Skip to main content
Log in

Regulation of Sarcolemmal Transport of Substrates in the Healthy and Diseased Heart

  • Review
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Introduction

Long-chain fatty acids and glucose are the predominant substrates for cardiac metabolic energy production. While in the healthy heart there is a distinctive and very finely tuned balance between the utilization of these metabolic substrates, in chronic cardiac disease this balance is upset to the use of primarily glucose (e.g., cardiac hypertrophy and failure) or primarily fatty acids (e.g., diabetic cardiomyopathy). Cardiac substrate preference is regulated not only at the level of mitochondrial oxidation (Randle cycle) but also at the level of sarcolemmal uptake of substrates.

Molecular mechanism of cardiac substrate uptake

The latter occurs by translocation of specific substrate transporters, namely fatty acid translocase/CD36 and plasma membrane fatty acid-binding protein (FABPpm) to regulate fatty acid transport, and GLUT4 to regulate glucose transport, from intracellular storage pools to the sarcolemma. Both insulin and cardiac muscle contractions increase the cellular uptake of fatty acids and glucose simultaneously by these mechanisms. Although the signal transduction pathways involved in eliciting substrate transporter trafficking have only partly been disclosed, recent studies indicate the feasibility of selective recruitment of either CD36 or GLUT4 to the sarcolemma, thereby increasing the uptake of a single class of substrates and thus altering the substrate preference of cardiac muscle cells.

Concluding remarks

As a result, selective modulation of the sarcolemmal localization of fatty acid- and/or glucose transporters holds promise as a therapeutic tool to rectify a disruption of the cardiac substrate balance occurring in chronic cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093–129.

    Article  PubMed  CAS  Google Scholar 

  2. Kagaya Y, Kanno Y, Takeyama D, Ishide N, Maruyama Y, Takahashi T, et al. Effects of long-term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. A quantitative autoradiographic study. Circulation 1990;81:1353–61.

    PubMed  CAS  Google Scholar 

  3. Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta 2005;1734:112–26.

    PubMed  CAS  Google Scholar 

  4. Binas B, Danneberg H, McWhir J, Mullins L, Clark AJ. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J 1999;13:805–12.

    PubMed  CAS  Google Scholar 

  5. Kelly DP, Strauss AW. Inherited cardiomyopathies. N Engl J Med 1994;330:913–9.

    Article  PubMed  CAS  Google Scholar 

  6. Hartil K, Charron MJ. Genetic modification of the heart: transgenic modification of cardiac lipid and carbohydrate utilization. J Mol Cell Cardiol 2005;39:581–93.

    Article  PubMed  CAS  Google Scholar 

  7. Coort SLM, Bonen A, Van der Vusse GJ, Glatz JFC, Luiken JJFP. Cardiac substrate uptake and metabolism in obesity and type-2 diabetes: role of sarcolemmal substrate transporters. Mol Cell Biochem 2006; (in press).

  8. Glatz JFC, Bonen A, Luiken JJFP. Exercise and insulin increase muscle fatty acid uptake by recruiting putative fatty acid transporters to the sarcolemma. Curr Opin Clin Nutr Metab Care 2002;5:365–70.

    Article  PubMed  CAS  Google Scholar 

  9. Zorzano A, Sevilla L, Camps M, Becker C, Meyer J, Kammermeier H, et al. Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes. Am J Cardiol 1997;80:65A–76A.

    Article  PubMed  CAS  Google Scholar 

  10. Glatz JF, Luiken JJ, van Nieuwenhoven FA, Van der Vusse GJ. Molecular mechanism of cellular uptake and intracellular translocation of fatty acids. Prostaglandins Leukot Essent Fatty Acids 1997;57:3–9.

    Article  PubMed  CAS  Google Scholar 

  11. Hamilton JA, Guo W, Kamp F. Mechanism of cellular uptake of long-chain fatty acids: do we need cellular proteins? Mol Cell Biochem 2002;239:17–23.

    Article  PubMed  CAS  Google Scholar 

  12. Luiken JJFP, Coort SLM, Koonen DPY, Van der Horst DJ, Bonen A, Zorzano A, et al. Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Eur J Physiol 2004;448:1–15.

    Article  CAS  Google Scholar 

  13. Chabowski A, Coort SL, Calles-Escandon J, Tanond NN, Glatz JF, Luiken JJ, et al. The subcellular compartmentation of fatty acid transporters is regulated differently by insulin and by AICAR. FEBS Lett 2005;579:2428–32.

    Article  PubMed  CAS  Google Scholar 

  14. Koonen DPY, Glatz JFC, Bonen A, Luiken JJFP. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta 2005;1736:163–80.

    PubMed  CAS  Google Scholar 

  15. Fischer Y, Thomas J, Sevilla L, Munoz P, Becker C, Holman G, et al. Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of different intracellular GLUT4 vesicle populations. J Biol Chem 1997;272:7085–92.

    Article  PubMed  CAS  Google Scholar 

  16. Ploug T, van Deurs B, Ai H, Cushman SW, Ralston E. Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J Cell Biol 1998;142:1429–46.

    Article  PubMed  CAS  Google Scholar 

  17. Muller H, Deckers K, Eckel J. The fatty acid translocase (FAT)/CD36 and the glucose transporter GLUT4 are localized in different cellular compartments in rat cardiac muscle. Biochem Biophys Res Commun 2002;293:665–9.

    Article  PubMed  CAS  Google Scholar 

  18. Luiken JJFP, Coort SLM, Willems J, Coumans WA, Bonen A, Glatz JFC. Dipyridamole alters cardiac substrate preference by inducing translocation of FAT/CD36, but not that of GLUT4. Mol Pharmacol 2004;65:639–45.

    Article  PubMed  CAS  Google Scholar 

  19. Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL, Abumrad NA. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem 2000;275:32523–9.

    Article  PubMed  CAS  Google Scholar 

  20. Goudriaan JR, Dahlmans VE, Teusink B, Ouwens DM, Febbraio M, Maassen JA, et al. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J Lipid Res 2003;44:2270–7.

    Article  PubMed  CAS  Google Scholar 

  21. Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, et al. Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 1999;104:1703–14.

    Article  PubMed  CAS  Google Scholar 

  22. Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R. Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res 2001;52:407–16.

    Article  PubMed  CAS  Google Scholar 

  23. Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 2000;106:459–65.

    PubMed  CAS  Google Scholar 

  24. Luiken JJFP, Arumugam Y, Dyck DJ, Bell RC, Pelsers MM, Turcotte LP, et al. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem 2001;276:40567–73.

    Article  PubMed  CAS  Google Scholar 

  25. Coort SLM, Hasselbaink DM, Koonen DPY, Willems J, Coumans WA, Chabowski A, et al. Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese Zucker rats. Diabetes 2004;53:1655–63.

    PubMed  CAS  Google Scholar 

  26. Ouwens DM, Boer C, Fodor M, De Galan P, Heine RJ, Maassen JA, et al. Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia 2005;48:1229–37.

    Article  PubMed  CAS  Google Scholar 

  27. Bonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN, Glatz JF, et al. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J 2004;18:1144–6.

    PubMed  CAS  Google Scholar 

  28. Taegtmeyer H. Metabolism—the lost child of cardiology. J Am Coll Cardiol 2000;36:1386–8.

    Article  PubMed  CAS  Google Scholar 

  29. Lopaschuk GD, Rebeyka IM, Allard MF. Metabolic modulation: a means to mend a broken heart. Circulation 2002;105:140–2.

    PubMed  CAS  Google Scholar 

  30. Stanley WC. Rationale for a metabolic approach in diabetic coronary patients. Coron Artery Dis 2005;16 (Suppl 1):S11–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan F. C. Glatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glatz, J.F.C., Bonen, A., Ouwens, D.M. et al. Regulation of Sarcolemmal Transport of Substrates in the Healthy and Diseased Heart. Cardiovasc Drugs Ther 20, 471–476 (2006). https://doi.org/10.1007/s10557-006-0582-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-006-0582-8

Key words

Navigation