Skip to main content

Advertisement

Log in

Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

For over 50 years, biologists and clinicians have studied lipoprotein lipase (LPL) and learned about its structure, function, cellular production, physiology, and human genetics. LPL is the principal enzyme that removes triglyceride from the bloodstream. It also determines plasma levels of high-density lipoprotein. Surprisingly, within the past several years, a number of new and unexpected proteins have been discovered that regulate the actions of LPL. These include the very low-density lipoprotein receptor, angiopoetin-like protein 3, and apolipoprotein A-V. In addition, mouse genetic studies have confirmed tissue culture findings of nonenzymatic roles of LPL both in lipid metabolism and atherogenesis. These basic observations are now being related to new information on human genetic polymorphism in this gene that is likely to affect clinical evaluation of lipoprotein disorders and cardiac risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hahn PF: Abolishment of alimentary lipemia following injection of heparin. Science 1943, 98: 19–20.

    Article  PubMed  Google Scholar 

  2. Breckenridge WC, Alaupovic P, Cox DW, Little JA: Apolipoprotein and lipoprotein concentrations in familial apolipoprotein C-II deficiency. Atherosclerosis 1982, 44: 223–235.

    Article  PubMed  CAS  Google Scholar 

  3. Goldberg IJ: Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 1996, 37: 693–707.

    PubMed  CAS  Google Scholar 

  4. Wong H, Schotz MC: The lipase gene family. J Lipid Res 2002, 43: 993–999.

    Article  PubMed  CAS  Google Scholar 

  5. Jaye M, Lynch KJ, Krawiec J, et al.: A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 1999, 21: 424–428.

    Article  PubMed  CAS  Google Scholar 

  6. Jin W, Millar JS, Broedl U, et al.: Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J Clin Invest 2003, 111: 357–362.

    Article  PubMed  CAS  Google Scholar 

  7. Ishida T, Choi S, Kundu RK, et al.: Endothelial lipase is a major determinant of HDL level. J Clin Invest 2003, 111: 347–355.

    Article  PubMed  CAS  Google Scholar 

  8. deLemos AS, Wolfe ML, Long CJ, et al.: Identification of genetic variants in endothelial lipase in persons with elevated high-density lipoprotein cholesterol. Circulation 2002, 106: 1321–1326.

    Article  PubMed  CAS  Google Scholar 

  9. Yamakawa-Kobayashi K, Yanagi H, Endo K, et al.: Relationship between serum HDL-C levels and common genetic variants of the endothelial lipase gene in Japanese school-aged children. Hum Genet 2003, 113: 311–315.

    Article  PubMed  CAS  Google Scholar 

  10. Ma K, Cilingiroglu M, Otvos JD, et al.: Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc Natl Acad Sci U S A 2003, 100: 2748–2753.

    Article  PubMed  CAS  Google Scholar 

  11. McIlhargey TL, Yang Y, Wong H, Hill JS: Identification of a lipoprotein lipase cofactor-binding site by chemical cross-linking and transfer of apolipoprotein C-II-responsive lipolysis from lipoprotein lipase to hepatic lipase. J Biol Chem 2003, 278: 23027–23035.

    Article  PubMed  CAS  Google Scholar 

  12. Xiang SQ, Cianflone K, Kalant D, Sniderman AD: Differential binding of triglyceride-rich lipoproteins to lipoprotein lipase. J Lipid Res 1999, 40: 1655–1663.

    PubMed  CAS  Google Scholar 

  13. Proctor SD: Retention of fluorescent-labelled chylomicron remnants within the intima of the arterial wall-evidence that plaque cholesterol may be derived from post-prandial lipoproteins. Eur J Clin Invest 1998, 28: 497–503.

    Article  PubMed  CAS  Google Scholar 

  14. Karpe F, Bard JM, Steiner G, et al.: HDLs and alimentary lipemia. Studies in men with previous myocardial infarction at a young age. Arterioscler Thromb 1993, 13: 11–22.

    PubMed  CAS  Google Scholar 

  15. Brunzell JD, Hazzard WR, Porte D Jr, Bierman EL: Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J Clin Invest 1973, 52: 1578–1585.

    PubMed  CAS  Google Scholar 

  16. Ginsberg HN: Lipoprotein metabolism and its relationship to atherosclerosis. Med Clin North Am 1994, 78: 1–20.

    PubMed  CAS  Google Scholar 

  17. Goldberg IJ, Le NA, Ginsberg HN, et al.: Lipoprotein metabolism during acute inhibition of lipoprotein lipase in the cynomolgus monkey. J Clin Invest 1988, 81: 561–568.

    PubMed  CAS  Google Scholar 

  18. Goldberg IJ, Le NA, Ginsberg HN, et al.: Metabolism of apoprotein B in cynomolgus monkey: evidence for independent production of low-density lipoprotein apoprotein B. Am J Physiol 1983, 244: E196-E201.

    PubMed  CAS  Google Scholar 

  19. Fan J, Wang J, Bensadoun A, et al.: Overexpression of hepatic lipase in transgenic rabbits leads to marked reduction of plasma high density lipoproteins and intermediate density lipoproteins. Proc Natl Acad Sci U S A 1994, 91: 8724–8728.

    Article  PubMed  CAS  Google Scholar 

  20. Rashid S, Trinh DK, Uffelman KD, et al.: Expression of human hepatic lipase in the rabbit model preferentially enhances the clearance of triglyceride-enriched versus native high-density lipoprotein apolipoprotein A-I. Circulation 2003, 107: 3066–3072.

    Article  PubMed  CAS  Google Scholar 

  21. Horowitz BS, Goldberg IJ, Merab J, et al.: Increased plasma and renal clearance of an exchangeable pool of apolipoprotein A-I in subjects with low levels of high density lipoprotein cholesterol. J Clin Invest 1993, 91: 1743–1752.

    PubMed  CAS  Google Scholar 

  22. Goldberg IJ, Blaner WS, Vanni TM, et al.: Role of lipoprotein lipase in the regulation of high density lipoprotein apolipoprotein metabolism. Studies in normal and lipoprotein lipase-inhibited monkeys. J Clin Invest 1990, 86: 463–473.

    PubMed  CAS  Google Scholar 

  23. Tornvall P, Olivecrona G, Karpe F, et al.: Lipoprotein lipase mass and activity in plasma and their increase after heparin are separate parameters with different relations to plasma lipoproteins. Arterioscler Thromb Vasc Biol 1995, 15: 1086–1093.

    PubMed  CAS  Google Scholar 

  24. Blades B, Vega GL, Grundy SM: Activities of lipoprotein lipase and hepatic triglyceride lipase in postheparin plasma of patients with low concentrations of HDL cholesterol. Arterioscler Thromb 1993, 13: 1227–1235.

    PubMed  CAS  Google Scholar 

  25. Patsch JR, Prasad S, Gotto AM Jr, Patsch W: High density lipoprotein 2. Relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipemia, and to the activities of lipoprotein lipase and hepatic lipase. J Clin Invest 1987, 80: 341–347.

    PubMed  CAS  Google Scholar 

  26. Cohen JC, Stray-Gundersen J, Grundy SM: Dissociation between postprandial lipemia and high density lipoprotein cholesterol concentrations in endurance-trained men. Arterioscler Thromb 1991, 11: 838–843.

    PubMed  CAS  Google Scholar 

  27. Havel RJ: Postprandial hyperlipidemia and remnant lipoproteins. Curr Opin Lipidol 1994, 5: 102–109.

    Article  PubMed  CAS  Google Scholar 

  28. Saxena U, Ferguson E, Auerbach BJ, Bisgaier CL: Lipoprotein lipase facilitates very low density lipoprotein binding to the subendothelial cell matrix. Biochem Biophys Res Commun 1993, 194: 769–774.

    Article  PubMed  CAS  Google Scholar 

  29. Merkel M, Kako Y, Radner H, et al.: Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: direct evidence that lipoprotein lipase bridging occurs in vivo. Proc Natl Acad Sci U S A 1998, 95: 13841–13846.

    Article  PubMed  CAS  Google Scholar 

  30. Rutledge JC, Woo MM, Rezai AA, et al.: Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circ Res 1997, 80: 819–828.

    PubMed  CAS  Google Scholar 

  31. Merkel M, Heeren J, Dudeck W, et al.: Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. J Biol Chem 2002, 277: 7405–7411.

    Article  PubMed  CAS  Google Scholar 

  32. Goldberg IJ, Kako Y, Lutz EP: Responses to eating: lipoproteins, lipolytic products and atherosclerosis. Curr Opin Lipidol 2000, 11: 235–241.

    Article  PubMed  CAS  Google Scholar 

  33. Rutledge J, Woo M, Rezai A, et al.: Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circ Res 1997, 80: 819–828.

    PubMed  CAS  Google Scholar 

  34. Olin KL, Potter-Perigo S, Barrett PH, et al.: Lipoprotein lipase enhances the binding of native and oxidized low density lipoproteins to versican and biglycan synthesized by cultured arterial smooth muscle cells. J Biol Chem 1999, 274: 34629–34636.

    Article  PubMed  CAS  Google Scholar 

  35. Pentikainen MO, Oksjoki R, Oorni K, Kovanen PT: Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler Thromb Vasc Biol 2002, 22: 211–217.

    Article  PubMed  CAS  Google Scholar 

  36. Babaev VR, Fazio S, Gleaves LA, et al.: Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo. J Clin Invest 1999, 103: 1697–1705.

    PubMed  CAS  Google Scholar 

  37. Ziouzenkova O, Perrey S, Asatryan L, et al.: Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc Natl Acad Sci U S A 2003, 100: 2730–2735.

    Article  PubMed  CAS  Google Scholar 

  38. Olivecrona T, Chernick SS, Bengtsson-Olivecrona G, et al.: Synthesis and secretion of lipoprotein lipase in 3T3-L1 adipocytes. Demonstration of inactive forms of lipase in cells. J Biol Chem 1987, 262: 10748–10759.

    PubMed  CAS  Google Scholar 

  39. Jong MC, Hofker MH, Havekes LM: Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 1999, 19: 472–484.

    PubMed  CAS  Google Scholar 

  40. Brown WV, Baginsky ML: Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem Biophys Res Commun 1972, 46: 375–381.

    Article  PubMed  CAS  Google Scholar 

  41. Pennacchio LA, Olivier M, Hubacek JA, et al.: An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 2001, 294: 169–173.

    Article  PubMed  CAS  Google Scholar 

  42. van der Vliet HN, Sammels MG, Leegwater AC, et al.: Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem 2001, 276: 44512–44520.

    Article  PubMed  CAS  Google Scholar 

  43. Pennacchio LA, Rubin EM: Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler Thromb Vasc Biol 23:529–534.

  44. van der Vliet HN, Schaap FG, Levels JH, et al.: Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem Biophys Res Commun 2002, 295: 1156–1159.

    Article  PubMed  CAS  Google Scholar 

  45. Pennacchio LA, Olivier M, Hubacek JA, et al.: Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 2002, 11: 3031–3038.

    Article  PubMed  CAS  Google Scholar 

  46. Talmud PJ, Martin S, Taskinen MR, et al.: APOA5 gene variants, lipoprotein particle distribution and progression of coronary heart disease: results from the LOCAT study. J Lipid Res 2004, In press.

  47. Koishi R, Ando Y, Ono M, et al.: Angptl3 regulates lipid metabolism in mice. Nat Genet 2002, 30: 151–157.

    Article  PubMed  CAS  Google Scholar 

  48. Shimizugawa T, Ono M, Shimamura M, et al.: ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem 2002, 277: 33742–33748.

    Article  PubMed  CAS  Google Scholar 

  49. Kaplan R, Zhang T, Hernandez M, et al.: Regulation of the angiopoietin-like protein 3 gene by LXR. J Lipid Res 2003, 44: 136–143.

    Article  PubMed  CAS  Google Scholar 

  50. Tacken PJ, Teusink B, Jong MC, et al.: LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. J Lipid Res 2002, 41: 2055–2062.

    Google Scholar 

  51. Yagyu H, Lutz EP, Kako Y, et al.: Very low density lipoprotein (VLDL) receptor-deficient mice have reduced lipoprotein lipase activity. Possible causes of hypertriglyceridemia and reduced body mass with VLDL receptor deficiency. J Biol Chem 2002, 277: 10037–10043.

    Article  PubMed  CAS  Google Scholar 

  52. Obunike JC, Lutz EP, Li Z, et al.: Transcytosis of lipoprotein lipase across cultured endothelial cells requires both heparan sulfate proteoglycans and the very low density lipoprotein receptor. J Biol Chem 2001, 276: 8934–8941.

    Article  PubMed  CAS  Google Scholar 

  53. Gnudi L, Jensen DR, Tozzo E, et al.: Adipose-specific overexpression of GLUT-4 in transgenic mice alters lipoprotein lipase activity. Am J Physiol 1996, 270: R785-R792.

    PubMed  CAS  Google Scholar 

  54. Semb H, Peterson J, Tavernier J, Olivecrona T: Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo. J Biol Chem 1987, 262: 8390–8394.

    PubMed  CAS  Google Scholar 

  55. Sadur CN, Eckel RH: Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J Clin Invest 1982, 69: 1119–1125.

    PubMed  CAS  Google Scholar 

  56. Ranganathan S, Kern PA: The HIV protease inhibitor saquinavir impairs lipid metabolism and glucose transport in cultured adipocytes. J Endocrinol 2002, 172: 155–162.

    Article  PubMed  CAS  Google Scholar 

  57. Lenhard JM, Croom DK, Weiel JE, Winegar DA: HIV protease inhibitors stimulate hepatic triglyceride synthesis. Arterioscler Thromb Vasc Biol 2000, 20: 2625–2629.

    PubMed  CAS  Google Scholar 

  58. Purnell JQ, Zambon A, Knopp RH, et al.: Effect of ritonavir on lipids and post-heparin lipase activities in normal subjects. AIDS 2000, 14: 51–57.

    Article  PubMed  CAS  Google Scholar 

  59. Yarasheski KE, Tebas P, Claxton S, et al.: Visceral adiposity, C-peptide levels, and low lipase activities predict HIV-dyslipidemia. Am J Physiol Endocrinol Metab 2003, 285: E899-E905.

    PubMed  CAS  Google Scholar 

  60. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al.: PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996, 15: 5336–5348.

    PubMed  CAS  Google Scholar 

  61. Fruchart JC, Duriez P, Staels B: Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 1999, 10: 245–257.

    Article  PubMed  CAS  Google Scholar 

  62. Tontonoz P, Hu E, Spiegelman BM: Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr Opin Genet Dev 1995, 5: 571–576.

    Article  PubMed  CAS  Google Scholar 

  63. Gbaguidi FG, Chinetti G, Milosavljevic D, et al.: Peroxisome proliferator-activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages. FEBS Lett 2002, 512: 85–90.

    Article  PubMed  CAS  Google Scholar 

  64. Merkel M, Eckel RH, Goldberg IJ: Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 2002, 43: 1997–2006.

    Article  PubMed  CAS  Google Scholar 

  65. Brunzell JD, Iverius PH, Scheibel MS, et al.: Primary lipoprotein lipase deficiency. Adv Exp Med Biol 1986, 201: 227–239.

    PubMed  CAS  Google Scholar 

  66. Chait A, Brunzell JD: Chylomicronemia syndrome. Adv Intern Med 1992, 37: 249–273.

    PubMed  CAS  Google Scholar 

  67. Benlian P, De Gennes JL, Foubert L, et al.: Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med 1996, 335: 848–854.

    Article  PubMed  CAS  Google Scholar 

  68. Harlan WR Jr, Winesett PS, Wasserman AJ: Tissue lipoprotein lipase in normal individuals and in individuals with exogenous hypertriglyceridemia and the relationship of this enzyme to assimilation of fat. J Clin Invest 1967, 46: 239–247.

    PubMed  CAS  Google Scholar 

  69. Sprecher DL, Knauer SL, Black DM, et al.: Chylomicron-retinyl palmitate clearance in type I hyperlipidemic families. J Clin Invest 1991, 88: 985–994.

    PubMed  CAS  Google Scholar 

  70. Wilson DE, Emi M, Iverius PH, et al.: Phenotypic expression of heterozygous lipoprotein lipase deficiency in the extended pedigree of a proband homozygous for a missense mutation. J Clin Invest 1990, 86: 735–750.

    PubMed  CAS  Google Scholar 

  71. Ma Y, Ooi TC, Liu MS, et al.: High frequency of mutations in the human lipoprotein lipase gene in pregnancy-induced chylomicronemia: possible association with apolipoprotein E2 isoform. J Lipid Res 1994, 35: 1066–1075.

    PubMed  CAS  Google Scholar 

  72. Julien P, Vohl MC, Gaudet D, et al.: Hyperinsulinemia and abdominal obesity affect the expression of hypertriglyceridemia in heterozygous familial lipoprotein lipase deficiency. Diabetes 1997, 46: 2063–2068.

    Article  PubMed  CAS  Google Scholar 

  73. Baum L, Chen L, Masliah E, et al.: Lipoprotein lipase mutations and Alzheimer’s disease. Am J Med Genet 1999, 88: 136–139.

    Article  PubMed  CAS  Google Scholar 

  74. Lee J, Tan CS, Chia KS, et al.: The S447X polymorphism at the lipoprotein lipase locus interacts with apolipoprotein E polymorphisms, smoking and alcohol consumption to determine HDL-cholesterol. J Lipid Res 2004, In press.

  75. Wu DA, Bu X, Warden CH, et al.: Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22. J Clin Invest 1996, 97: 2111–2118.

    Article  PubMed  CAS  Google Scholar 

  76. Hunt SC, Province MA, Atwood LD, et al.: No linkage of the lipoprotein lipase locus to hypertension in Caucasians. J Hypertens 1999, 17: 39–43.

    Article  PubMed  CAS  Google Scholar 

  77. Talmud PJ, Bujac SR, Hall S, et al.: Substitution of asparagine for aspartic acid at residue 9 (D9N) of lipoprotein lipase markedly augments risk of ischaemic heart disease in male smokers. Atherosclerosis 2000, 149: 75–81.

    Article  PubMed  CAS  Google Scholar 

  78. Fisher RM, Benhizia F, Schreiber R, et al.: Enhanced bridging function and augmented monocyte adhesion by lipoprotein lipase N9: insights into increased risk of coronary artery disease in N9 carriers. Atherosclerosis 2003, 166: 243–251.

    Article  PubMed  CAS  Google Scholar 

  79. Goodarzi MO, Guo X, Taylor KD, et al.: Lipoprotein lipase is a gene for insulin resistance in Mexican Americans. Diabetes 2004, 53: 214–220.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otarod, J.K., Goldberg, I.J. Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr Atheroscler Rep 6, 335–342 (2004). https://doi.org/10.1007/s11883-004-0043-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-004-0043-4

Keywords

Navigation