Skip to main content

Advertisement

Log in

Significance of Heparanase in Cancer and Inflammation

  • Review Paper
  • Published:
Cancer Microenvironment

Abstract

Heparan sulfate proteoglycans (HSPGs) are primary components at the interface between virtually every eukaryotic cell and its extracellular matrix. HSPGs not only provide a storage depot for heparin-binding molecules in the cell microenvironment, but also decisively regulate their accessibility, function and mode of action. As such, they are intimately involved in modulating cell invasion and signaling loops that are critical for tumor growth, inflammation and kidney function. In a series of studies performed since the cloning of the human heparanase gene, we and others have demonstrated that heparanase, the sole heparan sulfate degrading endoglycosidase, is causally involved in cancer progression, inflammation and diabetic nephropathy and hence is a valid target for drug development. Heparanase is causally involved in inflammation and accelerates colon tumorigenesis associated with inflammatory bowel disease. Notably, heparanase stimulates macrophage activation, while macrophages induce production and activation of latent heparanase contributed by the colon epithelium, together generating a vicious cycle that powers colitis and the associated tumorigenesis. Heparanase also plays a decisive role in the pathogenesis of diabetic nephropathy, degrading heparan sulfate in the glomerular basement membrane and ultimately leading to proteinuria and kidney dysfunction. Notably, clinically relevant doses of ionizing radiation (IR) upregulate heparanase expression and thereby augment the metastatic potential of pancreatic carcinoma. Thus, combining radiotherapy with heparanase inhibition is an effective strategy to prevent tumor resistance and dissemination in IR-treated pancreatic cancer patients. Also, accumulating evidence indicate that peptides derived from human heparanase elicit a potent anti-tumor immune response, suggesting that heparanase represents a promising target antigen for immunotherapeutic approaches against a broad variety of tumours. Oligosaccharide-based compounds that inhibit heparanase enzymatic activity were developed, aiming primarily at halting tumor growth, metastasis and angiogenesis. Some of these compounds are being evaluated in clinical trials, targeting both the tumor and tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

HS:

Heparan sulfate

HSPGs:

Heparan sulfate proteoglycans

GAG:

Glycosaminoglycan

MMP:

Matrix metalloproteinase

VEGF:

Vascular endothelial growth factor

CAF:

Cancer-associated fibroblasts

UC:

Ulcerative colitis

IBD:

Inflammatory bowel disease

AOM:

Azoxymethane

DSS:

Dextran sodium sulfate

IR:

Ionoizing radiation

Egr1:

Early growth response 1

CTL:

Cytotoxic T lymphocyte

HAT:

Histone acetyltransferase

References

  1. Vlodavsky I, Gospodarowicz D (1981) Respective roles of laminin and fibronectin in adhesion of human carcinoma and sarcoma cells. Nature 289:304–306

    Article  PubMed  CAS  Google Scholar 

  2. Vlodavsky I, Lui GM, Gospodarowicz D (1980) Morphological appearance, growth behavior and migratory activity of human tumor cells maintained on extracellular matrix versus plastic. Cell 19:607–616

    Article  PubMed  CAS  Google Scholar 

  3. Vlodavsky I (2001) Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells. Curr Protoc Cell Biol. Chapter 10:Unit 10.4

  4. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  PubMed  CAS  Google Scholar 

  5. Xu R, Boudreau A, Bissell MJ (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28:167–176

    Article  PubMed  Google Scholar 

  6. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein–basic fibroblast growth factor–is stored within basement membrane. Am J Pathol 130:393–400

    PubMed  CAS  Google Scholar 

  7. Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK (2010) Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 277:3904–3923

    Article  PubMed  CAS  Google Scholar 

  8. Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108:349–355

    PubMed  CAS  Google Scholar 

  9. Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475

    Article  PubMed  CAS  Google Scholar 

  10. Bernfield M, Gotte M, Park PW et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  PubMed  CAS  Google Scholar 

  11. Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed Engl 41:391–412

    Article  PubMed  Google Scholar 

  12. Lindahl U, Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276:105–159

    Article  PubMed  CAS  Google Scholar 

  13. Ogren S, Lindahl U (1975) Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J Biol Chem 250:2690–2697

    PubMed  CAS  Google Scholar 

  14. Thunberg L, Backstrom G, Wasteson A, Robinson HC, Ogren S, Lindahl U (1982) Enzymatic depolymerization of heparin-related polysaccharides. Substrate specificities of mouse mastocytoma and human platelet endo-beta-D-glucuronidases. J Biol Chem 257:10278–10282

    PubMed  CAS  Google Scholar 

  15. Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471:M99–M108

    PubMed  CAS  Google Scholar 

  16. Lerner I, Hermano E, Zcharia E et al (2011) Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest 121:1709–1721

    Article  PubMed  CAS  Google Scholar 

  17. Li RW, Freeman C, Yu D et al (2008) Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. Arthritis Rheum 58:1590–1600

    Article  PubMed  CAS  Google Scholar 

  18. van den Hoven MJ, Rops AL, Bakker MA et al (2006) Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 70:2100–2108

    PubMed  Google Scholar 

  19. Lindahl U (1990) Biosynthesis of heparin. Biochem Soc Trans 18:803–805

    PubMed  CAS  Google Scholar 

  20. Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327

    Article  PubMed  CAS  Google Scholar 

  21. Ledin J, Staatz W, Li JP et al (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279:42732–42741

    Article  PubMed  CAS  Google Scholar 

  22. Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99:807–818

    PubMed  CAS  Google Scholar 

  23. Lindahl U (2007) Heparan sulfate-protein interactions–a concept for drug design? Thromb Haemost 98:109–115

    PubMed  CAS  Google Scholar 

  24. Fransson LA, Belting M, Cheng F, Jonsson M, Mani K, Sandgren S (2004) Novel aspects of glypican glycobiology. Cell Mol Life Sci 61:1016–1024

    Article  PubMed  CAS  Google Scholar 

  25. Cole GJ, Halfter W (1996) Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. Perspect Dev Neurobiol 3:359–371

    PubMed  CAS  Google Scholar 

  26. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    Article  PubMed  CAS  Google Scholar 

  27. Kramer KL, Yost HJ (2003) Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet 37:461–484

    Article  PubMed  CAS  Google Scholar 

  28. Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2:521–528

    Article  PubMed  CAS  Google Scholar 

  29. Simons M, Horowitz A (2001) Syndecan-4-mediated signalling. Cell Signal 13:855–862

    Article  PubMed  CAS  Google Scholar 

  30. Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18:123–132

    Article  PubMed  CAS  Google Scholar 

  31. Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. NatRev Mol Cell Biol 6:530–541

    Article  CAS  Google Scholar 

  32. Sanderson RD (2001) Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Devel Biol 12:89–98

    Article  CAS  Google Scholar 

  33. Timar J, Lapis K, Dudas J, Sebestyen A, Kopper L, Kovalszky I (2002) Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin Cancer Biol 12:173–186

    Article  PubMed  CAS  Google Scholar 

  34. Belting M (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 28:145–151

    Article  PubMed  CAS  Google Scholar 

  35. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743

    Article  PubMed  CAS  Google Scholar 

  36. Patel VN, Knox SM, Likar KM et al (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:4177–4186

    Article  PubMed  CAS  Google Scholar 

  37. Vlodavsky I, Bar-Shavit R, Ishai-Michaeli R, Bashkin P, Fuks Z (1991) Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem Sci 16:268–271

    Article  PubMed  CAS  Google Scholar 

  38. Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177–186

    Article  PubMed  CAS  Google Scholar 

  39. Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I (2010) Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 277:3890–3903

    Article  PubMed  CAS  Google Scholar 

  40. Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38:2018–2039

    Article  PubMed  CAS  Google Scholar 

  41. Levy-Adam F, Feld S, Cohen-Kaplan V et al (2010) Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. J Biol Chem 285:28010–28019

    Article  PubMed  CAS  Google Scholar 

  42. McKenzie E, Tyson K, Stamps A et al (2000) Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 276:1170–1177

    Article  PubMed  CAS  Google Scholar 

  43. Vlodavsky I, Eldor A, Haimovitz-Friedman A et al (1992) Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127

    PubMed  CAS  Google Scholar 

  44. Elkin M, Ilan N, Ishai-Michaeli R et al (2001) Heparanase as mediator of angiogenesis: mode of action. FASEB J 15:1661–1663

    PubMed  CAS  Google Scholar 

  45. Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N (2003) Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 308:885–891

    Article  PubMed  CAS  Google Scholar 

  46. McKenzie E, Young K, Hircock M et al (2003) Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem J 373:423–435

    Article  PubMed  CAS  Google Scholar 

  47. Nardella C, Lahm A, Pallaoro M, Brunetti M, Vannini A, Steinkuhler C (2004) Mechanism of activation of human heparanase investigated by protein engineering. Biochemistry 43:1862–1873

    Article  PubMed  CAS  Google Scholar 

  48. Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34:511–519

    Article  PubMed  CAS  Google Scholar 

  49. Hulett MD, Hornby JR, Ohms SJ et al (2000) Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 39:15659–15667

    Article  PubMed  CAS  Google Scholar 

  50. Abboud-Jarrous G, Rangini-Guetta Z, Aingorn H et al (2005) Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J Biol Chem 280:13568–13575

    Article  PubMed  CAS  Google Scholar 

  51. Abboud-Jarrous G, Atzmon R, Peretz T et al (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283:18167–18176

    Article  PubMed  CAS  Google Scholar 

  52. Nakajima M, Irimura T, DiFerrante D, DiFerrante N, Nicolson GL (1983) Heparan sulfate degradation: relation to tumor invasion and metastatic properties of Mouse B 16 Melanoma sublines. Science 220:611–613

    Article  PubMed  CAS  Google Scholar 

  53. Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cells mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relation to tumor cell metastasis. Cancer Res 43:2704–2711

    PubMed  CAS  Google Scholar 

  54. Cohen I, Pappo O, Elkin M et al (2006) Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer 118:1609–1617

    Article  PubMed  CAS  Google Scholar 

  55. Lerner I, Baraz L, Pikarsky E et al (2008) Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res 14:668–676

    Article  PubMed  CAS  Google Scholar 

  56. Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 96:1219–1230

    Article  PubMed  CAS  Google Scholar 

  57. Vreys V, David G (2007) Mammalian heparanase: what is the message? J Cell Mol Med 11:427–452

    Article  PubMed  CAS  Google Scholar 

  58. Shafat I, Ben-Arush MW, Issakov J, Meller I, Naroditsky I, Tortoteto M, Cassinelli G, Lanzi C, Pisano C, Ilan N, Vlodavsky I, Zunino F (2011) J cell mol med (PMID: 21029368)

  59. Vlodavsky I, Ilan N, Naggi A, Casu B (2007) Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des 13:2057–2073

    Article  PubMed  CAS  Google Scholar 

  60. Casu B, Guerrini M, Guglieri S et al (2004) Undersulfated and glycol-split heparins endowed with antiangiogenic activity. J Med Chem 47:838–848

    Article  PubMed  CAS  Google Scholar 

  61. Ferro V, Hammond E, Fairweather JK (2004) The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem 4:693–702

    PubMed  CAS  Google Scholar 

  62. McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151:1–14

    Article  PubMed  CAS  Google Scholar 

  63. Miao HQ, Liu H, Navarro E, Kussie P, Zhu Z (2006) Development of heparanase inhibitors for anti-cancer therapy. Curr Med Chem 13:2101–2111

    Article  PubMed  CAS  Google Scholar 

  64. Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I (2006) Neoplasia 8:1055–1061

    Article  PubMed  CAS  Google Scholar 

  65. El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N (2001) Clin Cancer Res 7(5):1299–1305

    PubMed  CAS  Google Scholar 

  66. Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P, Fan M, Prinz RA, Xu X (2002) Surgery 132:326–333

    Article  PubMed  Google Scholar 

  67. Nagler R, Ben-Izhak O, Cohen-Kaplan V, Shafat I, Vlodavsky I, Akrish S, Ilan N (2007) Cancer 110:2732–2739

    Article  PubMed  CAS  Google Scholar 

  68. Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X, Kurozumi K, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K (2002) Mod Pathol 15:593–598

    Article  PubMed  Google Scholar 

  69. Barash U, Cohen-Kaplan V, Arvatz G et al (2010) A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. FASEB J 24:1239–1248

    Article  PubMed  CAS  Google Scholar 

  70. Doviner V, Maly B, Kaplan V et al (2006) Spatial and temporal heparanase expression in colon mucosa throughout the adenoma-carcinoma sequence. Mod Pathol 19:878–888

    PubMed  CAS  Google Scholar 

  71. Yang Y, Macleod V, Bendre M et al (2005) Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105:1303–1309

    Article  PubMed  CAS  Google Scholar 

  72. Zetser A, Bashenko Y, Miao H-Q, Vlodavsky I, Ilan N (2003) Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res 63:7733–7741

    PubMed  CAS  Google Scholar 

  73. Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z (1990) Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 9:203–226

    Article  PubMed  CAS  Google Scholar 

  74. Witz IP (2008) Tumor-microenvironment interactions: dangerous liaisons. Adv Cancer Res 100:203–229

    Article  PubMed  CAS  Google Scholar 

  75. Ruoslahti E (1996) How cancer spreads. Sci Am 275:72–77

    Article  PubMed  CAS  Google Scholar 

  76. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  77. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  PubMed  CAS  Google Scholar 

  78. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228–237

    Article  PubMed  CAS  Google Scholar 

  79. Stupack DG, Cheresh DA (2004) Integrins and angiogenesis. Curr Top Dev Biol 64:207–238

    Article  PubMed  CAS  Google Scholar 

  80. Noel A, Jost M, Maquoi E (2008) Matrix metalloproteinases at cancer tumor-host interface. Sem Cell Dev Biol 19:52–60

    Article  CAS  Google Scholar 

  81. Van Damme J, Struyf S, Opdenakker G (2004) Chemokine-protease interactions in cancer. Semin Cancer Biol 14:201–208

    Article  PubMed  CAS  Google Scholar 

  82. Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64

    Article  PubMed  CAS  Google Scholar 

  83. Lankelma JM, Voorend DM, Barwari T et al (2010) Cathepsin L, target in cancer treatment? Life Sci 86:225–233

    Article  PubMed  CAS  Google Scholar 

  84. Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477:98–111

    Article  PubMed  CAS  Google Scholar 

  85. Bix G, Iozzo RV (2005) Matrix revolutions: “tails” of basement-membrane components with angiostatic functions. Trends Cell Biol 15:52–60

    Article  PubMed  CAS  Google Scholar 

  86. Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283:32628–32636

    Article  PubMed  CAS  Google Scholar 

  87. Zcharia E, Jia J, Zhang X et al (2009) Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE 4:e5181

    Article  PubMed  CAS  Google Scholar 

  88. Chen L, Sanderson RD (2009) Heparanase regulates levels of syndecan-1 in the nucleus. PLoS ONE 4(3):e4947

    Article  PubMed  CAS  Google Scholar 

  89. Paget S (1889) The distribution of a secondary growths in cancer of the breast. Lancet 133:571–583

    Article  Google Scholar 

  90. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669

    Article  PubMed  CAS  Google Scholar 

  91. Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188

    Article  PubMed  CAS  Google Scholar 

  92. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529

    Article  PubMed  Google Scholar 

  93. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093

    Article  PubMed  CAS  Google Scholar 

  94. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed  CAS  Google Scholar 

  95. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  PubMed  CAS  Google Scholar 

  96. Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Sem Cell Dev Biol 21:33–39

    Article  CAS  Google Scholar 

  97. Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Sem cell Dev Biol 221:19–25

    Article  CAS  Google Scholar 

  98. Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    Article  PubMed  CAS  Google Scholar 

  99. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    Article  PubMed  CAS  Google Scholar 

  100. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  101. Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147

    Article  PubMed  CAS  Google Scholar 

  102. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  CAS  Google Scholar 

  103. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Cur Opin Immunol 22:231–237

    Article  CAS  Google Scholar 

  104. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  PubMed  CAS  Google Scholar 

  105. Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80:1183–1196

    Article  PubMed  CAS  Google Scholar 

  106. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  PubMed  CAS  Google Scholar 

  107. Edovitsky E, Lerner I, Zcharia E, Peretz T, Vlodavsky I, Elkin M (2006) Role of endothelial heparanase in delayed-type hypersensitivity. Blood 107:3609–3616

    Article  PubMed  CAS  Google Scholar 

  108. Waterman M, Ben-Izhak O, Eliakim R, Groisman G, Vlodavsky I, Ilan N (2007) Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Mod Pathol 20:8–14

    Article  PubMed  CAS  Google Scholar 

  109. Clevers H (2006) Colon cancer–understanding how NSAIDs work. N Engl J Med 354:761–763

    Article  PubMed  CAS  Google Scholar 

  110. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  PubMed  CAS  Google Scholar 

  111. Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    Article  PubMed  CAS  Google Scholar 

  112. Popivanova BK, Kitamura K, Wu Y et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570

    PubMed  CAS  Google Scholar 

  113. Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39:87–92

    Article  PubMed  CAS  Google Scholar 

  114. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  PubMed  CAS  Google Scholar 

  115. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  PubMed  CAS  Google Scholar 

  116. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702

    PubMed  CAS  Google Scholar 

  117. Zcharia E, Metzger S, Chajek-ShaulL T et al (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18:252–263

    Article  PubMed  CAS  Google Scholar 

  118. Mahida YR (2000) The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 6:21–33

    Article  PubMed  CAS  Google Scholar 

  119. Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK (2008) Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14:4280–4288

    Article  PubMed  CAS  Google Scholar 

  120. Elson CO, Sartor RB, Tennyson GS, Riddell RH (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367

    Article  PubMed  CAS  Google Scholar 

  121. Krieglstein CF, Cerwinka WH, Sprague AG et al (2002) Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest 110:1773–1782

    PubMed  CAS  Google Scholar 

  122. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  PubMed  CAS  Google Scholar 

  123. Brunn GJ, Bungum MK, Johnson GB, Platt JL (2005) Conditional signaling by Toll-like receptor 4. FASEB J 19:872–874

    PubMed  CAS  Google Scholar 

  124. Fukata M, Chen A, Vamadevan AS et al (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133:1869–1881

    Article  PubMed  CAS  Google Scholar 

  125. Fukata M, Hernandez Y, Conduah D et al (2009) Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis 15:997–1006

    Article  PubMed  Google Scholar 

  126. Kumar V, Abbas A, Fausto N, (eds) (2005) Pathologic basis of disease: Elsevier Saunders

  127. de Mestre AM, Rao S, Hornby JR, Soe-Htwe T, Khachigian LM, Hulett MD (2005) Early Growth Response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J Biol Chem 280:35136–35147

    Article  PubMed  CAS  Google Scholar 

  128. Subbaramaiah K, Yoshimatsu K, Scherl E et al (2004) Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem 279:12647–12658

    Article  PubMed  CAS  Google Scholar 

  129. Fiebiger E, Maehr R, Villadangos J et al (2002) Invariant chain controls the activity of extracellular cathepsin L. J Exp Med 196:1263–1269

    Article  PubMed  CAS  Google Scholar 

  130. Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533

    Article  PubMed  CAS  Google Scholar 

  131. Borja-Cacho D, Jensen EH, Saluja AK, Buchsbaum DJ, Vickers SM (2008) Molecular targeted therapies for pancreatic cancer. Am J Surg 196:430–441

    Article  PubMed  CAS  Google Scholar 

  132. Raimondi S, Maisonneuve P, Lowenfels AB (2009) Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol 6:699–708

    Article  PubMed  Google Scholar 

  133. Shaib YH, Davila JA, El-Serag HB (2006) The epidemiology of pancreatic cancer in the United States: changes below the surface. Aliment Pharmacol Ther 24:87–94

    Article  PubMed  CAS  Google Scholar 

  134. Muller MW, Friess H, Koninger J et al (2008) Factors influencing survival after bypass procedures in patients with advanced pancreatic adenocarcinomas. Am J Surg 195:221–228

    Article  PubMed  Google Scholar 

  135. Network NCC (2008) NCCN clinical practice guidelines in oncology: pancreatic adenocarcinoma. v.1

  136. Cohen SJ, Dobelbower R Jr, Lipsitz S et al (2005) A randomized phase III study of radiotherapy alone or with 5-fluorouracil and mitomycin-C in patients with locally advanced adenocarcinoma of the pancreas: Eastern Cooperative Oncology Group study E8282. Int J Radiat Oncol Biol Phys 62:1345–1350

    Article  PubMed  CAS  Google Scholar 

  137. Neoptolemos JP, Stocken DD, Friess H et al (2004) A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350:1200–1210

    Article  PubMed  CAS  Google Scholar 

  138. Camphausen K, Moses MA, Beecken W-D, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61:2207–2211

    PubMed  CAS  Google Scholar 

  139. Kaliski A, Maggiorella L, Cengel KA et al (2005) Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 4:1717–1728

    Article  PubMed  CAS  Google Scholar 

  140. Madani I, De Neve W, Mareel M (2008) Does ionizing radiation stimulate cancer invasion and metastasis? Bull Cancer 95:292–300

    PubMed  CAS  Google Scholar 

  141. Ohuchida K, Mizumoto K, Murakami M et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64:3215–3222

    Article  PubMed  CAS  Google Scholar 

  142. Park CM, Park MJ, Kwak HJ et al (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66:8511–8519

    Article  PubMed  CAS  Google Scholar 

  143. Qian L-W, Mizumoto K, Urashima T et al (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8:1223–1227

    PubMed  CAS  Google Scholar 

  144. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750

    PubMed  CAS  Google Scholar 

  145. Meirovitz A, Hermano E, Lerner I et al (2011) Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res 71:2772–2780

    Article  PubMed  CAS  Google Scholar 

  146. Koliopanos A, Friess H, Kleeff J, Shi X, Liao Q, Pecker I, Vlodavsky I, Zimmermann A, Buchler MW (2001) Cancer Res 61:4655–4659

    PubMed  CAS  Google Scholar 

  147. Quiros RM, Rao G, Plate J et al (2006) Elevated serum heparanase-1 levels in patients with pancreatic carcinoma are associated with poor survival. Cancer 106:532–540

    Article  PubMed  CAS  Google Scholar 

  148. Rohloff J, Zinke J, Schoppmeyer K, Tannapfel A, Witzigmann H, Mossner J, Wittekind C, Caca K (2002) Br J Cancer 86:1270–1275

    Article  PubMed  CAS  Google Scholar 

  149. Hoffmann AC, Mori R, Vallbohmer D et al (2008) High expression of heparanase is significantly associated with dedifferentiation and lymph node metastasis in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA and via HIF1a to HB-EGF and bFGF. J Gastrointest Surg 12:1674–1681

    Article  PubMed  Google Scholar 

  150. de Mestre AM, Khachigian LM, Santiago FS, Staykova MA, Hulett MD (2003) Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J Biol Chem 278:50377–50385

    Article  PubMed  Google Scholar 

  151. de Mestre AM, Staykova MA, Hornby JR, Willenborg DO, Hulett MD (2007) Expression of the heparan sulfate-degrading enzyme heparanase is induced in infiltrating CD4+ T cells in experimental autoimmune encephalomyelitis and regulated at the level of transcription by early growth response gene 1. J Leukoc Biol 82:1289–1300

    Article  PubMed  CAS  Google Scholar 

  152. Srinivasan R, Mager GM, Ward RM, Mayer J, Svaren J (2006) NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 281:15129–15137

    Article  PubMed  CAS  Google Scholar 

  153. Casu B, Guerrini M, Torri G (2004) Structural and conformational aspects of the anticoagulant and anti-thrombotic activity of heparin and dermatan sulfate. Curr Pharm Des 10:939–949

    Article  PubMed  CAS  Google Scholar 

  154. Casu B, Vlodavsky I, Sanderson RD (2008) Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 36:195–203

    Article  PubMed  CAS  Google Scholar 

  155. Naggi A, Casu B, Perez M et al (2005) Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 280:12103–12113

    Article  PubMed  CAS  Google Scholar 

  156. Chung SI, Seong J, Park YN, Kim WW, Oh HJ, Han KH. Identification of proteins indicating radiation-induced hepatic toxicity in cirrhotic rats. J Rsd Res 51:643–650

  157. Iriyama S, Matsunaga Y, Takahashi K, Matsuzaki K, Kumagai N, Amano S (2011) Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal-epidermal junction in human skin. Arch Dermatol Res 303:253–261

    Article  PubMed  CAS  Google Scholar 

  158. Chen T, Tang XD, Wan Y et al (2008) HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 10:977–986

    PubMed  CAS  Google Scholar 

  159. Tang W, Nakamura Y, Tsujimoto M et al (2002) Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol 15:593–598

    Article  PubMed  Google Scholar 

  160. Tang XD, Liang GP, Li C et al (2010) Cytotoxic T lymphocyte epitopes from human heparanase can elicit a potent anti-tumor immune response in mice. Cancer Immunol Immunother 59:1041–1047

    Article  PubMed  CAS  Google Scholar 

  161. Wang GZ, Tang XD, Lu MH, et al (2011) Multiple antigenic peptides of human heparanase elicit a much more potent immune response against tumors. Canc Prev Res (PMID: 21505182)

  162. Beckhove P, Feuerer M, Dolenc M et al (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 114:67–76

    PubMed  CAS  Google Scholar 

  163. Feuerer M, Beckhove P, Garbi N et al (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9:1151–1157

    Article  PubMed  CAS  Google Scholar 

  164. Khazaie K, Prifti S, Beckhove P et al (1994) Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci USA 91:7430–7434

    Article  PubMed  CAS  Google Scholar 

  165. Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V, Beckhove P (2003) T-cell priming in bone marrow: the potential for long-lasting protective anti-tumor immunity. Trends Mol Med 9:526–534

    Article  PubMed  CAS  Google Scholar 

  166. Bai L, Beckhove P, Feuerer M et al (2003) Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: bidirectional cell stimulation, survival and antitumor activity in vivo. Int J Cancer 103:73–83

    Article  PubMed  CAS  Google Scholar 

  167. Schmitz-Winnenthal FH, Volk C, Z’Graggen K et al (2005) High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 65:10079–10087

    Article  PubMed  CAS  Google Scholar 

  168. Wagner P, Koch M, Nummer D et al (2008) Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Ann Surg Oncol 15:2310–2317

    Article  PubMed  Google Scholar 

  169. Schuetz F, Ehlert K, Ge Y et al (2008) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900

    Article  PubMed  Google Scholar 

  170. Sommerfeldt N, Beckhove P, Ge Y et al (2006) Heparanase: a new metastasis-associated antigen recognized in breast cancer patients by spontaneously induced memory T lymphocytes. Cancer Res 66:7716–77123

    Article  PubMed  CAS  Google Scholar 

  171. Bonertz A, Weitz J, Pietsch DH et al (2009) Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 119:3311–3321

    PubMed  CAS  Google Scholar 

  172. Schuetz F, Ehlert K, Ge Y et al (2009) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900

    Article  PubMed  Google Scholar 

  173. Levy-Adam F, Ilan N, Vlodavsky I (2010) Tumorigenic and adhesive properties of heparanase. Semin Cancer Biol 20:153–160

    Article  PubMed  CAS  Google Scholar 

  174. Levy-Adam F, Feld S, Suss-Toby E, Vlodavsky I, Ilan N (2008) Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE 3:e2319

    Article  PubMed  CAS  Google Scholar 

  175. Kim MY, Oskarsson T, Acharyya S et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326

    Article  PubMed  Google Scholar 

  176. Leung CT, Brugge JS (2009) Tumor self-seeding: bidirectional flow of tumor cells. Cell 139:1226–1228

    Article  PubMed  Google Scholar 

  177. Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D (2005) A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene 24:4037–4051

    PubMed  CAS  Google Scholar 

  178. Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O (2000) Am J Pathol 157(4):1167–1175

    Article  PubMed  CAS  Google Scholar 

  179. Brun R, Naroditsky I, Waterman M et al (2009) Heparanase expression by Barrett’s epithelium and during esophageal carcinoma progression. Mod Pathol 22:1548–1554

    Article  PubMed  CAS  Google Scholar 

  180. Cohen-Kaplan V, Naroditsky I, Zetser A, Ilan N, Vlodavsky I, Doweck I (2008) Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. Int J Cancer 123:2566–2573

    Article  PubMed  CAS  Google Scholar 

  181. Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA (2008) Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 105:108–120

    Article  PubMed  CAS  Google Scholar 

  182. Kovalszky I, Dudas J, Olah-Nagy J et al (1998) Inhibition of DNA topoisomerase I activity by heparan sulfate and modulation by basic fibroblast growth factor. Mol Cell Biochem 183:11–23

    Article  PubMed  CAS  Google Scholar 

  183. Ohkawa T, Naomoto Y, Takaoka M et al (2004) Localization of heparanase in esophageal cancer cells: respective roles in prognosis and differentiation. Lab Invest 84:1289–1304

    Article  PubMed  CAS  Google Scholar 

  184. Schubert SY, Ilan N, Shushy M, Ben-Izhak O, Vlodavsky I, Goldshmidt O (2004) Human heparanase nuclear localization and enzymatic activity. Lab Invest 84:535–544

    Article  PubMed  CAS  Google Scholar 

  185. Kobayashi M, Naomoto Y, Nobuhisa T et al (2006) Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation 74:235–243

    Article  PubMed  CAS  Google Scholar 

  186. Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD (2011) Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem PMID: 21757697

  187. Szymczak M, Kuzniar J, Klinger M (2010) The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp 58:45–56

    Article  CAS  Google Scholar 

  188. van den Hoven MJ, Rops AL, Vlodavsky I, Levidiotis V, Berden JH, van der Vlag J (2007) Heparanase in glomerular diseases. Kidney Int 72:543–548

    Article  PubMed  CAS  Google Scholar 

  189. Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2004) Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 15:68–78

    Article  PubMed  CAS  Google Scholar 

  190. Levidiotis V, Kanellis J, Ierino FL, Power DA (2001) Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney Int 60:1287–1296

    Article  PubMed  CAS  Google Scholar 

  191. Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2005) Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrology 10:167–173

    Article  PubMed  CAS  Google Scholar 

  192. Ritchie JP, Ramani VC, Ren Y et al (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17:1382–1393

    Article  PubMed  CAS  Google Scholar 

  193. Higgins WJ, Fox DM, Kowalski PS, Nielsen JE, Worrall DM (2010) Heparin enhances serpin inhibition of the cysteine protease cathepsin L. J Biol Chem 285:3722–3729

    Article  PubMed  CAS  Google Scholar 

  194. Arvatz G, Shafat I, Levy-Adam F, Ilan N, Vlodavsky I (2011) The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev 30:253–268

    Article  PubMed  CAS  Google Scholar 

  195. Dredge K, Hammond E, Handley P et al (2011) PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 104:635–642

    Article  PubMed  CAS  Google Scholar 

  196. Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D (2011) MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 71:645–654

    Article  PubMed  CAS  Google Scholar 

  197. Gohji K, Hirano H, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M (2001) Int J Cancer 95:295–301

    Article  PubMed  CAS  Google Scholar 

  198. Gohji K, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M (2001) J Urol 166:1286–1290

    Article  PubMed  CAS  Google Scholar 

  199. Shinyo Y, Kodama J, Hongo A, Yoshinouchi M, Hiramatsu Y (2003) Ann Oncol 14:1505–1510

    Article  PubMed  CAS  Google Scholar 

  200. Nobuhisa T, Naomoto Y, Ohkawa T, Takaoka M, Ono R, Murata T, Gunduz M, Shirakawa Y, Yamatsuji T, Haisa M, Matsuoka J, Tsujigiwa H, Nagatsuka H, Nakajima M, Tanaka N (2005) J Cancer Res Clin Oncol 131:229–237

    Article  PubMed  CAS  Google Scholar 

  201. Sato T, Yamaguchi A, Goi T, Hirono Y, Takeuchi K, Katayama K, Matsukawa S (2004) J Surg Oncol 87:174–181

    Article  PubMed  CAS  Google Scholar 

  202. Watanabe M, Aoki Y, Kase H, Tanaka K (2003) Gynecol Obstet Invest 56:77–82

    Article  PubMed  CAS  Google Scholar 

  203. Endo K, Maejara U, Baba H, Tokunaga E, Koga T, Ikeda Y, Toh Y, Kohnoe S, Okamura T, Nakajima M, Sugimachi K (2001) Anticancer Res 21:3365–3369

    PubMed  CAS  Google Scholar 

  204. Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M, Tanaka N, Haisa M (2003) Lab Invest 83:613–622

    PubMed  CAS  Google Scholar 

  205. Takahashi H, Ebihara S, Okazaki T, Suzuki S, Asada M, Kubo H, Sasaki H (2004) Lung Canc (Amsterdam, Netherlands) 45: 207–214

  206. Cohen E, Doweck I, Naroditsky I, Ben-Izhak O, Kremer R, Best LA, Vlodavsky I, Ilan N (2008) Cancer 113:1004–1011

    Article  PubMed  Google Scholar 

  207. Kelly T, Miao H-Q, Yang Y, Navarro E, Kussie P, Huang Y, MacLeod V, Casciano J, Joseph L, Zhan F, Zangari M, Barlogie B, Shaughnessy J, Sanderson RD (2003) Cancer Res 63:8749–8756

    PubMed  CAS  Google Scholar 

  208. Bar-Sela G, Kaplan-Cohen V, Ilan N, Vlodavsky I, Ben-Izhak O (2006) Histopathology 49:188–193

    Article  PubMed  CAS  Google Scholar 

  209. Zheng LD, Tong QS, Tang ST, Du ZY, Liu Y, Jiang GS, Cai JB (2009) World J Pediatr 5:206–210

    Article  PubMed  CAS  Google Scholar 

  210. Kim AW, Xu X, Hollinger EF, Gattuso P, Godellas CV, Prinz RA (2002) J Gastrointest Surg 6:167–172

    Article  PubMed  Google Scholar 

  211. Mikami S, Oya M, Shimoda M, Mizuno R, Ishida M, Kosaka T, Mukai M, Nakajima M, Okada Y (2008) Clin Cancer Res 14:6055–6061

    Article  PubMed  CAS  Google Scholar 

  212. Ben-Izhak O, Kaplan-Cohen V, Ilan N, Gan S, Vlodavsky I, Nagler R (2006) Neoplasia 8:879–884

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Benito Casu (‘Ronzoni’ Institute, Milan, Italy) and Prof. Ralph Sanderson (University of Alabama at Birmingham) for their continuous support and active collaboration. This work was supported by National Institutes of Health (NIH) grants CA106456 (IV) and CA138535 (RDS), the Israel Science Foundation (549/06); the Ministry of Science & Technology of the State of Israel and the German Cancer Research Center (DKFZ), the Juvenile Diabetes Research Foundation (JDRF 1-2006-695 and 38-2009-635) and by a research contract from Sigma-Tau Research Switzerland S.A. I. Vlodavsky is a Research Professor of the ICRF. We gratefully acknowledge the contribution, motivation and assistance of the research teams in the Hadassah-Hebrew University Medical Center (Jerusalem, Israel) and the Cancer and Vascular Biology Research Center of the Rappaport Faculty of Medicine (Technion, Haifa).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Vlodavsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlodavsky, I., Beckhove, P., Lerner, I. et al. Significance of Heparanase in Cancer and Inflammation. Cancer Microenvironment 5, 115–132 (2012). https://doi.org/10.1007/s12307-011-0082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0082-7

Keywords

Navigation