Skip to main content
Log in

Lipoprotein lipase-derived fatty acids: Physiology and dysfunction

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Under normal circumstances, most energy substrate used for heart contraction derives from fatty acids in the form of nonesterified fatty acids bound to albumin or fatty acids derived from lipolysis of lipoprotein-bound triglyceride by lipoprotein lipase (LpL). By creating LpL knockout mice (hLpL0), we learned that loss of cardiac LpL leads to myocardial dysfunction; therefore, neither nonesterified fatty acids nor increased glucose metabolism can replace LpL actions. hLpL0 mice do not survive abdominal aortic constriction and they develop more heart failure with hypertension. Conversely, we created a mouse overexpressing cardiomyocyte-anchored LpL. This transgene produced cardiac lipotoxicity and dilated cardiomyopathy. Methods to alter this phenotype and the causes of other models of lipotoxicity are currently being studied and will provide further insight into the physiology of lipid metabolism in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. van der Vusse GJ, Glatz JF, Stam HC, Reneman RS: Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992, 72:881–940.

    PubMed  Google Scholar 

  2. Lopaschuk GD, Belke DD, Gamble J, et al.: Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1994, 1213:263–276.

    PubMed  CAS  Google Scholar 

  3. Blanchette-Mackie EJ, Masuno H, Dwyer NK, et al.: Lipoprotein lipase in myocytes and capillary endothelium of heart: immunocytochemical study. Am J Physiol 1989, 256:E818–E828.

    PubMed  CAS  Google Scholar 

  4. Augustus AS, Kako Y, Yagyu H, Goldberg IJ: Routes of FA delivery to cardiac muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J Physiol Endocrinol Metab 2003, 284:E331–E339.

    PubMed  CAS  Google Scholar 

  5. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 1996, 37:693–707.

    PubMed  CAS  Google Scholar 

  6. Augustus AS, Buchanan J, Park TS, et al.: Loss of lipoprotein lipase-derived fatty acids leads to increased cardiac glucose metabolism and heart dysfunction. J Biol Chem 2006, 281:8716–8723.

    Article  PubMed  CAS  Google Scholar 

  7. Iemitsu M, Miyauchi T, Maeda S, et al.: Aging-induced decrease in the PPAR-alpha level in hearts is improved by exercise training. Am J Physiol Heart Circ Physiol 2002, 283:H1750–H1760.

    PubMed  CAS  Google Scholar 

  8. Moncrieff J, Lindsay MM, Dunn FG: Hypertensive heart disease and fibrosis. Curr Opin Cardiol 2004, 19:326–331.

    Article  PubMed  Google Scholar 

  9. Noh HL, Okajima K, Molkentin JD, et al.: Acute lipoprotein lipase deletion in adult mice leads to dyslipidemia and cardiac dysfunction. Am J Physiol Endocrinol Metab 2006, 291:E755–E760.

    Article  PubMed  CAS  Google Scholar 

  10. Sukonina V, Lookene A, Olivecrona T, Olivecrona G: Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci U S A 2006, 103:17450–17455.

    Article  PubMed  CAS  Google Scholar 

  11. Yu X, Burgess SC, Ge H, et al.: Inhibition of cardiac lipoprotein utilization by transgenic overexpression of Angptl4 in the heart. Proc Natl Acad Sci U S A 2005, 102:1767–1772.

    Article  PubMed  CAS  Google Scholar 

  12. Ricart-Jane D, Cejudo-Martin P, Peinado-Onsurbe J, et al.: Changes in lipoprotein lipase modulate tissue energy supply during stress. J Appl Physiol 2005, 99:1343–1351.

    Article  PubMed  CAS  Google Scholar 

  13. Seip RL, Angelopoulos TJ, Semenkovich CF: Exercise induces human lipoprotein lipase gene expression in skeletal muscle but not adipose tissue. Am J Physiol 1995, 268:E229–E236.

    PubMed  CAS  Google Scholar 

  14. Ruge T, Svensson M, Eriksson JW, Olivecrona G: Tissue-specific regulation of lipoprotein lipase in humans: effects of fasting. Eur J Clin Invest 2005, 35:194–200.

    Article  PubMed  CAS  Google Scholar 

  15. Deshaies Y, Geloen A, Paulin A, et al.: Tissue-specific alterations in lipoprotein lipase activity in the rat after chronic infusion of isoproterenol. Horm Metab Res 1993, 25:13–16.

    Article  PubMed  CAS  Google Scholar 

  16. Stam H, Hulsmann WC: Effects of hormones, amino acids and specific inhibitors on rat heart heparin-releasable lipoprotein lipase and tissue neutral lipase activities during long-term perfusion. Biochim Biophys Acta 1984, 794:72–82.

    PubMed  CAS  Google Scholar 

  17. Gouni-Berthold I, Oka K, Berthold HK, Chan L: Failure of the nonselective beta-blocker propranolol to affect lipoprotein lipase gene expression in the rat. Lipids 1997, 32:943–947.

    Article  PubMed  CAS  Google Scholar 

  18. Cryer A, Jones HM: The distribution of lipoprotein lipase (clearing factor lipase) activity in the adiposal, muscular and lung tissues of ten animal species. Comp Biochem Physiol B 1979, 63:501–505.

    Article  PubMed  CAS  Google Scholar 

  19. Husbands DR: The distribution of lipoprotein lipase in tissues of the domestic fowl and the effects of feeding and starving. Br Poult Sci 1972, 13:85–90.

    Article  PubMed  CAS  Google Scholar 

  20. Bonnet M, Leroux C, Faulconnier Y, et al.: Lipoprotein lipase activity and mRNA are up-regulated by refeeding in adipose tissue and cardiac muscle of sheep. J Nutr 2000, 130:749–756.

    PubMed  CAS  Google Scholar 

  21. Luiken JJ, Coort SL, Willems J, et al.: Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 2003, 52:1627–1634.

    Article  PubMed  CAS  Google Scholar 

  22. An D, Pulinilkunnil T, Qi D, et al.: The metabolic “switch” AMPK regulates cardiac heparin-releasable lipoprotein lipase. Am J Physiol Endocrinol Metab 2005, 288: E246–E253.

    Article  PubMed  CAS  Google Scholar 

  23. Levak-Frank S, Hofmann W, Weinstock PH, et al.: Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle, but not in skeletal muscle and adipose tissue, have normal plasma triglyceride and high-density lipoprotein-cholesterol levels. Proc Natl Acad Sci U S A 1999, 96:3165–3170.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou YT, Grayburn P, Karim A, et al.: Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A 2000, 97:1784–1789.

    Article  PubMed  CAS  Google Scholar 

  25. Finck BN, Lehman JJ, Leone TC, et al.: The cardiac phenotype induced by PPAR-alpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002, 109:121–130.

    Article  PubMed  CAS  Google Scholar 

  26. Finck BN, Han X, Courtois M, et al.: A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A 2003, 100:1226–1231.

    Article  PubMed  CAS  Google Scholar 

  27. Nohammer C, Brunner F, Wolkart G, et al.: Myocardial dysfunction and male mortality in peroxisome proliferator-activated receptor alpha knockout mice overexpressing lipoprotein lipase in muscle. Lab Invest 2003, 83:259–269.

    PubMed  Google Scholar 

  28. Yagyu H, Chen G, Yokoyama M, et al.: Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest 2003, 111:419–426.

    Article  PubMed  Google Scholar 

  29. Listenberger LL, Ory DS, Schaffer JE: Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 2001, 276:14890–14895.

    Article  PubMed  CAS  Google Scholar 

  30. Yang J, Sambandam N, Han X, et al.: CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 2007, 100:1208–1217.

    Article  PubMed  CAS  Google Scholar 

  31. Lee Y, Naseem RH, Duplomb L, et al.: Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Proc Natl Acad Sci U S A 2004, 101:13624–13629.

    Article  PubMed  CAS  Google Scholar 

  32. Yokoyama M, Yagyu H, Hu Y, et al.: Apolipoprotein B production reduces lipotoxic cardiomyopathy: studies in heart-specific lipoprotein lipase transgenic mouse. J Biol Chem 2004, 279:4204–4211.

    Article  PubMed  CAS  Google Scholar 

  33. Rangwala SM, Lazar MA: Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 2004, 25:331–336.

    Article  PubMed  CAS  Google Scholar 

  34. Vikramadithyan RK, Hirata K, Yagyu H, et al.: Peroxisome proliferator-activated receptor agonists modulate heart function in transgenic mice with lipotoxic cardiomyopathy. J Pharmacol Exp Ther 2005, 313:586–593.

    Article  PubMed  CAS  Google Scholar 

  35. Golfman LS, Wilson CR, Sharma S, et al.: Activation of PPARgamma enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats. Am J Physiol Endocrinol Metab 2005, 289:E328–E336.

    Article  PubMed  CAS  Google Scholar 

  36. Son N, Park T, Yamashita H, et al.: Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction. J Clin Invest 2007, Epub ahead of print.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira J. Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Goldberg, I.J. Lipoprotein lipase-derived fatty acids: Physiology and dysfunction. Current Science Inc 9, 462–466 (2007). https://doi.org/10.1007/s11906-007-0085-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-007-0085-4

Keywords

Navigation