J. M., Saraste, A., Hulmi, J. J., Anisimov, A., Mayranpaa, M. I., Lindeman, J. H., Eklund, L., Hellberg, S., Hlushchuk, R., Zhuang, Z. W., Simons, M., Djonov, V., Knuuti, J., Mervaala, E., & Alitalo, K. (2014). VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Molecular Medicine, 6(3), 307–321. https://doi.org/10.1002/emmm.201303147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krilleke, D., DeErkenez, A., Schubert, W., Giri, I., Robinson, G. S., Ng, Y. S., & Shima, D. T. (2007). Molecular mapping and functional characterization of the VEGF164 heparin-binding domain. The Journal of Biological Chemistry, 282(38), 28045–28056. https://doi.org/10.1074/jbc.M700319200.

    Article  CAS  PubMed  Google Scholar 

  65. Kuethe, F., Sigusch, H. H., Bornstein, S. R., Hilbig, K., Kamvissi, V., & Figulla, H. R. (2007). Apoptosis in patients with dilated cardiomyopathy and diabetes: A feature of diabetic cardiomyopathy? Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 39(9), 672–676. https://doi.org/10.1055/s-2007-985823.

    Article  CAS  PubMed  Google Scholar 

  66. Laakso, M. (2011). Heart in diabetes: A microvascular disease. Diabetes Care, 34(Suppl 2), S145–S149. https://doi.org/10.2337/dc11-s209.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lal, N., Chiu, A. P., Wang, F., Zhang, D., Jia, J., Wan, A., Vlodavsky, I., Hussein, B., & Rodrigues, B. (2017). Loss of VEGFB and its signaling in the diabetic heart is associated with increased cell death signaling. American Journal of Physiology Heart and Circulatory Physiology, 312(6), H1163–H1175. https://doi.org/10.1152/ajpheart.00659.2016.

    Article  PubMed  Google Scholar 

  68. Lan, L., Wilks, A., Morgan TO, & Di Nicolantonio, R. (1995). Vascular endothelial growth factor: Tissue distribution and size of multiple mRNA splice forms in SHR and WKY. Clinical and experimental pharmacology & physiology Supplement, 22(1), S167–S168.

    Article  CAS  Google Scholar 

  69. Lee, J., & Goldberg, I. J. (2007). Lipoproteini lipase-derived fatty acids: Physiology and dysfunction. Current Hypertension Reports, 9(6), 462–466.

    Article  CAS  PubMed  Google Scholar 

  70. Lee, T. Y., Folkman, J., & Javaherian, K. (2010). HSPG-binding peptide corresponding to the exon 6a-encoded domain of VEGF inhibits tumor growth by blocking angiogenesis in murine model. PLoS One, 5(4), e9945. https://doi.org/10.1371/journal.pone.0009945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Levak-Frank, S., Radner, H., Walsh, A., Stollberger, R., Knipping, G., Hoefler, G., Sattler, W., Weinstock, P. H., Breslow, J. L., & Zechner, R. (1995). Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. The Journal of Clinical Investigation, 96(2), 976–986. https://doi.org/10.1172/JCI118145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Levy-Adam, F., Feld, S., Cohen-Kaplan, V., Shteingauz, A., Gross, M., Arvatz, G., Naroditsky, I., Ilan, N., Doweck, I., & Vlodavsky, I. (2010). Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. The Journal of Biological Chemistry, 285(36), 28010–28019. https://doi.org/10.1074/jbc.M110.116384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, X., Aase, K., Li, H., von Euler, G., & Eriksson, U. (2001). Isoform-specific expression of VEGF-B in normal tissues and tumors. Growth Factors, 19(1), 49–59.

    Article  PubMed  Google Scholar 

  74. Li, Y., Zhang, F., Nagai, N., Tang, Z., Zhang, S., Scotney, P., Lennartsson, J., Zhu, C., Qu, Y., Fang, C., Hua, J., Matsuo, O., Fong, G. H., Ding, H., Cao, Y., Becker, K. G., Nash, A., Heldin, C. H., & Li, X. (2008). VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. The Journal of Clinical Investigation, 118(3), 913–923. https://doi.org/10.1172/JCI33673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lodish, H. A. B. A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). 16.1. Oxidation of glucose and fatty acids to CO2. In Molecular cell biology (4th ed.). New York: W.H. Freeman.

    Google Scholar 

  76. Lopaschuk, G. D., Belke, D. D., Gamble, J., Itoi, T., & Schonekess, B. O. (1994). Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochimica et Biophysica Acta, 1213(3), 263–276.

    Article  CAS  PubMed  Google Scholar 

  77. Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S., & Stanley, W. C. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews, 90(1), 207–258. https://doi.org/10.1152/physrev.00015.2009.

    Article  CAS  PubMed  Google Scholar 

  78. Luiken, J. J., Coort, S. L., Koonen, D. P., van der Horst, D. J., Bonen, A., Zorzano, A., & Glatz, J. F. (2004). Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Archiv: European journal of physiology, 448(1), 1–15. https://doi.org/10.1007/s00424-003-1199-4.

    Article  CAS  PubMed  Google Scholar 

  79. Luiken, J. J., van Nieuwenhoven, F. A., America, G., van der Vusse, G. J., & Glatz, J. F. (1997). Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: Involvement of sarcolemmal proteins. Journal of Lipid Research, 38(4), 745–758.

    CAS  PubMed  Google Scholar 

  80. Makinen, T., Olofsson, B., Karpanen, T., Hellman, U., Soker, S., Klagsbrun, M., Eriksson, U., & Alitalo, K. (1999). Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. The Journal of Biological Chemistry, 274(30), 21217–21222.

    Article  CAS  PubMed  Google Scholar 

  81. Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3(11), e442. https://doi.org/10.1371/journal.pmed.0030442.

    Article  PubMed  PubMed Central  Google Scholar 

  82. McKenzie, E., Tyson, K., Stamps, A., Smith, P., Turner, P., Barry, R., Hircock, M., Patel, S., Barry, E., Stubberfield, C., Terrett, J., & Page, M. (2000). Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochemical and Biophysical Research Communications, 276(3), 1170–1177. https://doi.org/10.1006/bbrc.2000.3586.

    Article  CAS  PubMed  Google Scholar 

  83. Mehlem, A., Palombo, I., Wang, X., Hagberg, C. E., Eriksson, U., & Falkevall, A. (2016). PGC-1alpha coordinates mitochondrial respiratory capacity and muscular fatty acid uptake via regulation of VEGF-B. Diabetes, 65(4), 861–873. https://doi.org/10.2337/db15-1231.

    Article  CAS  PubMed  Google Scholar 

  84. Morigny, P., Houssier, M., Mouisel, E., & Langin, D. (2016). Adipocyte lipolysis and insulin resistance. Biochimie, 125, 259–266. https://doi.org/10.1016/j.biochi.2015.10.024.

    Article  CAS  PubMed  Google Scholar 

  85. Mould, A. W., Greco, S. A., Cahill, M. M., Tonks, I. D., Bellomo, D., Patterson, C., Zournazi, A., Nash, A., Scotney, P., Hayward, N. K., & Kay, G. F. (2005). Transgenic overexpression of vascular endothelial growth factor-B isoforms by endothelial cells potentiates postnatal vessel growth in vivo and in vitro. Circulation Research, 97(6), e60–e70. https://doi.org/10.1161/01.RES.0000182631.33638.77.

    Article  CAS  PubMed  Google Scholar 

  86. Mysling, S., Kristensen, K. K., Larsson, M., Beigneux, A. P., Gardsvoll, H., Fong, L. G., Bensadouen, A., Jorgensen, T. J., Young, S. G., & Ploug, M. (2016). The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. eLife, 5, e12095. https://doi.org/10.7554/eLife.12095.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mysling, S., Kristensen, K. K., Larsson, M., Kovrov, O., Bensadouen, A., Jorgensen, T. J., Olivecrona, G., Young, S. G., & Ploug, M. (2016). The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. eLife, 5. https://doi.org/10.7554/eLife.20958.

  88. Niu, Y. G., Hauton, D., & Evans, R. D. (2004). Utilization of triacylglycerol-rich lipoproteins by the working rat heart: Routes of uptake and metabolic fates. The Journal of Physiology, 558(Pt 1), 225–237. https://doi.org/10.1113/jphysiol.2004.061473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Noh, H. L., Okajima, K., Molkentin, J. D., Homma, S., & Goldberg, I. J. (2006). Acute lipoprotein lipase deletion in adult mice leads to dyslipidemia and cardiac dysfunction. American Journal of Physiology. Endocrinology and Metabolism, 291(4), E755–E760. https://doi.org/10.1152/ajpendo.00111.2006.

    Article  CAS  PubMed  Google Scholar 

  90. Nunn, A. V., Bell, J., & Barter, P. (2007). The integration of lipid-sensing and anti-inflammatory effects: How the PPARs play a role in metabolic balance. Nuclear Receptor, 5(1), 1. https://doi.org/10.1186/1478-1336-5-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Olofsson B, Korpelainen E, Pepper MS, Mandriota SJ, Aase K, Kumar V, Gunji Y, Jeltsch MM, Shibuya M, Alitalo K, Eriksson U (1998) Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 95 (20):11709–11714

    Google Scholar 

  92. Olofsson, B., Pajusola, K., Kaipainen, A., von Euler, G., Joukov, V., Saksela, O., Orpana, A., Pettersson, R. F., Alitalo, K., & Eriksson, U. (1996). Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 93(6), 2576–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Otarod, J. K., & Goldberg, I. J. (2004). Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Current Atherosclerosis Reports, 6(5), 335–342.

    Article  PubMed  Google Scholar 

  94. Pappachan, J. M., Sebastian, J., Bino, B. C., Jayaprakash, K., Vijayakumar, K., Sujathan, P., & Adinegara, L. A. (2008). Cardiac autonomic neuropathy in diabetes mellitus: Prevalence, risk factors and utility of corrected QT interval in the ECG for its diagnosis. Postgraduate Medical Journal, 84(990), 205–210. https://doi.org/10.1136/pgmj.2007.064048.

    Article  CAS  PubMed  Google Scholar 

  95. Park, J. E., Keller, G. A., & Ferrara, N. (1993). The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Molecular Biology of the Cell, 4(12), 1317–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pepe, M., Mamdani, M., Zentilin, L., Csiszar, A., Qanud, K., Zacchigna, S., Ungvari, Z., Puligadda, U., Moimas, S., Xu, X., Edwards, J. G., Hintze, T. H., Giacca, M., & Recchia, F. A. (2010). Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circulation Research, 106(12), 1893–1903. https://doi.org/10.1161/CIRCRESAHA.110.220855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pikas, D. S., Li, J. P., Vlodavsky, I., & Lindahl, U. (1998). Substrate specificity of heparanases from human hepatoma and platelets. Journal of Biological Chemistry, 273(30), 18770–18777. https://doi.org/10.1074/jbc.273.30.18770.

    Article  CAS  PubMed  Google Scholar 

  98. Pulinilkunnil, T., Abrahani, A., Varghese, J., Chan, N., Tang, I., Ghosh, S., Kulpa, J., Allard, M., Brownsey, R., & Rodrigues, B. (2003). Evidence for rapid "metabolic switching" through lipoprotein lipase occupation of endothelial-binding sites. Journal of Molecular and Cellular Cardiology, 35(9), 1093–1103.

    Article  CAS  PubMed  Google Scholar 

  99. Pulinilkunnil, T., An, D., Yip, P., Chan, N., Qi, D., Ghosh, S., Abrahani, A., & Rodrigues, B. (2004). Palmitoyl lysophosphatidylcholine mediated mobilization of LPL to the coronary luminal surface requires PKC activation. Journal of Molecular and Cellular Cardiology, 37(5), 931–938. https://doi.org/10.1016/j.yjmcc.2004.07.003.

    Article  CAS  PubMed  Google Scholar 

  100. Pulinilkunnil, T., & Rodrigues, B. (2006). Cardiac lipoprotein lipase: Metabolic basis for diabetic heart disease. Cardiovascular Research, 69(2), 329–340. https://doi.org/10.1016/j.cardiores.2005.09.017.

    Article  CAS  PubMed  Google Scholar 

  101. Qi, D., Pulinilkunnil, T., An, D., Ghosh, S., Abrahani, A., Pospisilik, J. A., Brownsey, R., Wambolt, R., Allard, M., & Rodrigues, B. (2004). Single-dose dexamethasone induces whole-body insulin resistance and alters both cardiac fatty acid and carbohydrate metabolism. Diabetes, 53(7), 1790–1797.

    Article  CAS  PubMed  Google Scholar 

  102. Rasanen M, Degerman J, Nissinen TA, Miinalainen I, Kerkela R, Siltanen A, Backman JT, Mervaala E, Hulmi JJ, Kivela R, Alitalo K (2016) VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection. Proceedings of the National Academy of Sciences of the United States of America 113 (46):13144–13149. doi:https://doi.org/10.1073/pnas.1616168113

  103. Robciuc, M. R., Kivela, R., Williams, I. M., de Boer, J. F., van Dijk, T. H., Elamaa, H., Tigistu-Sahle, F., Molotkov, D., Leppanen, V. M., Kakela, R., Eklund, L., Wasserman, D. H., Groen, A. K., & Alitalo, K. (2016). VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metabolism, 23(4), 712–724. https://doi.org/10.1016/j.cmet.2016.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rodrigues, B., Cam, M. C., Jian, K., Lim, F., Sambandam, N., & Shepherd, G. (1997). Differential effects of streptozotocin-induced diabetes on cardiac lipoprotein lipase activity. Diabetes, 46(8), 1346–1353.

    Article  CAS  PubMed  Google Scholar 

  105. Rodrigues, B., Cam, M. C., & McNeill, J. H. (1995). Myocardial substrate metabolism: Implications for diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 27(1), 169–179.

    Article  CAS  PubMed  Google Scholar 

  106. Rossetti, L., Giaccari, A., & DeFronzo, R. A. (1990). Glucose toxicity. Diabetes Care, 13(6), 610–630.

    Article  CAS  PubMed  Google Scholar 

  107. Sambandam, N., Abrahani, M. A., St Pierre, E., Al-Atar, O., Cam, M. C., & Rodrigues, B. (1999). Localization of lipoprotein lipase in the diabetic heart: Regulation by acute changes in insulin. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(6), 1526–1534.

    Article  CAS  PubMed  Google Scholar 

  108. Sandesara, P. B., O’Neal, W. T., Kelli, H. M., Samman-Tahhan, A., Hammadah, M., Quyyumi, A. A., & Sperling, L. S. (2018). The prognostic significance of diabetes and microvascular complications in patients with heart failure with preserved ejection fraction. Diabetes Care, 41(1), 150–155. https://doi.org/10.2337/dc17-0755.

    Article  CAS  PubMed  Google Scholar 

  109. Schwenk, R. W., Luiken, J. J., Bonen, A., & Glatz, J. F. (2008). Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease. Cardiovascular Research, 79(2), 249–258. https://doi.org/10.1093/cvr/cvn116.

    Article  CAS  PubMed  Google Scholar 

  110. Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219(4587), 983–985.

    Article  CAS  PubMed  Google Scholar 

  111. Shibuya, M., & Claesson-Welsh, L. (2006). Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Experimental Cell Research, 312(5), 549–560. https://doi.org/10.1016/j.yexcr.2005.11.012.

    Article  CAS  PubMed  Google Scholar 

  112. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., & Klagsbrun, M. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 92(6), 735–745.

    Article  CAS  PubMed  Google Scholar 

  113. Sowers, J. R., Epstein, M., & Frohlich, E. D. (2001). Diabetes, hypertension, and cardiovascular disease: An update. Hypertension, 37(4), 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  114. Sun, Y., Jin, K., Childs, J. T., Xie, L., Mao, X. O., & Greenberg, D. A. (2004). Increased severity of cerebral ischemic injury in vascular endothelial growth factor-B-deficient mice. Journal of Cerebral Blood Flow and Metabolism, 24(10), 1146–1152. https://doi.org/10.1097/01.WCB.0000134477.38980.38.

    Article  CAS  PubMed  Google Scholar 

  115. Sun, Z., Li, X., Massena, S., Kutschera, S., Padhan, N., Gualandi, L., Sundvold-Gjerstad, V., Gustafsson, K., Choy, W. W., Zang, G., Quach, M., Jansson, L., Phillipson, M., Abid, M. R., Spurkland, A., & Claesson-Welsh, L. (2012). VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. The Journal of Experimental Medicine, 209(7), 1363–1377. https://doi.org/10.1084/jem.20111343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Talukder, M. A., Kalyanasundaram, A., Zhao, X., Zuo, L., Bhupathy, P., Babu, G. J., Cardounel, A. J., Periasamy, M., & Zweier, J. L. (2007). Expression of SERCA isoform with faster Ca2+ transport properties improves postischemic cardiac function and Ca2+ handling and decreases myocardial infarction. American Journal of Physiology Heart and Circulatory Physiology, 293(4), H2418–H2428. https://doi.org/10.1152/ajpheart.00663.2007.

    Article  CAS  PubMed  Google Scholar 

  117. Teshima, Y., Takahashi, N., Nishio, S., Saito, S., Kondo, H., Fukui, A., Aoki, K., Yufu, K., Nakagawa, M., & Saikawa, T. (2014). Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circulation Journal: Official Journal of the Japanese Circulation Society, 78(2), 300–306.

    Article  CAS  Google Scholar 

  118. Testa, U., Pannitteri, G., & Condorelli, G. L. (2008). Vascular endothelial growth factors in cardiovascular medicine. Journal of Cardiovascular Medicine, 9(12), 1190–1221. https://doi.org/10.2459/JCM.0b013e3283117d37.

    Article  PubMed  Google Scholar 

  119. van de Weijer, T., Schrauwen-Hinderling, V. B., & Schrauwen, P. (2011). Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovascular Research, 92(1), 10–18. https://doi.org/10.1093/cvr/cvr212.

    Article  CAS  PubMed  Google Scholar 

  120. Vlodavsky, I., Beckhove, P., Lerner, I., Pisano, C., Meirovitz, A., Ilan, N., & Elkin, M. (2012). Significance of heparanase in cancer and inflammation. Cancer microenvironment: official journal of the International Cancer Microenvironment Society, 5(2), 115–132. https://doi.org/10.1007/s12307-011-0082-7.

    Article  CAS  Google Scholar 

  121. Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease, 9(2), 119. https://doi.org/10.1038/s41419-017-0135-z.

    Article  CAS  Google Scholar 

  122. Vornicova, O., Naroditsky, I., Boyango, I., Shachar, S. S., Mashiach, T., Ilan, N., Vlodavsky, I., & Bar-Sela, G. (2018). Prognostic significance of heparanase expression in primary and metastatic breast carcinoma. Oncotarget, 9(5), 6238–6244. https://doi.org/10.18632/oncotarget.23560.

    Article  PubMed  Google Scholar 

  123. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M., & Heldin, C. H. (1994). Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. The Journal of Biological Chemistry, 269(43), 26988–26995.

    CAS  PubMed  Google Scholar 

  124. Wan, A., & Rodrigues, B. (2016). Endothelial cell-cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovascular Research, 111(3), 172–183. https://doi.org/10.1093/cvr/cvw159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, F., Jia, J., Lal, N., Zhang, D., Chiu, A. P., Wan, A., Vlodavsky, I., Hussein, B., & Rodrigues, B. (2016). High glucose facilitated endothelial heparanase transfer to the cardiomyocyte modifies its cell death signature. Cardiovascular Research, 112(3), 656–668. https://doi.org/10.1093/cvr/cvw211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, F., Kim, M. S., Puthanveetil, P., Kewalramani, G., Deppe, S., Ghosh, S., Abrahani, A., & Rodrigues, B. (2009). Endothelial heparanase secretion after acute hypoinsulinemia is regulated by glucose and fatty acid. American Journal of Physiology Heart and Circulatory Physiology, 296(4), H1108–H1116. https://doi.org/10.1152/ajpheart.01312.2008.

    Article  CAS  PubMed  Google Scholar 

  127. Wang, F., Wang, Y., Kim, M. S., Puthanveetil, P., Ghosh, S., Luciani, D. S., Johnson, J. D., Abrahani, A., & Rodrigues, B. (2010). Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization. Cardiovascular Research, 87(1), 127–136. https://doi.org/10.1093/cvr/cvq051.

    Article  CAS  PubMed  Google Scholar 

  128. Wang, F., Wang, Y., Zhang, D., Puthanveetil, P., Johnson, J. D., & Rodrigues, B. (2012). Fatty acid-induced nuclear translocation of heparanase uncouples glucose metabolism in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(2), 406–414. https://doi.org/10.1161/ATVBAHA.111.240770.

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Y., Puthanveetil, P., Wang, F., Kim, M. S., Abrahani, A., & Rodrigues, B. (2011). Severity of diabetes governs vascular lipoprotein lipase by affecting enzyme dimerization and disassembly. Diabetes, 60(8), 2041–2050. https://doi.org/10.2337/db11-0042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, Y., Zhang, D., Chiu, A. P., Wan, A., Neumaier, K., Vlodavsky, I., & Rodrigues, B. (2013). Endothelial heparanase regulates heart metabolism by stimulating lipoprotein lipase secretion from cardiomyocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(5), 894–902. https://doi.org/10.1161/ATVBAHA.113.301309.

    Article  CAS  PubMed  Google Scholar 

  131. Weissmann, M., Bhattacharya, U., Feld, S., Hammond, E., Ilan, N., & Vlodavsky, I. (2018). The heparanase inhibitor PG545 is a potent anti-lymphoma drug: Mode of action. Matrix biology: journal of the International Society for Matrix Biology. https://doi.org/10.1016/j.matbio.2018.08.005.

  132. Wende, A. R., & Abel, E. D. (2010). Lipotoxicity in the heart. Biochimica et Biophysica Acta, 1801(3), 311–319. https://doi.org/10.1016/j.bbalip.2009.09.023.

    Article  CAS  PubMed  Google Scholar 

  133. Westermeier, F., Riquelme, J. A., Pavez, M., Garrido, V., Diaz, A., Verdejo, H. E., Castro, P. F., Garcia, L., & Lavandero, S. (2016). New molecular insights of insulin in diabetic cardiomyopathy. Frontiers in Physiology, 7, 125. https://doi.org/10.3389/fphys.2016.00125.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wilson, A. J., Gill, E. K., Abudalo, R. A., Edgar, K. S., Watson, C. J., & Grieve, D. J. (2018). Reactive oxygen species signalling in the diabetic heart: Emerging prospect for therapeutic targeting. Heart, 104(4), 293–299. https://doi.org/10.1136/heartjnl-2017-311448.

    Article  CAS  PubMed  Google Scholar 

  135. Xu, Y., An, X., Guo, X., Habtetsion, T. G., Wang, Y., Xu, X., Kandala, S., Li, Q., Li, H., Zhang, C., Caldwell, R. B., Fulton, D. J., Su, Y., Hoda, M. N., Zhou, G., Wu, C., & Huo, Y. (2014). Endothelial PFKFB3 plays a critical role in angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(6), 1231–1239. https://doi.org/10.1161/ATVBAHA.113.303041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yagyu, H., Chen, G., Yokoyama, M., Hirata, K., Augustus, A., Kako, Y., Seo, T., Hu, Y., Lutz, E. P., Merkel, M., Bensadoun, A., Homma, S., & Goldberg, I. J. (2003). Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. The Journal of Clinical Investigation, 111(3), 419–426. https://doi.org/10.1172/JCI16751.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Yang, L., Zhao, D., Ren, J., & Yang, J. (2015). Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochimica et Biophysica Acta, 1852(2), 209–218. https://doi.org/10.1016/j.bbadis.2014.05.006.

    Article  CAS  PubMed  Google Scholar 

  138. Yeh, W. L., Lin, C. J., & Fu, W. M. (2008). Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Molecular Pharmacology, 73(1), 170–177. https://doi.org/10.1124/mol.107.038851.

    Article  CAS  PubMed  Google Scholar 

  139. Young, M. E., McNulty, P., & Taegtmeyer, H. (2002). Adaptation and maladaptation of the heart in diabetes: Part II: Potential mechanisms. Circulation, 105(15), 1861–1870.

    Article  CAS  PubMed  Google Scholar 

  140. Young, S. G., Davies, B. S., Voss, C. V., Gin, P., Weinstein, M. M., Tontonoz, P., Reue, K., Bensadoun, A., Fong, L. G., & Beigneux, A. P. (2011). GPIHBP1, an endothelial cell transporter for lipoprotein lipase. Journal of Lipid Research, 52(11), 1869–1884. https://doi.org/10.1194/jlr.R018689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zcharia, E., Metzger, S., Chajek-Shaul, T., Aingorn, H., Elkin, M., Friedmann, Y., Weinstein, T., Li, J. P., Lindahl, U., & Vlodavsky, I. (2004). Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 18(2), 252–263. https://doi.org/10.1096/fj.03-0572com.

    Article  CAS  Google Scholar 

  142. Zentilin, L., Puligadda, U., Lionetti, V., Zacchigna, S., Collesi, C., Pattarini, L., Ruozi, G., Camporesi, S., Sinagra, G., Pepe, M., Recchia, F. A., & Giacca, M. (2010). Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. The FASEB Journal, 24(5), 1467–1478. https://doi.org/10.1096/fj.09-143180.

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, D., Wan, A., Chiu, A. P., Wang, Y., Wang, F., Neumaier, K., Lal, N., Bround, M. J., Johnson, J. D., Vlodavsky, I., & Rodrigues, B. (2013). Hyperglycemia-induced secretion of endothelial heparanase stimulates a vascular endothelial growth factor autocrine network in cardiomyocytes that promotes recruitment of lipoprotein lipase. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(12), 2830–2838. https://doi.org/10.1161/ATVBAHA.113.302222.

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, F., Tang, Z., Hou, X., Lennartsson, J., Li, Y., Koch, A. W., Scotney, P., Lee, C., Arjunan, P., Dong, L., Kumar, A., Rissanen, T. T., Wang, B., Nagai, N., Fons, P., Fariss, R., Zhang, Y., Wawrousek, E., Tansey, G., Raber, J., Fong, G. H., Ding, H., Greenberg, D. A., Becker, K. G., Herbert, J. M., Nash, A., Yla-Herttuala, S., Cao, Y., Watts, R. J., & Li, X. (2009). VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6152–6157. https://doi.org/10.1073/pnas.0813061106.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

None declared.

Funding

 The present study is supported by an operating grant from the Canadian Institutes of Health Research (MOP-133547) and the Heart and Stroke Foundation of Canada (G-16-00014536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shang, R., Lal, N., Puri, K., Hussein, B., Rodrigues, B. (2020). Involvement of Heparanase in Endothelial Cell-Cardiomyocyte Crosstalk. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_30

Download citation

Publish with us

Policies and ethics