Skip to main content

Synthetic Seeds of Wild Beet: Basic Concepts and Related Methodologies

  • Chapter
  • First Online:
Synthetic Seeds

Abstract

Synthetic seeds are artificially encapsulated propagules that mimic true seeds in agriculture. Although a variety of plant materials, such as shoot tips, axillary buds, callus, micro cuttings, and protocorm-like bodies, are used in the production of synthetic seeds, somatic embryos are the most widely used explants in the production of these seeds. Synthetic seeds compete with traditional approaches to preserve the germplasm of threatened plant species. The resulting progenies are the true clones of the main plant, thus preserving the intactness of the genetic background. Due to poor germination and low seed amount, wild Beta species are exposed to the risk of extinction. Wild relatives of Beta have agronomically important properties such as resistance to diseases and abiotic stresses. Numerous attempts have been made to give these traits to sugar beet crop through conventional breeding methods. Despite the importance of synthetic seed for wild beets, it has not yet been investigated. The production of synthetic seeds ensures the conservation and availability of wild germplasm of the genus Beta for cytogenetic and breeding studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe J, Tsuda C (1987) Genetic analysis for isozyme variation in the section Vulgares, genus Beta. Jpn J Breed 37(3):253–261

    Article  Google Scholar 

  • Ahmad N, Anis M (2010) Direct plant regeneration from encapsulated nodal segments of Vitex negundo. Biol Plant 54:748–752

    Google Scholar 

  • Ahmad N, Faisal M, Fatima N et al (2012) Encapsulation of microcuttings for propagation and short-term preservation in Ruta graveolens L.: a plant with high medicinal value. Acta Physiol Plant 34:2303–2310

    CAS  Google Scholar 

  • Alatar A, Faisal M (2012) Encapsulation of Rauvolfia tetraphylla microshoots as artificial seeds and evaluation of genetic fidelity using RAPD and ISSR markers. J Med Plants Res 6:1367–1374

    Article  CAS  Google Scholar 

  • Alcaraz G, Geuter T, Laillet G et al (1998) Sugar beet pollen biology. In: Proceedings of 61th IIRB congress, Brussels, pp 393–399

    Google Scholar 

  • Alibert B, Sellier H, Souvré A (2003) Flux de gènes entre la betteravesucrière GM et lesbetteravesrudéralesdansles conditions de la production de semencesau champ. In: Proceedings of 66th IIRB congress, Brussels

    Google Scholar 

  • Altınok HH (2012) The disease prevalence and severity of Cercospora leaf spot in sugar beet cultivations in Kayseri. Derim 29(2):33–45

    Google Scholar 

  • Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci 78:1438–1444

    Google Scholar 

  • Attree SM, Pomeroy MK, Fowke LC (1994) Production of vigorous, desiccation tolerant white spruce (Picea-glauca (moench) voss) synthetic seeds in a bioreactor. Plant Cell Rep 13:601–606

    Google Scholar 

  • Bapat VA, Rao PS (1990) In vivo growth of encapsulated axillary buds of mulberry (Morus-indica L.). Plant Cell Tissue Organ Cult 20:69–70

    Article  Google Scholar 

  • Bapat VA, Mhatre M, Rao PS (1987) Propagation of Morus indica L. (Mulberry) by encapsulated shoot buds. Plant Cell Rep 1987(6):393–395

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD, Black M (1985) Seeds: physiology of development and germination. Plenum, New York, p 367

    Book  Google Scholar 

  • Biancardi E, De Biaggi M (1979) Beta maritima L. in the Po Delta. In: Atti Convegno Tecnico Internazionale sulla Bieticoltura in Commemorazione di Ottavio Munerati. ISCI, Rovigo, pp 183–185

    Google Scholar 

  • Biancardi E, McGrath JM, Panella LW et al (2010) Sugar beet. In: Bradshaw JE (ed) Root and tuber crop. Springer, New York, pp 173–219

    Chapter  Google Scholar 

  • Biancardi E, Panella LW et al (2012) Beta maritima: the origin of beets. Springer, New York

    Book  Google Scholar 

  • Boughey CL (1981) Evolutionary and taxonomic studies on wild and cultivated beets. PhD Thesis, University of Birmingham

    Google Scholar 

  • Capuano G, Piccioni E, Standardi A (1998) Effect of different treatments on the conversion of M.26 apple rootstock synthetic seeds obtained from encapsulated apical and axillary micropropagated buds. J Hortic Sci Biotechnol 73:299–305

    Article  Google Scholar 

  • Cartes P, Castellanos H, Ríos D et al (2009) Encapsulated somatic embryos and zygotic embryos for obtaining artificial seeds of rauli-beech (Nothofagus alpina (Poepp. and Endl.) oerst.). Chil J Agric Res 69:112–118

    Google Scholar 

  • Castellanos H, Sánchez-Olate M, Ríos YD (2004) Embriogénesis somática recurrente en raulí (Nothofagus alpine (Poepp. et Endl.) Oerst). Segundo Congreso Chileno de Ciencias Forestales, Valdivia, Chile. 10–12 de noviembre. Universidad Austral de Chile, Valdivia, p 36

    Google Scholar 

  • Chand S, Singh AK (2004) Plant regeneration from encapsulated nodal segments of Dalbergia sissoo Roxb, a timber-yielding leguminous tree species. J Plant Physiol 161:237–243

    Article  CAS  PubMed  Google Scholar 

  • Coons GH (1954) The wild species of Beta. Proc Am Soc Sugar Beet Technol 8:142–147

    Google Scholar 

  • Coons GH (1975) Interspecific hybrids between Beta vulgaris L. and the wild species of Beta. J Am Soc Sugar Beet Technol 18:281–306

    Article  Google Scholar 

  • Cuguen J, Arnaud JF, Delescluse M et al (2005) Gene flow within the Beta species complex: genetic diversity of weed and wild sea beet populations within the French sugar beet production area. Adv Sugar Beet Res 6:103–115

    Google Scholar 

  • Daud M, Taha MZ, Hasbullah AZ (2008) Artificial seed production from encapsulated micro shoots of Saintpaulia ionantha Wendl. (African Violet). J Appl Sci 8:4662–4667

    Google Scholar 

  • De Bock TSM (1986) The genus Beta: domestication, taxonomy and interspecific hybridization for plant breeding. Acta Hortic 182:335–343

    Article  Google Scholar 

  • Doney DL (1993) Broadening the genetic base of sugarbeet. J Sugar Beet Res 30:209–220

    Article  Google Scholar 

  • Doney DL, Whitney ED (1990) Genetic enhancement in Beta for disease resistance using wild relatives: a strong case for the value of genetic conservation. Econ Bot 44:445–451

    Article  Google Scholar 

  • Drew RLK (1979) A cheap, simple apparatus for growing large batches of plant tissue in submerged liquid culture plant. Sci Lett 17:227–236

    Article  Google Scholar 

  • Elliott MC, Weston GD (1993) Biology and physiology of the sugar beet plant. In: Cooke DA, Scott RK (eds) The sugar beet crop: science into practice. Chapman and Hall, London, pp 37–66

    Chapter  Google Scholar 

  • Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm: current research progress and application. In: Proceedings of an international workshop. International Plant Genetic Resources Institute (IPGRI), Tsukuba, Japan

    Google Scholar 

  • Ergül A, Khabbazi SD, Oğuz MÇ et al (2018) In vitro multiplication of wild relatives in genus Beta conserves the invaluable threatened germplasms. Plant Cell Tissue Organ Cult:1–7

    Google Scholar 

  • Faisal M, Anis M (2007) Regeneration of plants from alginate-encapsulated shoots of Tylophora indica (Burm. F.) Merrill., an endangered medicinal plant. J Hortic Sci Biotechnol 82:351–354

    Article  CAS  Google Scholar 

  • Ford-Lloyd BV (2005) Sources of genetic variation, genus Beta. In: Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (eds) Genetics and breeding of sugar beet. Science, Enfield, pp 25–33

    Google Scholar 

  • Frese L (2010) Conservation and access to sugarbeet germplasm. Sugar Technol 12(3–4):207–219

    Article  Google Scholar 

  • Frese L, Desprez B, Ziegler D (2001) Potential of genetic resources and breeding strategies for base-broadening in Beta. Broadening the genetic base of crop production. IPGRI/FAO, Rome, pp 295–309

    Google Scholar 

  • Ganapathi TR, Suprasanna P, Bapat VA et al (1992) Propagation of banana through encapsulated shoot tips. Plant Cell Rep 11:571–575

    Article  CAS  PubMed  Google Scholar 

  • Gantait S, Kundu S, Ali N et al (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37(5):98

    Article  CAS  Google Scholar 

  • Gidner S, Lennefors BL, Nilsson NO et al (2005) QTL mapping of BNYVV resistance from the WB41 source in sugar beet. Genome 48:279–285

    Article  CAS  PubMed  Google Scholar 

  • Grimmer MK, Kraft T, Francis SA et al (2008a) QTL mapping of BNYVV resistance from the WB258 source in sugar beet. Plant Breed 127(6):650–652

    Article  Google Scholar 

  • Grimmer MK, Bean KMR, Qi A et al (2008b) The action of three Beet yellows virus resistance QTLs depends on alleles at a novel genetic locus that controls symptom development. Plant Breed 127(4):391–397

    Article  Google Scholar 

  • Heijbroek W, McFarlane JS, Doney DL (1977) Breeding for tolerance to beet-cyst eelworm Heterodera schachtii Schm. in sugarbeet. Euphytica 26(3):557–564

    Article  Google Scholar 

  • Heijbroek W, Roelands AJ, De Jong JH et al (1988) Sugar beets homozygous for resistance to beet cyst nematode (Heterodera schachtii Schm.), developed from monosomic additions of Beta procumbens to B. vulgaris. Euphytica 38:121–131

    Article  Google Scholar 

  • Hung CD, Trueman SJ (2012a) Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana x C. citriodora. Acta Physiol Plant 34:117–128

    Article  CAS  Google Scholar 

  • Hung CD, Trueman SJ (2012b) Preservation of encapsulated shoot tips and nodes of the tropical hardwoods Corymbia torelliana × C. citriodora and Khaya senegalensis. Plant Cell Tissue Organ Cult 109:341–352

    Article  Google Scholar 

  • Ikhlaq M, Hafiz IA, Micheli M et al (2010) In vitro storage of synthetic seeds: effect of different storage conditions and intervals on their conversion ability. Afr J Biotechnol 9:5712–5721

    Google Scholar 

  • Janick J, Kim YH, Kitto S et al (1993) Desiccated synthetic seed. In: Redenbaugh K (ed) Synseeds. CRC, Boca Raton, FL, pp 11–33

    Google Scholar 

  • Jassem B (1992) Species relationship in the genus Beta as revealed by crossing experiments. In: International beta genetic resources network. In: Report on the 2nd international beta genetic resources workshop held at the Institute for Crop Science and Plant Breeding, Braunschweig, Germany, 24–28 June 1991. International Crop Network Series No, vol 7, pp 55–61

    Google Scholar 

  • Jung C, Wricke G (1987) Selection of diploid nematode-resistant sugar beet from monosomic addition lines. Plant Breed 98(3):205–214

    Article  Google Scholar 

  • Jung SJ, Yoon ES, Jeong JH et al (2004) Enhanced post-germinative growth of encapsulated somatic embryos of Siberian ginseng by carbohydrate addition to the encapsulation matrix. Plant Cell Rep 23:365–370

    Article  CAS  PubMed  Google Scholar 

  • Kadereit G, Hohmann S, Kadereit JW (2006) A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta. Willdenowia 36:9–19

    Article  Google Scholar 

  • Kavyashree R, Gayatri MC, Revanasiddaiah HM (2006) Propagation of mulberry variety-S54 by synseeds of axillary bud. Plant Cell Tissue Organ Cult 84:245–249

    Article  Google Scholar 

  • Keskin B (1964) Polymyxa betae n. sp., einParasit in den Wurzeln von Beta vulgaris Tournefort, besonders während der Jugendentwicklung der Zuckerrübe. Arch Microbiol 49(4):348–374

    Google Scholar 

  • Kitto SL, Janick J (1982) Polyox as an artificial seed coat for a sexual embryo. HortScience 17:448

    Google Scholar 

  • Kitto SL, Janick J (1985) Hardening increases survival of synthetically-coated asexual embryos of carrot. J Am Soc Hortic Sci 110:283–286

    CAS  Google Scholar 

  • Lambardi M, Benelli C, Ozudogru EA (2006) Synthetic seed technology in ornamental plants. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology, vol 2. Global Science Books, London, pp 347–354

    Google Scholar 

  • Lange W, De Bock TS, Van Geyt JPC et al (1988) Monosomic additions in beet (Beta vulgaris) carrying extra chromosomes of B. procumbens. Theor Appl Genet 76(5):656–664

    Article  CAS  PubMed  Google Scholar 

  • Lange W, Muller J, De Bock TS (1993) Virulence in the beet cyst nematode (Heterodera schachtii) versus some alien genes for resistance in beet. Fundam Appl Nematol 16:447–454

    Google Scholar 

  • Larkin PJ, Davies PA, Tanner GJ (1998) Nurse culture of low number of Medicago and Nicotiana protoplasts using calcium alginate beads. Plant Sci 58:203–210

    Article  CAS  Google Scholar 

  • Lata H, Chandra S, Khan IA et al (2009) Propagation through alginate encapsulation of axillary buds of Cannabis sativa L. – an important medicinal plant. Physiol Mol Biol Plants 15:79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy XJ, Leon K, Charles G et al (2000) Cauliflower somatic embryogenesis and analysis of regenerant stability by ISSRs. Plant Cell Rep 19:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Letschert JPW (1993) Beta section Beta: biogeographical patterns of variation and taxonomy. Thesis. Wageningen Agricultural University Papers 93–1, p 155

    Google Scholar 

  • Lewellen RT (1992) Use of plant introductions to improve populations and hybrids of sugarbeet. In: Use of plant introductions in Cultivar Development, Part 2. Crop Science Society of America, Madison, WI, pp 117–135

    Google Scholar 

  • Lewellen RT (2000) Registration of powdery mildew resistant sugarbeet germplasms CP01 and CP02. Crop Sci 40:1515

    Google Scholar 

  • Lewellen RT (2004) Registration of CP07 and CP08 sugarbeet germplasms with resistance to powdery mildew, rhizomania, and other diseases. Crop Sci 44(6):2276

    Article  Google Scholar 

  • Lewellen RT (2006) Registration of CN12 and CN72 sugarbeet germplasm populations with resistance to cyst nematode. Crop Sci 46(3):1414

    Article  Google Scholar 

  • Lewellen RT, Skoyen IO (1991) Improvement and performance of populations of sugarbeet × Beta maritima. J Sugar Beet Res 28:79

    Google Scholar 

  • Lewellen RT, Whitney ED (1993) Registration of germplasm lines developed from composite crosses of sugarbeet× Beta maritima. Crop Sci 33(4):882–883

    Article  Google Scholar 

  • Lulsdorf MM, Tautorus TE, Kikcio SI et al (1993) Germination of encapsulated embryos of interior spruce (Picea-glauca-engelmannii complex) and black spruce (Picea-mariana Mill). Plant Cell Rep 12:385–389

    Google Scholar 

  • Luterbacher M, Asher M, Deambrogio E et al (2004) Sources of resistance to diseases of sugar beet in related Beta germplasm: I. Foliar diseases. Euphytica 139:105–121

    Article  Google Scholar 

  • Magray MM, Wani KP, Chatto MA et al (2017) Synthetic seed technology. Int J Cur Microbiol Appl Sci 6(11):662–674

    Article  CAS  Google Scholar 

  • Marlander B, Lange T, Wulkow A (2011) Dispersal principles of sugar beet from seed to sugar with particular relation to genetically modified varieties. J Kult (J Cul Plants) 63:349–373

    Google Scholar 

  • McCarter JP (2008) Molecular approaches toward resistance to plant-parasitic nematodes. In: Plant cell monographs. Springer, Berlin

    Google Scholar 

  • McFarlane JS (1984) Final report: breeding for resistance to sugarbeet yellow wilt. Cooperative Agreement No. 58-9AHZ-0-520 between USDA-ARS, Washington, DC and Beet Sugar Development Foundation, Denver, CO

    Google Scholar 

  • McGrann GR, Grimmer MK, Mutasa-Göttgens ES et al (2009) Progress towards the understanding and control of sugar beet rhizomania disease. Mol Plant Pathol 10(1):129–141

    Article  CAS  PubMed  Google Scholar 

  • McGrath JM, Saccomani M, Stevanato P et al (2007) Beet. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5. Springer, Berlin, pp 191–207

    Google Scholar 

  • Mesbah M, Scholten OE, De Bock TS et al (1997) Chromosome localisation of genes for resistance to Heterodera schachtii, Cercospora beticola and Polymyxa betae using sets of Beta procumbens and B. patellaris derived monosomic additions in B. vulgaris. Euphytica 97(1):117–127

    Article  Google Scholar 

  • Micheli M, Pellegrino S, Piccioni E et al (2002) Effects of double encapsulation and coating on synthetic seed conversion in M.26 apple rootstock. J Microencapsul 19:347–356

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Singh M, Palni LMS et al (2011) Assessment of genetic fidelity of encapsulated microshoots of Picrorhiza kurroa. Plant Cell Tissue Organ Cult 104:181–186

    Article  Google Scholar 

  • Munerati O (1932) Sull’incrocio della barbabietola coltivata con la beta selvaggia della costa adriatica. L’Industria Saccarifera Italiana 25:303–304

    Google Scholar 

  • Munerati O, Mezzadroli G, Zapparoli TV (1913) Osservazioni sulla Beta maritima L. nel triennio 1910–1912. Staz Sper Agric Ital 46:415–445

    Google Scholar 

  • Murashige T (1977) Plant cell and organ culture as horticultural practice. Acta Hortic 78:17–30

    Article  Google Scholar 

  • Naik SK, Chand PK (2006) Nutrient-alginate encapsulation of in vitro nodal segments of pomegranate (Punica granatum L.) for germplasm distribution and exchange. Sci Hortic 108:247–252

    Article  CAS  Google Scholar 

  • Nyende AB, Schittenhelm S, Mix-Wagner G et al (2005) Yield and canopy development of field grown potato plants derived from synthetic seeds. Eur J Agron 22:175–184

    Article  Google Scholar 

  • Owen FV (1942) Inheritance of cross- and self-sterility and self-fertility in Beta vulgaris. J Agric Res 64:679–698

    Google Scholar 

  • Ozudogru EA, Kaya E, Kirdok E et al (2011) In vitro propagation from young and mature explants of thyme (Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cell Dev Biol Plant 47(2):309–320

    Article  Google Scholar 

  • Panella L, Frese L (2000) Cercospora resistance in Beta species and the development of resistant sugarbeet lines. In: Asher MJC, Holtschulte B, Molard MR, Rosso F, Steinrücken G, Beckers R (eds) Cercospora beticola Sacc. biology, agronomic influence and control measures in sugar beet, Belgium, pp 163–176

    Google Scholar 

  • Panella L, Lewellen RT (2007) Broadening the genetic base of sugarbeet: introgression from wild relatives. Euphytica 154:383–400

    Article  CAS  Google Scholar 

  • Pelsy F, Merdinoglu D (1996) Identification and mapping of random amplified polymorphic DNA markers linked to a rhizomania resistance gene in sugar beet (Beta vulgaris L.) by bulked segregant analysis. Plant Breed 115(5):371–377

    Article  CAS  Google Scholar 

  • Pinker I, Abdel-Rahman SSA (2005) Artificial seed for propagation of Dendranthema × grandiflora (Ramat.). Prop Orn Plants 5:186–191

    Google Scholar 

  • Pintos B, Bueno MA, Cuenca B et al (2008) Synthetic seed production from encapsulated somatic embryos of cork oak (Quercus suber L.) and automated growth monitoring. Plant Cell Tissue Organ Cult 95:217–225

    Article  Google Scholar 

  • Pond S, Cameron S (2003) Tissue culture artificial seed. In: Thomas B (ed) Encyclopedia of applied plant sciences. Elsevier, Oxford, pp 1379–1388

    Chapter  Google Scholar 

  • Pourjavadi A, Barzegar SH, Mahdavinia GR (2006) MBA-cross linked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydr Polym 66:386–395

    Article  CAS  Google Scholar 

  • Ravi D, Anand P (2012) Production and applications of artificial seeds: a review. Int Res J Biol Sci 1(5):74–78

    Google Scholar 

  • Reddy MC, Murthy KSR, Pullaiah T (2012) Synthetic seeds: a review in agriculture and forestry. Afr J Biotechnol 11:14254–14275

    Google Scholar 

  • Reinert J (1958) Morphogenese und ihre Kontrolle an Gewebekulturenaus Carotten. Naturwissenschaften 45(14):344–345

    Article  CAS  Google Scholar 

  • Ren H, Zhang Q, Lu H et al (2012) Wild plant species with extremely small populations require conservation and reintroduction in China. Ambio 41(8):913–917

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson KL (2018) Registration of sugar beet germplasm lines CN921–515 and CN921–516 with sugar beet cyst nematode resistance from Beta vulgaris subsp. maritima. J Plant Regist 12(2):264–269

    Google Scholar 

  • Rihan HZ, Al-Issawi M, Al-Swedi F et al (2012) The effect of using PPM (plant preservative mixture) on the development of cauliflower microshoots and the quality of artificial seed produced. Sci Hortic 141:47–52

    Article  CAS  Google Scholar 

  • Rihan H, Kareem F, El-Mahrouk M et al (2017) Artificial seeds (principle, aspects and applications). Agronomy 7(4):71

    Article  CAS  Google Scholar 

  • Rizkalla AA, Badr-Elden AM, Ottai MES et al (2012) Development of artificial seed technology and preservation in sugar beet. Sugar Tech 14(3):312–320

    Article  CAS  Google Scholar 

  • Rossi V, Racca P, Giosue S (1995) Geophytopathological analysis of Cercospora leaf spot on sugarbeet in the Mediterranean area. Phytopathol Med:69–82

    Google Scholar 

  • Roy B, Mandal AB (2008) Development of synthesis seed involving androgenic and pro-embryos in elite indica rice. Indian J Biotechnol 7:515–519

    CAS  Google Scholar 

  • Saiprasad G (2001) Artificial seeds and their applications. Resonance 6:39–47

    Article  Google Scholar 

  • Saiprasad GVS, Polisetty R (2003) Propagation of three orchid genera using encapsulated protocorm-like bodies. In Vitro Cell Dev Biol Plant 39:42–48

    Article  Google Scholar 

  • Sakhanokho HF, Pounders CT, Blythe EK (2013) Alginate encapsulation of Begonia microshoots for short-term storage and distribution. Sci World J 13:1–7

    Article  CAS  Google Scholar 

  • Salentijn EMJ, Sandal NN, Lange W et al (1992) Isolation of DNA markers linked to a beet cyst nematode resistance locus in Beta patellaris and Beta procumbens. Mol Gen Genet MGG 235(2–3):432–440

    Article  CAS  PubMed  Google Scholar 

  • Sandal NN, Salentijn EMJ, Kleine M et al (1997) Backcrossing of nematode-resistant sugar beet: a second nematode resistance gene at the locus containing Hs1pro–i. Mol Breed 3:471–480

    Article  CAS  Google Scholar 

  • Sarkar D, Naik PS (1998) Synseeds in potato: an investigation using nutrient-encapsulated in vitro nodal cutting segments. Sci Hortic 73:179–184

    Article  Google Scholar 

  • Saunders JW, Tsai CJ (1999) Production of somatic embryos and shoots from sugarbeet callus: Effects of abscisic acid, other growth regulators, nitrogen source, sucrose concentration and genotype. In Vitro Cell Dev Biol Plant 35(1):18–24

    Article  CAS  Google Scholar 

  • Savitsky H (1960) Viable diploid, triploid, and tetraploid hybrids between Beta vulgaris and species of the section Patellares. J Am Soc Sugar Beet Technol 11:215–235

    Article  Google Scholar 

  • Savitsky H (1975) Hybridization between Beta vulgaris and B. procumbens and transmission of nematode (Heterodera schachtii) resistance to sugar beet. Can J Genet Cytol 17:197–209

    Article  Google Scholar 

  • Scholten OE, De Bock TS, Klein-Lankhorst RM et al (1999) Inheritance of resistance to beet necrotic yellow vein virus in Beta vulgaris conferred by a second gene for resistance. Theor Appl Genet 99(3–4):740–746

    Article  CAS  PubMed  Google Scholar 

  • Senaratna T, McKersie BD, Bowley SR (1990) Artificial seeds of alfalfa (Medicago sativa L.). Induction of desiccation tolerance in somatic embryos. In Vitro Cell Dev Biol Plant 16:85–90

    Article  Google Scholar 

  • Sharma S, Shahzad A, Jan N et al (2009a) In vitro studies on shoot regeneration through various explants and alginate-encapsulated nodal segments of Spilanthes mauritiana DC., an endangered medicinal herb. Int J Plant Dev Biol 3:56–61

    Google Scholar 

  • Sharma S, Shahzad A, Sahai A (2009b) Artificial seeds for propagation and preservation of Spilanthes acmella (L.) Murr., a threatened pesticidal plant species. Int J Plant Dev Biol 3:62–64

    Google Scholar 

  • Sharma S, Shahzad A, da Silva JAT (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31(2):186–207

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Chand S (2010) Plant regeneration from alginate encapsulated somatic embryos of Dalbergia sissoo Roxb. Indian J Biotechnol 9:319–324

    CAS  Google Scholar 

  • Singh B, Sharma S, Rani G et al (2007) In vitro response of encapsulated and non-encapsulated somatic embryos of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora). Plant Biotechnol Rep 1:101–107

    Article  Google Scholar 

  • Skaracis GN (2005) Molecular biology and biotechnology, genetic engineering. In: Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (eds) Genetics and breeding of sugar beet. Science, Enfield, NH, pp 255–268

    Google Scholar 

  • Skaracis GN, Biancardi E (2000) Breeding for Cercospora resistance in sugar beet. In: Asher MJC, Holtschulte B, Molard MR, Rosso F, Steinrücken G, Beckers R. (eds) Cercospora beticola Sacc. biology, agronomic influence and control measures in sugar beet. International Institute for Beet Research (IIRB), Brussels. Adv Sugar Beet Res Ser 2:177–195

    Google Scholar 

  • Srivastava V, Khan SA, Banerjee S (2009) An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritima following six months of storage. Plant Cell Tissue Organ Cult 99:193–198

    Article  CAS  Google Scholar 

  • Steward FC, Mapes MO, Smith J (1958) Growth and organized development of cultured cells I. Growth and division of freely suspended cells. Am J Bot 45(9):693–703

    Article  Google Scholar 

  • Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125:761–766

    Article  CAS  Google Scholar 

  • Tabassum B, Nasil IA, Farooq AM et al (2010) Viability assessment of in vitro produced synthetic seeds of cucumber. Afr J Biotechnol 9:7026–7032

    CAS  Google Scholar 

  • Tamada T, Baba T (1973) Beet necrotic yellow vein virus from rhizomania affected sugar beet in Japan. Ann Phytopathol Soc Jpn 39:325–332

    Article  Google Scholar 

  • Van Geyt JPC, Oleo M, Lange W et al (1988) Monosomic additions in beet (Beta vulgaris) carrying extra chromosomes of Beta procumbens. Theor Appl Genet 76(4):577–586

    Google Scholar 

  • Van Geyt JPC, Lange W, Oleo M et al (1990) Natural variation within the genus Beta and its possible use for breeding sugar beet: a review. Euphytica 49(1):57–76

    Article  Google Scholar 

  • Varshney A, Anis M (2014) Synseed conception for short-term storage, germplasm exchange and potentialities of regeneration genetically stable plantlets of desert date tree (Balanites aegyptiaca Del.). Agrofor Syst 88:321–329

    Article  Google Scholar 

  • Wang WG, Wang SH, Wu XA et al (2007) High frequency plantlet regeneration from callus and artificial seed production of rock plant Pogonatherum paniceum (Lam.) Hack. (Poaceae). Sci Hortic 113:196–201

    Google Scholar 

  • Weiland J, Koch G (2004) Sugarbeet leaf spot disease (Cercospora beticola Sacc.). Mol Plant Pathol 5(3):157–166

    Article  PubMed  Google Scholar 

  • Westcott RJ (1981) Tissue culture storage of potato germplasm. Use of growth retardants 2. Potato Res 24:343–352

    Article  CAS  Google Scholar 

  • Winkelmann T, Meyer L, Serek M (2004) Germination of encapsulated somatic embryos of Cyclamen persicum. Hortic Sci 39:1093–1097

    Article  Google Scholar 

  • Yu MH (1983) Sugar beet germplasm resistant to sugar beet nematode. Crop Sci 23:1021–1022

    Article  Google Scholar 

  • Yu MH (1989) Callus induction and differentiation from leaf explants of different species of the genus Beta. Crop Sci 29:205–209

    Article  Google Scholar 

  • Yu MH (1997) Registration of Mi-1 root-knot nematode resistant beet germplasm line. Crop Sci 37(1):295–295

    Article  Google Scholar 

  • Yu MH (2002) Registration of sugarbeet germplasm M1-3 resistant to root-knot nematode. Crop Sci 42(5):1756

    Article  Google Scholar 

  • Yu Y (2004) Genetics of Aphanomyces disease resistance in sugarbeet (Beta vulgaris), AFLP mapping and QTL analyses. PhD Dissertation. Michigan State University

    Google Scholar 

  • Yu MH (2005) Cyst nematode. In: Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (eds) Genetics and breeding of sugar beet. Science, Enfield, NH, pp 103–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ergül .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khabbazi, S.D., Yüksel Özmen, C., Ergül, A. (2019). Synthetic Seeds of Wild Beet: Basic Concepts and Related Methodologies. In: Faisal, M., Alatar, A. (eds) Synthetic Seeds . Springer, Cham. https://doi.org/10.1007/978-3-030-24631-0_18

Download citation

Publish with us

Policies and ethics