Skip to main content

Advertisement

Log in

Role of microangiopathy in diabetic cardiomyopathy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Although heart disease due to diabetes is mainly associated with complications of the large vessels, microvascular abnormalities are also considered to be involved in altering cardiac structure and function. Three major defects, such as endothelial dysfunction, alteration in the production/release of hormones, and shift in metabolism of smooth muscle cells, have been suggested to produce damage to the small arteries and capillaries (microangiopathy) due to hyperglycemia, and promote the development of diabetic cardiomyopathy. These factors may either act alone or in combination to produce oxidative stress as well as changes in cellular signaling and gene transcription, which in turn cause vasoconstriction and structural remodeling of the coronary vessels. Such alterations in microvasculature produce hypoperfusion of the myocardium and thereby lower the energy status resulting in changes in Ca2+-handling, apoptosis, and decreased cardiac contractile force. This article discusses diabetes-induced mechanisms of microvascular damage leading to cardiac dysfunction that is characterized by myocardial dilatation, cardiac hypertrophy as well as early diastolic and late systolic defects. Metabolic defects and changes in neurohumoral system due to diabetes, which promote disturbances in vascular homeostasis, are highlighted. In addition, increase in the vulnerability of the diabetic heart to the development of heart failure and the signaling pathways integrating nuclear factor κB and protein kinase C in diabetic cardiomyopathy are also described for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dhalla NS, Pierce GN, Innes IR, Beamish RE (1985) Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol 1:263–281

    CAS  PubMed  Google Scholar 

  2. Furie K, Inzucchi SE (2008) Diabetes mellitus, insulin resistance, hyperglycemia, and stroke. Curr Neurol Neurosci Rep 8:12–29

    CAS  PubMed  Google Scholar 

  3. Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocrinol Rev 25:543–567

    CAS  Google Scholar 

  4. Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757

    PubMed  Google Scholar 

  5. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    CAS  PubMed  Google Scholar 

  6. Ahmed SS, Jaferi GA, Narang RM, Regan TJ (1975) Preclinical abnormality of left ventricular function in diabetes mellitus. Am Heart J 89:153–158

    CAS  PubMed  Google Scholar 

  7. Shapiro LM (1982) Echocardiographic features of impaired ventricular function in diabetes mellitus. Br Heart J 47:439–444

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038

    CAS  PubMed  Google Scholar 

  9. Cubbon RM, Wheatcroft SB, Grant PJ, Gale CP, Barth JH, Sapsford RJ, Ajjan R, Kearney MT, Hall AS (2007) Evaluation of methods and management of acute coronary events investigators. Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3,000 patients between 1995 and 2003. Eur Heart J 28:540–545

    PubMed  Google Scholar 

  10. Mosterd A, Cost B, Hoes AW, de Bruijne MC, Deckers JW, Hofman A, Grobbee DE (2001) The prognosis of heart failure in the general population: the Rotterdam study. Eur Heart J 22:1318–1327

    CAS  PubMed  Google Scholar 

  11. Fischer VW, Barner HB, Leskiu ML (1979) Capillary basal laminar thickness in diabetic human myocardium. Diabetes 28:713–719

    CAS  PubMed  Google Scholar 

  12. Factor SM, Okum EM, Minase T (1980) Capillary microaneurysms in the human diabetic heart. New Engl J Med 302:384–388

    CAS  PubMed  Google Scholar 

  13. Factor SM, Sonnenblick EH (1982) Hypothesis: is congestive cardiomyopathy caused by a hyperreactive myocardial microcirculation (microvascular spasm)? Am J Cardiol 50:1149–1152

    CAS  PubMed  Google Scholar 

  14. Factor SM, Minase T, Cho S, Fein F, Capasso JM, Sonnenblick EH (1984) Coronary microvascular abnormalities in the hypertensive-diabetic rat. A primary cause of cardiomyopathy. Am J Pathol 116:9–20

    CAS  PubMed  Google Scholar 

  15. Sonnenblick EH, Fein F, Capasso JM, Factor SM (1985) Microvascular spasm as a cause of cardiomyopathies and the calcium-blocking agent verapamil as potential therapy. Am J Cardiol 55:179B–184B

    CAS  PubMed  Google Scholar 

  16. Fein FS, Capasso JM, Aronson RS, Cho S, Nordin C, Miller-Green B, Sonnenblick EH, Factor SM. Combined renovascular hypertension and diabetes in rats: a new preparation of congestive cardiomyopathy. Circulation 70:318–330

  17. Hunt SA, Baker DW, Chin MH, Cinquegrani MP, Feldman AM, Francis GS, Ganiats TG, Goldstein S, Gregoratos G, Jessup ML, Noble RJ, Packer M, Silver MA, Stevenson LW, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Jacobs AK, Hiratzka LF, Russell RO, Smith SC, American College of Cardiology/American Heart Association (2001) ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 38:2101–2113

    CAS  PubMed  Google Scholar 

  18. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Køber L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Rønnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847

    PubMed  Google Scholar 

  19. Dhalla NS, Liu X, Panagia V, Takeda N (1998) Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40:239–247

    CAS  PubMed  Google Scholar 

  20. Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106:1319–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605

    CAS  PubMed  Google Scholar 

  23. Kaestner KH, Flores-Riveros JR, McLenithan JC, Janicot M, Lane MD (1991) Transcriptional repression of the mouse insulin-responsive glucose transporter (GLUT4) gene by cAMP. Proc Natl Acad Sci USA 88:1933–1937

    CAS  PubMed  Google Scholar 

  24. Kainulainen H, Breiner M, Schürmann A, Marttinen A, Virjo A, Joost HG (1994) In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin-diabetic rats. Biochim Biophys Acta 1225:275–282

    CAS  PubMed  Google Scholar 

  25. Stroedter D, Schmidt T, Bretzel RG, Federlin K (1995) Glucose metabolism and left ventricular dysfunction are normalized by insulin and islet transplantation in mild diabetes in the rat. Acta Diabetol 32:235–243

    CAS  PubMed  Google Scholar 

  26. Chatham JC, Seymour AM (2002) Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovasc Res 55:104–112

    CAS  PubMed  Google Scholar 

  27. Mokuda O, Sakamoto Y, Ikeda T, Mashiba H (1990) Effects of anoxia and low free fatty acid on myocardial energy metabolism in streptozotocin-diabetic rats. Ann Nutr Metab 34:259–265

    CAS  PubMed  Google Scholar 

  28. Berger J, Biswas C, Vicario PP, Strout HV, Saperstein R, Pilch PF (1989) Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 340:70–72

    CAS  PubMed  Google Scholar 

  29. Camps M, Castelló A, Muñoz P, Monfar M, Testar X, Palacín M, Zorzano A (1992) Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose-transporter expression in insulin-sensitive tissues. Heterogeneous response in heart, red and white muscle. Biochem J Mar 15(Pt 3):765–772

    Google Scholar 

  30. Sivitz WI, DeSautel SL, Kayano T, Bell GI, Pessin JE (1989) Regulation of glucose transporter messenger RNA in insulin-deficient states. Nature 340:72–74

    CAS  PubMed  Google Scholar 

  31. Russell RR III, Yin R, Caplan MJ, Hu X, Ren J, Shulman GI, Sinusas AJ, Young LH (1998) Additive effects of hyperinsulinemia and ischemia on myocardial GLUT1 and GLUT4 translocation in vivo. Circulation 98:2180–2186

    CAS  PubMed  Google Scholar 

  32. Garvey WT, Hardin D, Juhaszova M, Dominguez JH (1993) Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Am J Physiol 264:H837–H844

    CAS  PubMed  Google Scholar 

  33. Kaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL (1993) Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 42:80–89

    CAS  PubMed  Google Scholar 

  34. Wautier JL, Schmidt AM (2004) Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 95:233–238

    CAS  PubMed  Google Scholar 

  35. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92:785–792

    CAS  PubMed  Google Scholar 

  36. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605

    CAS  PubMed  Google Scholar 

  37. Turan B, Saini HK, Zhang M, Prajapati D, Elimban V, Dhalla NS (2005) Selenium improves cardiac function by attenuating the activation of NF-κB due to ischemia-reperfusion injury. Antiox Redox Signal 7:1388–1397

    CAS  Google Scholar 

  38. Al-Maghrebi M, Benter IF, Diz DI (2009) Endogenous angiotensin-(1–7) reduces cardiac ischemia-induced dysfunction in diabetic hypertensive rats. Pharmacol Res 59:263–268

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38:307–314

    CAS  PubMed  Google Scholar 

  40. Hall G, Hasday JD, Rogers TB (2006) Regulating the regulator: NF-kappaB signaling in heart. J Mol Cell Cardiol 41:580–591

    CAS  PubMed  Google Scholar 

  41. Kilhovd BK, Berg TJ, Birkeland KI, Thorsby P, Hanssen KF (1999) Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 22:1543–1548

    CAS  PubMed  Google Scholar 

  42. Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283:10930–10938

    CAS  PubMed  Google Scholar 

  43. Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG, Januszyk M, Brownlee M, Gurtner GC (2009) The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A 106:13505–13510

    CAS  PubMed Central  PubMed  Google Scholar 

  44. McQueen AP, Zhang D, Hu P, Swenson L, Yang Y, Zaha VG, Hoffman JL, Yun UJ, Chakrabarti G, Wang Z, Albertine KH, Abel ED, Litwin SE (2005) Contractile dysfunction in hypertrophied hearts with deficient insulin receptor signaling: possible role of reduced capillary density. J Mol Cell Cardiol 39:882–892

    CAS  PubMed  Google Scholar 

  45. Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL (2002) Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states: a possible explanation for impaired collateral formation in cardiac tissue. Circulation 105:373–379

    CAS  PubMed  Google Scholar 

  46. Jesmin S, Zaedi S, Shimojo N, Iemitsu M, Masuzawa K, Yamaguchi N, Mowa CN, Maeda S, Hattori Y, Miyauchi T (2007) Endothelin antagonism normalizes VEGF signaling and cardiac function in STZ-induced diabetic rat hearts. Am J Physiol Endocrinol Metab 292:E1030–E1040

    CAS  PubMed  Google Scholar 

  47. Thornalley P, Wolff S, Crabbe J, Stern A (1984) The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochim Biophys Acta 797:276–287

    CAS  PubMed  Google Scholar 

  48. Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245:243–250

    CAS  PubMed  Google Scholar 

  49. Finkel T, Holbrook NL (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    CAS  PubMed  Google Scholar 

  50. Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL (1992) Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A 89:11059–11063

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Konishi H, Tanaka M, Takemura Y, Matsuzaki H, Ono Y, Kikkawa U, Nishizuka Y (1997) Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci U S A 94:11233–11237

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    CAS  PubMed  Google Scholar 

  53. Kolter T, Uphues I, Eckel J (1997) Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. Am J Physiol 273:E59–E67

    CAS  PubMed  Google Scholar 

  54. Way KJ, Isshiki K, Suzuma K, Yokota T, Zvagelsky D, Schoen FJ, Sandusky GE, Pechous PA, Vlahos CJ, Wakasaki H, King GL (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes 51:2709–2718

    CAS  PubMed  Google Scholar 

  55. Adameova A, Xu YJ, Duhamel TA, Tappia PS, Shan L, Dhalla NS (2009) Anti-atherosclerotic molecules targeting oxidative stress and inflammation. Curr Pharm Des 15:3094–3107

    CAS  PubMed  Google Scholar 

  56. Steinberg D (2005) Hypercholesterolemia and inflammation in atherogenesis: two sides of the same coin. Mol Nutr Food Res 49:995–998

    CAS  PubMed  Google Scholar 

  57. Li L, Sawamura T, Renier G (2003) Glucose enhances endothelial LOX-1 expression: role for LOX-1 in glucose-induced human monocyte adhesion to endothelium. Diabetes 52:1843–1850

    CAS  PubMed  Google Scholar 

  58. Osto E, Kouroedov A, Mocharla P, Akhmedov A, Besler C, Rohrer L, von Eckardstein A, Iliceto S, Volpe M, Lüscher TF, Cosentino F (2008) Inhibition of protein kinase Cbeta prevents foam cell formation by reducing scavenger receptor A expression in human macrophages. Circulation 118:2174–2182

    CAS  PubMed  Google Scholar 

  59. Wu Y, Wu G, Qi X, Lin H, Qian H, Shen J, Lin S (2006) Protein kinase C beta inhibitor LY333531 attenuates intercellular adhesion molecule-1 and monocyte chemotactic protein-1 expression in the kidney in diabetic rats. J Pharmacol Sci 101:335–343

    CAS  PubMed  Google Scholar 

  60. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL (2000) Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101:676–681

    CAS  PubMed  Google Scholar 

  61. Ganz MB, Seftel A (2000) Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E. Am J Physiol Endocrinol Metab 278:E146–E152

    CAS  PubMed  Google Scholar 

  62. Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH (1988) Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 62:535–542

    CAS  PubMed  Google Scholar 

  63. Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10

    CAS  PubMed  Google Scholar 

  64. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Boudina S, Abel ED (2006) Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. Physiology (Bethesda) 21:250–258

    CAS  Google Scholar 

  66. Liu GX, Hanley PJ, Ray J, Daut J (2001) Long-chain acyl-coenzyme A esters and fatty acids directly link metabolism to K(ATP) channels in the heart. Circ Res 88:918–924

    CAS  PubMed  Google Scholar 

  67. Rijzewijk LJ, van der Meer RW, Smit JW, Diamant M, Bax JJ, Hammer S, Romijn JA, de Roos A, Lamb HJ (2008) Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 52:1793–1799

    PubMed  Google Scholar 

  68. Schmitz FJ, Rösen P, Reinauer H (1995) Improvement of myocardial function and metabolism in diabetic rats by the carnitine palmitoyl transferase inhibitor Etomoxir. Horm Metab Res 12:515–522

    Google Scholar 

  69. Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011

    CAS  PubMed  Google Scholar 

  70. Fiordaliso F, Li B, Latini R, Sonnenblick EH, Anversa P, Leri A, Kajstura J (2000) Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab Invest 80:513–527

    CAS  PubMed  Google Scholar 

  71. Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS, Limana F, Nadal-Ginard B, Leri A, Anversa P (2001) IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50:1414–1424

    CAS  PubMed  Google Scholar 

  72. Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Ganguly PK, Dhalla KS, Innes IR, Beamish RE, Dhalla NS (1986) Altered norepinephrine turnover and metabolism in diabetic cardiomyopathy. Circ Res 59:684–693

    CAS  PubMed  Google Scholar 

  74. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS (1983) Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244:E528–E535

    CAS  PubMed  Google Scholar 

  75. Adameova A, Abdellatif Y, Dhalla NS (2009) Role of the excessive amounts of circulating catecholamines and glucocorticoids in stress-induced heart disease. Can J Physiol Pharmacol 87:493–514

    CAS  PubMed  Google Scholar 

  76. Dhalla KS, Ganguly PK, Rupp H, Beamish RE, Dhalla NS (1989) Measurement of adrenolutin as an oxidation product of catecholamines in plasma. Mol Cell Biochem 87:85–92

    CAS  PubMed  Google Scholar 

  77. Machackova J, Liu X, Lukas A, Dhalla NS (2004) Renin-angiotensin blockade attenuates cardiac myofibrillar remodelling in chronic diabetes. Mol Cell Biochem 261:271–278

    CAS  PubMed  Google Scholar 

  78. Kato K, Lukas A, Chapman DC, Rupp H, Dhalla NS (2002) Differential effects of etomoxir treatment on cardiac Na+–K+ ATPase subunits in diabetic rats. Mol Cell Biochem 232:57–62

    CAS  PubMed  Google Scholar 

  79. Xu YJ, Elimban V, Takeda S, Ren B, Takeda N, Dhalla NS (1996) Cardiac sarcoplasmic reticulum function and gene expression in chronic diabetes. Cardiovasc Pathobiol 1:89–96

    Google Scholar 

  80. Liu X, Suzuki H, Sethi R, Tappia PS, Takeda N, Dhalla NS (2006) Blockade of the renin-angiotensin system attenuates sarcolemma and sarcoplasmic reticulum remodeling in chronic diabetes. Ann N Y Acad Sci 1084:141–154

    CAS  PubMed  Google Scholar 

  81. Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958

    CAS  PubMed  Google Scholar 

  82. Baba HA, Iwai T, Bauer M, Irlbeck M, Schmid KW, Zimmer HG (1999) Differential effects of angiotensin II receptor blockade on pressure-induced left ventricular hypertrophy and fibrosis in rats. J Mol Cell Cardiol 31:445–455

    CAS  PubMed  Google Scholar 

  83. Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S (2009) Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32:S314–S321

    CAS  PubMed  Google Scholar 

  84. Jansson PA (2007) Endothelial dysfunction in insulin resistance and type 2 diabetes. J Int Med 262:173–183

    CAS  Google Scholar 

  85. Kalani M (2008) The importance of endothelin-1 for microvascular dysfunction in diabetes. Vasc Health Risk Manag 4:1061–1068

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Lam HC (2001) Role of endothelin in diabetic vascular complications. Endocrine 14:277–284

    CAS  PubMed  Google Scholar 

  87. Fukui M, Nakamura T, Ebihara I, Osada S, Tomino Y, Masaki T, Goto K, Furuichi Y, Koide H (1993) Gene expression for endothelins and their receptors in glomeruli of diabetic rats. J Lab Clin Med 122:149–156

    CAS  PubMed  Google Scholar 

  88. Yamauchi T, Ohnaka K, Takayanagi R, Umeda F, Nawata H (1990) Enhanced secretion of endothelin-1 by elevated glucose levels from cultured bovine aortic endothelial cells. FEBS Lett 267:16–18

    CAS  PubMed  Google Scholar 

  89. Haak T, Jungmann E, Felber A, Hillmann U, Usadel KH (1992) Increased plasma levels of endothelin in diabetic patients with hypertension. Am J Hypertens 5:161–166

    CAS  PubMed  Google Scholar 

  90. Harris AK, Hutchinson JR, Sachidanandam K, Johnson MH, Dorrance AM, Stepp DW, Fagan SC, Ergul A (2005) Type 2 diabetes causes remodeling of cerebrovasculature via differential regulation of matrix etalloproteinases and collagen synthesis: role of endothelin-1. Diabetes 54:2638–2644

    CAS  PubMed  Google Scholar 

  91. Takahashi K, Ghatei MA, Lam HC, O’Halloran DJ, Bloom SR (1990) Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 33:306–310

    CAS  PubMed  Google Scholar 

  92. Hopfner RL, Misurski D, Wilson TW, McNeill JR, Gopalakrishnan V (1998) Insulin and vanadate restore decreased plasma endothelin concentrations and exaggerated vascular responses to normal in the streptozotocin diabetic rat. Diabetologia 41:1233–1240

    CAS  PubMed  Google Scholar 

  93. Wu SQ, Tang F (1998) Impaired paracrine effect of endothelin-1 on vascular smooth muscle in streptozotocin-diabetic rats. Cardiovasc Res 39:651–656

    CAS  PubMed  Google Scholar 

  94. Tada H, Muramatsu I, Nakai T, Kigoshi S, Miyabo S (1994) Effects of chronic diabetes on the responsiveness to endothelin-1 and other agents of rat atria and thoracic aorta. Gen Pharmacol 25:1221–1228

    CAS  PubMed  Google Scholar 

  95. Schiffrin EL, Touyz RM (1998) Vascular biology of endothelin. J Cardiovasc Pharmacol 32:S2–S13

    CAS  PubMed  Google Scholar 

  96. Arikawa E, Cheung C, Sekirov I, Battell ML, Yuen VG, McNeill JH (2006) Effects of endothelin receptor blockade on hypervasoreactivity in streptozotocin diabetic rats: vessel-specific involvement of thromboxane A2. Can J Physiol Pharmacol 84:823–833

    CAS  PubMed  Google Scholar 

  97. Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K (2010) Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121:2407–2418

    CAS  PubMed  Google Scholar 

  98. Verma S, Arikawa E, McNeill JH (2001) Long-term endothelin receptor blockade improves cardiovascular function in diabetes. Am J Hypertens 14:679–687

    CAS  PubMed  Google Scholar 

  99. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Szabó C, Cuzzocrea S, Zingarelli B, O’Connor M, Salzman AL (1997) Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest 100:723–735

    PubMed Central  PubMed  Google Scholar 

  101. Szabo C (2009) Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 156:713–727

    CAS  PubMed  Google Scholar 

  102. Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    PubMed  Google Scholar 

  103. Garcia Soriano F, Virág L, Jagtap P, Szabó E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, Southan GJ, Szabó C (2001) Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 7:108–113

    CAS  PubMed  Google Scholar 

  104. Szabó C, Zanchi A, Komjáti K, Pacher P, Krolewski AS, Quist WC, LoGerfo FW, Horton ES, Veves A (2002) Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation 106:2680–2686

    PubMed  Google Scholar 

Download references

Acknowledgments

The research in this article was supported by a grant from the Canadian Institutes of Health Research (CIHR) and Slovak Scientific Grant Agency (VEGA) 2/0054/11, 1/0638/12 and APVV-0523-10, APVV-0102-11. The infrastructural support for this study was provided by the St. Boniface Hospital Research Foundation.

Conflict of interest

Drs. A. Adameova and N. S. Dhalla have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adameova, A., Dhalla, N.S. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev 19, 25–33 (2014). https://doi.org/10.1007/s10741-013-9378-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-013-9378-7

Keywords

Navigation