Skip to main content

The Persistence of HIV-Associated Neurocognitive Disorder (HAND) in the Era of Combined Antiretroviral Therapy (cART)

  • Chapter
  • First Online:
Global Virology II - HIV and NeuroAIDS

Abstract

HIV invades the CNS compartment very early in infection and infects monocytes, microglia, macrophages, and astrocytes. These cells comprise the CNS viral reservoir. Neuroinvasion can continue throughout the infected individual’s lifetime due to the migration of HIV-infected monocytes across the blood-brain barrier (BBB). Infection of the CNS stimulates the activation of both infected and uninfected cells, the production of neurotoxic viral proteins, the expression of chemokines which attract additional infected monocytes, and a persistent CNS inflammation that causes neuronal dysfunction and death. These events are responsible for the neurocognitive, motor, and behavioral deficits collectively known as HIV-associated neurocognitive disorder (HAND). Treatment with combined antiretroviral therapy (cART) reduces the pool of replicating virus and may also reduce inflammation; however, current cART cannot eradicate the CNS viral reservoir nor persistent CNS inflammation, as HIV has molecular mechanisms of evading the immune system and may also be protected from therapeutic levels of cART within the CNS. Thus, cART attenuates rather than cures the brain pathology underlying HAND. In addition, comorbid processes such as aging, cART neurotoxicity, drug use, HCV coinfection, and vascular risk factors may contribute to brain injury and exacerbate the manifestations of HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Joint United Nations Programme on HIV/AIDS (UNAIDS) website [Internet], Geneva, Switzerland. The Joint United Nations Programme on HIV/AIDS. http://www.unaids.org/en/resources/fact-sheet. Accessed 25 Nov 2016

  2. Centers for Disease Control and Prevention website [Internet], Atlanta, Georgia, GA. U.S. Department of Health & Human Services. Available from https://www.cdc.gov/hiv/basics/statistics.html. Accessed 15 Sept 2016

  3. Bradley H et al (2014) Vital signs: HIV diagnosis, care, and treatment among persons living with HIV—United States, 2011. MMWR Morb Mortal Wkly Rep 63(47):1113–1117

    PubMed  Google Scholar 

  4. Snider WD et al (1983) Neurological complications of acquired immune deficiency syndrome: analysis of 50 patients. Ann Neurol 14(4):403–418

    Article  CAS  PubMed  Google Scholar 

  5. Antinori A et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh D (2012) What’s in a name? AIDS dementia complex, HIV-associated dementia, HIV-associated neurocognitive disorder or HIV encephalopathy. Afr J Psychiatry (Johannesbg) 15(3):172–175

    CAS  Google Scholar 

  7. Jordan BD et al (1985) Neurological syndromes complicating AIDS. Front Radiat Ther Oncol 19:82–87

    Article  CAS  PubMed  Google Scholar 

  8. McArthur JC et al (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS cohort study. Neurology 43(11):2245–2252

    Article  CAS  PubMed  Google Scholar 

  9. Childs EA et al (1999) Plasma viral load and CD4 lymphocytes predict HIV-associated dementia and sensory neuropathy. Neurology 52(3):607–613

    Article  CAS  PubMed  Google Scholar 

  10. Stern Y et al (2001) Factors associated with incident human immunodeficiency virus-dementia. Arch Neurol 58(3):473–479

    Article  CAS  PubMed  Google Scholar 

  11. Epstein LG et al (1984) HTLV-III/LAV-like retrovirus particles in the brains of patients with AIDS encephalopathy. AIDS Res 1(6):447–454

    Article  PubMed  Google Scholar 

  12. Navia BA, Price RW (1987) The acquired immunodeficiency syndrome dementia complex as the presenting or sole manifestation of human immunodeficiency virus infection. Arch Neurol 44(1):65–69

    Article  CAS  PubMed  Google Scholar 

  13. Grant I et al (1987) Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Ann Intern Med 107(6):828–836

    Article  CAS  PubMed  Google Scholar 

  14. Davis LE et al (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42(9):1736–1739

    Article  CAS  PubMed  Google Scholar 

  15. Singer EJ et al (1994) Intrathecal IgG synthesis and albumin leakage are increased in subjects with HIV-1 neurologic disease. J Acquir Immune Defic Syndr 7(3):265–271

    CAS  PubMed  Google Scholar 

  16. Schmitt FA et al (1988) Neuropsychological outcome of zidovudine (AZT) treatment of patients with AIDS and AIDS-related complex. N Engl J Med 319(24):1573–1578

    Article  CAS  PubMed  Google Scholar 

  17. Sidtis JJ et al (1993) Zidovudine treatment of the AIDS dementia complex: results of a placebo-controlled trial. AIDS Clinical Trials Group. Ann Neurol 33(4):343–349

    Article  CAS  PubMed  Google Scholar 

  18. Kanyerere H et al (2015) Decline in adverse outcomes and death in tuberculosis patients in Malawi: association with HIV interventions. Public Health Action 5(2):116–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reniers G et al (2014) Mortality trends in the era of antiretroviral therapy: evidence from the network for analysing longitudinal population based HIV/AIDS data on Africa (ALPHA). AIDS 28(Suppl 4):S533–S542

    Article  PubMed  PubMed Central  Google Scholar 

  20. Morris A et al (2011) An official ATS workshop report: emerging issues and current controversies in HIV-associated pulmonary diseases. Proc Am Thorac Soc 8(1):17–26

    Article  CAS  PubMed  Google Scholar 

  21. Evers S et al (2004) Prevention of AIDS dementia by HAART does not depend on cerebrospinal fluid drug penetrance. AIDS Res Hum Retrovir 20(5):483–491

    Article  CAS  PubMed  Google Scholar 

  22. Beguelin C et al (2014) Viral escape in the CNS with multidrug-resistant HIV-1. J Int AIDS Soc 17(4 Suppl 3):19745

    PubMed  PubMed Central  Google Scholar 

  23. Cysique LA, Brew BJ (2011) Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirol 17(2):176–183

    Article  PubMed  Google Scholar 

  24. Sacktor N et al (2001) HIV-associated neurologic disease incidence changes:: Multicenter AIDS Cohort Study, 1990–1998. Neurology 56(2):257–260

    Article  CAS  PubMed  Google Scholar 

  25. Joska JA et al (2010) Does highly active antiretroviral therapy improve neurocognitive function? A systematic review. J Neurovirol 16(2):101–114

    Article  CAS  PubMed  Google Scholar 

  26. McArthur JC et al (2004) Attenuated central nervous system infection in advanced HIV/AIDS with combination antiretroviral therapy. Arch Neurol 61(11):1687–1696

    Article  PubMed  Google Scholar 

  27. Gisslen M, Price RW, Nilsson S (2011) The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis 11:356

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bearden DR, Meyer AC (2016) Should the Frascati criteria for HIV-associated neurocognitive disorders be used in children? Neurology 87(1):17–18

    Article  PubMed  Google Scholar 

  29. Cysique LA et al (2011) The burden of HIV-associated neurocognitive impairment in Australia and its estimates for the future. Sex Health 8(4):541–550

    Article  PubMed  Google Scholar 

  30. Pumpradit W et al (2010) Neurocognitive impairment and psychiatric comorbidity in well-controlled human immunodeficiency virus-infected Thais from the 2NN cohort study. J Neurovirol 16(1):76–82

    Article  PubMed  Google Scholar 

  31. Robertson KR et al (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21(14):1915–1921

    Article  PubMed  Google Scholar 

  32. Heaton RK et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75(23):2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harezlak J et al (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25(5):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gongvatana A et al (2013) Progressive cerebral injury in the setting of chronic HIV infection and antiretroviral therapy. J Neurovirol 19(3):209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grant I et al (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82(23):2055–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sacktor N et al (2016) Prevalence of HIV-associated neurocognitive disorders in the multicenter AIDS cohort study. Neurology 86(4):334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marcotte TD et al (1999) The impact of HIV-related neuropsychological dysfunction on driving behavior. The HNRC group. J Int Neuropsychol Soc 5(7):579–592

    Article  CAS  PubMed  Google Scholar 

  38. Ellis RJ et al (1997) Neurocognitive impairment is an independent risk factor for death in HIV infection. San Diego HIV neurobehavioral research center group. Arch Neurol 54(4):416–424

    Article  CAS  PubMed  Google Scholar 

  39. Connors MH et al (2016) Mortality in mild cognitive impairment: a longitudinal study in memory clinics. J Alzheimers Dis 54(1):149–155

    Article  PubMed  Google Scholar 

  40. Wandeler G, Johnson LF, Egger M (2016) Trends in life expectancy of HIV-positive adults on antiretroviral therapy across the globe: comparisons with general population. Curr Opin HIV AIDS 11(5):492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cherner M et al (2007) Neuropathologic confirmation of definitional criteria for human immunodeficiency virus-associated neurocognitive disorders. J Neurovirol 13(1):23–28

    Article  PubMed  Google Scholar 

  42. Cherner M et al (2002) Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology 59(10):1563–1567

    Article  CAS  PubMed  Google Scholar 

  43. Navia BA et al (1986) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19(6):525–535

    Article  CAS  PubMed  Google Scholar 

  44. Gabuzda DH et al (1986) Immunohistochemical identification of HTLV-III antigen in brains of patients with AIDS. Ann Neurol 20(3):289–295

    Article  CAS  PubMed  Google Scholar 

  45. Wiley CA et al (1986) Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 83(18):7089–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Churchill MJ et al (2006) Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol 12(2):146–152

    Article  PubMed  CAS  Google Scholar 

  47. Gray LR et al (2014) HIV-1 entry and trans-infection of astrocytes involves CD81 vesicles. PLoS One 9(2):e90620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gray F et al (2000) Neuronal apoptosis in human immunodeficiency virus infection. J Neurovirol 6(Suppl 1):S38–S43

    PubMed  Google Scholar 

  49. Glass JD et al (1993) Clinical-neuropathologic correlation in HIV-associated dementia. Neurology 43(11):2230–2237

    Article  CAS  PubMed  Google Scholar 

  50. Glass JD et al (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38(5):755–762

    Article  CAS  PubMed  Google Scholar 

  51. Kaul M (2009) HIV-1 associated dementia: update on pathological mechanisms and therapeutic approaches. Curr Opin Neurol 22(3):315–320

    Article  PubMed  PubMed Central  Google Scholar 

  52. Everall I et al (2009) Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neurovirol 15(5–6):360–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eden A et al (2007) Immune activation of the central nervous system is still present after >4 years of effective highly active antiretroviral therapy. J Infect Dis 196(12):1779–1783

    Article  CAS  PubMed  Google Scholar 

  54. Gannon P, Khan MZ, Kolson DL (2011) Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol 24(3):275–283

    Article  PubMed  PubMed Central  Google Scholar 

  55. Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clinical features. Ann Neurol 19(6):517–524

    Article  CAS  PubMed  Google Scholar 

  56. Rohit M et al (2007) Education correction using years in school or reading grade-level equivalent? Comparing the accuracy of two methods in diagnosing HIV-associated neurocognitive impairment. J Int Neuropsychol Soc 13(3):462–470

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ryan EL et al (2005) Neuropsychological impairment in racial/ethnic minorities with HIV infection and low literacy levels: effects of education and reading level in participant characterization. J Int Neuropsychol Soc 11(7):889–898

    Article  PubMed  PubMed Central  Google Scholar 

  58. Maki PM et al (2015) Cognitive function in women with HIV: findings from the Women’s interagency HIV study. Neurology 84(3):231–240

    Article  PubMed  PubMed Central  Google Scholar 

  59. Heaps J et al (2013) Development of normative neuropsychological performance in Thailand for the assessment of HIV-associated neurocognitive disorders. J Clin Exp Neuropsychol 35(1):1–8

    Article  PubMed  Google Scholar 

  60. Robertson KR, Hall CD (2007) Assessment of neuroAIDS in the international setting. J Neuroimmune Pharmacol 2(1):105–111

    Article  PubMed  Google Scholar 

  61. Schouten J et al (2014) Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clin Infect Dis 59(12):1787–1797

    Article  PubMed  Google Scholar 

  62. Fogel GB et al (2015) Factors related to HIV-associated neurocognitive impairment differ with age. J Neurovirol 21(1):56–65

    Article  CAS  PubMed  Google Scholar 

  63. Brew BJ et al (1992) Cerebrospinal fluid ([beta] 2-microglobulin in patients with AIDS dementia complex: an expanded series including response to zidovudine treatment. AIDS 6(5):461–466

    Google Scholar 

  64. Cohen RA et al (2010) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16(1):25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ellis RJ et al (2011) CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS 25(14):1747–1751

    Article  CAS  PubMed  Google Scholar 

  66. Hua X et al (2013) Disrupted cerebral metabolite levels and lower nadir CD4 + counts are linked to brain volume deficits in 210 HIV-infected patients on stable treatment. Neuroimage Clin 3:132–142

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tate DF et al (2011) Regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies. J Neurovirol 17(4):368–379

    Article  PubMed  PubMed Central  Google Scholar 

  68. Valcour V et al (2012) Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 206(2):275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hellmuth J et al (2016) Neurologic signs and symptoms frequently manifest in acute HIV infection. Neurology 87(2):148–154

    Article  PubMed  PubMed Central  Google Scholar 

  70. Evering TH et al (2016) Rates of non-confounded HIV-associated neurocognitive disorders in men initiating combination antiretroviral therapy during primary infection. AIDS 30(2):203–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crum-Cianflone NF et al (2013) Low prevalence of neurocognitive impairment in early diagnosed and managed HIV-infected persons. Neurology 80(4):371–379

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ghate M et al (2015) The effects of antiretroviral treatment initiation on cognition in HIV-infected individuals with advanced disease in Pune, India. J Neurovirol 21(4):391–398

    Article  PubMed  PubMed Central  Google Scholar 

  73. Joska JA et al (2012) Neuropsychological outcomes in adults commencing highly active anti-retroviral treatment in South Africa: a prospective study. BMC Infect Dis 12:39

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cysique LA, Maruff P, Brew BJ (2006) Variable benefit in neuropsychological function in HIV-infected HAART-treated patients. Neurology 66(9):1447–1450

    Article  PubMed  Google Scholar 

  75. Hartman TL, Buckheit RW Jr (2012) The continuing evolution of HIV-1 therapy: identification and development of novel antiretroviral agents targeting viral and cellular targets. Mol Biol Int 2012:401965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Saksena NK et al (2010) HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV AIDS (Auckl) 2:103–122

    CAS  Google Scholar 

  77. Kimata JT, Rice AP, Wang J (2016) Challenges and strategies for the eradication of the HIV reservoir. Curr Opin Immunol 42:65–70

    Article  CAS  PubMed  Google Scholar 

  78. Fletcher CV et al (2014) Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A 111(6):2307–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Franken L, Schiwon M, Kurts C (2016) Macrophages: sentinels and regulators of the immune system. Cell Microbiol 18(4):475–487

    Article  CAS  PubMed  Google Scholar 

  80. Kofler J, Wiley CA (2011) Microglia: key innate immune cells of the brain. Toxicol Pathol 39(1):103–114

    Article  PubMed  Google Scholar 

  81. Zhang YL et al (2015) Blood-brain barrier and neuro-AIDS. Eur Rev Med Pharmacol Sci 19(24):4927–4939

    PubMed  Google Scholar 

  82. Chiodi F et al (1989) Biological characterization of paired human immunodeficiency virus type 1 isolates from blood and cerebrospinal fluid. Virology 173(1):178–187

    Article  CAS  PubMed  Google Scholar 

  83. Gras G, Kaul M (2010) Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology 7:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Williams DW et al (2014) Monocytes mediate HIV neuropathogenesis: mechanisms that contribute to HIV associated neurocognitive disorders. Curr HIV Res 12(2):85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brown A (2015) Understanding the MIND phenotype: macrophage/microglia inflammation in neurocognitive disorders related to human immunodeficiency virus infection. Clin Transl Med 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sonza S et al (2001) Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy. AIDS 15(1):17–22

    Article  CAS  PubMed  Google Scholar 

  87. Kallianpur KJ et al (2012) Regional cortical thinning associated with detectable levels of HIV DNA. Cereb Cortex 22(9):2065–2075

    Article  PubMed  Google Scholar 

  88. Kusao I et al (2012) Cognitive performance related to HIV-1-infected monocytes. J Neuropsychiatry Clin Neurosci 24(1):71–80

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shiramizu B et al (2012) Failure to clear intra-monocyte HIV infection linked to persistent neuropsychological testing impairment after first-line combined antiretroviral therapy. J Neurovirol 18(1):69–73

    Article  CAS  PubMed  Google Scholar 

  90. Lassmann H et al (1993) Bone marrow derived elements and resident microglia in brain inflammation. Glia 7(1):19–24

    Article  CAS  PubMed  Google Scholar 

  91. Rappaport J, Volsky DJ (2015) Role of the macrophage in HIV-associated neurocognitive disorders and other comorbidities in patients on effective antiretroviral treatment. J Neurovirol 21(3):235–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Honeycutt JB et al (2016) Macrophages sustain HIV replication in vivo independently of T cells. J Clin Invest 126(4):1353–1366

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cosenza MA et al (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 12(4):442–455

    Article  CAS  PubMed  Google Scholar 

  94. Chugh P et al (2007) Infection of human immunodeficiency virus and intracellular viral tat protein exert a pro-survival effect in a human microglial cell line. J Mol Biol 366(1):67–81

    Article  CAS  PubMed  Google Scholar 

  95. Kaul M, Lipton SA (2006) Mechanisms of neuroimmunity and neurodegeneration associated with HIV-1 infection and AIDS. J Neuroimmune Pharmacol 1(2):138–151

    Article  PubMed  Google Scholar 

  96. Tan J, Sattentau QJ (2013) The HIV-1-containing macrophage compartment: a perfect cellular niche? Trends Microbiol 21(8):405–412

    Article  CAS  PubMed  Google Scholar 

  97. Gavegnano C et al (2013) Cellular pharmacology and potency of HIV-1 nucleoside analogs in primary human macrophages. Antimicrob Agents Chemother 57(3):1262–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ene L, Duiculescu D, Ruta SM (2011) How much do antiretroviral drugs penetrate into the central nervous system? J Med Life 4(4):432–439

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Komarova NL et al (2013) Relative contribution of free-virus and synaptic transmission to the spread of HIV-1 through target cell populations. Biol Lett 9(1):20121049

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ransom BR, Ransom CB (2012) Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol 814:3–7

    Article  CAS  PubMed  Google Scholar 

  101. Cisneros IE, Ghorpade A (2012) HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res 10(5):392–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Eugenin EA, Berman JW (2007) Gap junctions mediate human immunodeficiency virus-bystander killing in astrocytes. J Neurosci 27(47):12844–12850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Eugenin EA et al (2011) Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J Neurosci 31(26):9456–9465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ton H, Xiong H (2013) Astrocyte dysfunctions and HIV-1 neurotoxicity. J AIDS Clin Res 4(11):255

    PubMed  PubMed Central  Google Scholar 

  105. Churchill MJ et al (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66(2):253–258

    Article  PubMed  Google Scholar 

  106. Li W et al (2011) IFN-gamma mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the beta-catenin pathway (DKK1) in a STAT 3-dependent manner. J Immunol 186(12):6771–6778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Carroll-Anzinger D, Al-Harthi L (2006) Gamma interferon primes productive human immunodeficiency virus infection in astrocytes. J Virol 80(1):541–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van Marle G et al (2004) Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology 329(2):302–318

    Article  PubMed  CAS  Google Scholar 

  109. Schwartz L et al (2007) Evidence of human immunodeficiency virus type 1 infection of nestin-positive neural progenitors in archival pediatric brain tissue. J Neurovirol 13(3):274–283

    Article  PubMed  Google Scholar 

  110. Rothenaigner I et al (2007) Long-term HIV-1 infection of neural progenitor populations. AIDS 21(17):2271–2281

    Article  PubMed  Google Scholar 

  111. Lawrence DM et al (2004) Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells. J Virol 78(14):7319–7328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Horsburgh A, Massoud TF (2013) The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy. Surg Radiol Anat 35(4):343–349

    Article  PubMed  Google Scholar 

  113. Ragin AB et al (2006) Monocyte chemoattractant protein-1 correlates with subcortical brain injury in HIV infection. Neurology 66(8):1255–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McRae M (2016) HIV and viral protein effects on the blood brain barrier. Tissue Barriers 4(1):e1143543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Cunningham PH et al (2000) Evidence for independent development of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinal fluid. AIDS 14(13):1949–1954

    Article  CAS  PubMed  Google Scholar 

  116. Smit TK et al (2004) Independent evolution of human immunodeficiency virus (HIV) drug resistance mutations in diverse areas of the brain in HIV-infected patients, with and without dementia, on antiretroviral treatment. J Virol 78(18):10133–10148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bingham R et al (2011) HIV encephalitis despite suppressed viraemia: a case of compartmentalized viral escape. Int J STD AIDS 22(10):608–609

    Article  CAS  PubMed  Google Scholar 

  118. Ritola K et al (2005) Increased human immunodeficiency virus type 1 (HIV-1) env compartmentalization in the presence of HIV-1-associated dementia. J Virol 79(16):10830–10834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dunfee RL et al (2006) The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc Natl Acad Sci U S A 103(41):15160–15165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Imaz A et al (2014) Focal encephalitis related with viral escape and resistance emergence in cerebrospinal fluid in a patient on Lopinavir/ritonavir monotherapy with plasma HIV-1 RNA suppression. AIDS Res Hum Retrovir 30(10):984–987

    Article  CAS  PubMed  Google Scholar 

  121. Rawson T et al (2012) Factors associated with cerebrospinal fluid HIV RNA in HIV infected subjects undergoing lumbar puncture examination in a clinical setting. J Infect 65(3):239–245

    Article  PubMed  Google Scholar 

  122. Ferretti F et al (2014) Central nervous system HIV infection in “less-drug regimen” antiretroviral therapy simplification strategies. Semin Neurol 34(1):78–88

    Article  PubMed  Google Scholar 

  123. Bogoch II, Davis BT, Venna N (2011) Reversible dementia in a patient with central nervous system escape of human immunodeficiency virus. J Infect 63(3):236–239

    Article  PubMed  Google Scholar 

  124. Graham DR et al (2011) Initiation of HAART during acute simian immunodeficiency virus infection rapidly controls virus replication in the CNS by enhancing immune activity and preserving protective immune responses. J Neurovirol 17(1):120–130

    Article  CAS  PubMed  Google Scholar 

  125. Queen SE et al (2011) Replication-competent simian immunodeficiency virus (SIV) gag escape mutations archived in latent reservoirs during antiretroviral treatment of SIV-infected macaques. J Virol 85(17):9167–9175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zink MC et al (2010) Simian immunodeficiency virus-infected macaques treated with highly active antiretroviral therapy have reduced central nervous system viral replication and inflammation but persistence of viral DNA. J Infect Dis 202(1):161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Koneru R, Olive MF, Tyor WR (2014) Combined antiretroviral therapy reduces brain viral load and pathological features of HIV encephalitis in a mouse model. J Neurovirol 20(1):9–17

    Article  CAS  PubMed  Google Scholar 

  128. Cook-Easterwood J et al (2007) Highly active antiretroviral therapy of cognitive dysfunction and neuronal abnormalities in SCID mice with HIV encephalitis. Exp Neurol 205(2):506–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lamers SL et al (2016) HIV DNA is frequently present within pathologic tissues evaluated at autopsy from cART-treated patients with undetectable viral load. J Virol 90(20):8968–8983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Letendre S et al (2008) Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65(1):65–70

    Article  PubMed  PubMed Central  Google Scholar 

  131. Decloedt EH et al (2015) Central nervous system penetration of antiretroviral drugs: pharmacokinetic, pharmacodynamic and pharmacogenomic considerations. Clin Pharmacokinet 54(6):581–598

    Article  CAS  PubMed  Google Scholar 

  132. Smurzynski M et al (2011) Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS 25(3):357–365

    Article  PubMed  PubMed Central  Google Scholar 

  133. Marra CM et al (2009) Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 23(11):1359–1366

    Article  PubMed  PubMed Central  Google Scholar 

  134. Cross HM, Combrinck MI, Joska JA (2013) HIV-associated neurocognitive disorders: antiretroviral regimen, central nervous system penetration effectiveness, and cognitive outcomes. S Afr Med J = Suid-Afrikaanse tydskrif vir geneeskunde 103(10):758–762

    CAS  PubMed  Google Scholar 

  135. Caniglia EC et al (2014) Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology 83(2):134–141

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ellis RJ et al (2014) Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin Infect Dis 58(7):1015–1022

    Article  CAS  PubMed  Google Scholar 

  137. Shikuma CM et al (2012) Antiretroviral monocyte efficacy score linked to cognitive impairment in HIV. Antivir Ther 17(7):1233–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Calcagno A, Di Perri G, Bonora S (2014) Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system. Clin Pharmacokinet 53(10):891–906

    Article  CAS  PubMed  Google Scholar 

  139. Stavros K, Simpson DM (2014) Understanding the etiology and management of HIV-associated peripheral neuropathy. Curr HIV/AIDS Rep 11(3):195–201

    Article  PubMed  Google Scholar 

  140. Huang W et al (2013) A clinically relevant rodent model of the HIV antiretroviral drug stavudine induced painful peripheral neuropathy. Pain 154(4):560–575

    Article  CAS  PubMed  Google Scholar 

  141. Dalakas MC, Semino-Mora C, Leon-Monzon M (2001) Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2′3′-dideoxycytidine (ddC). Lab Investig 81(11):1537–1544

    Article  CAS  PubMed  Google Scholar 

  142. Pettersen JA et al (2006) Sensory neuropathy in human immunodeficiency virus/acquired immunodeficiency syndrome patients: protease inhibitor-mediated neurotoxicity. Ann Neurol 59(5):816–824

    Article  CAS  PubMed  Google Scholar 

  143. Robertson KR et al (2010) Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology 74(16):1260–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shah A et al (2016) Neurotoxicity in the post-HAART era: caution for the antiretroviral therapeutics. Neurotox Res 30(4):677–697

    Article  CAS  PubMed  Google Scholar 

  145. Dellamonica P, Di Perri G, Garraffo R (2012) NNRTIs: pharmacological data. Med Mal Infect 42(7):287–295

    Article  CAS  PubMed  Google Scholar 

  146. Abers MS, Shandera WX, Kass JS (2014) Neurological and psychiatric adverse effects of antiretroviral drugs. CNS Drugs 28(2):131–145

    Article  CAS  PubMed  Google Scholar 

  147. Mollan KR et al (2014) Association between efavirenz as initial therapy for HIV-1 infection and increased risk for suicidal ideation or attempted or completed suicide: an analysis of trial data. Ann Intern Med 161(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  148. Funes HA et al (2014) Neuronal bioenergetics and acute mitochondrial dysfunction: a clue to understanding the central nervous system side effects of Efavirenz. J Infect Dis 210(9):1385–1395

    Article  CAS  PubMed  Google Scholar 

  149. Ciccarelli N et al (2011) Efavirenz associated with cognitive disorders in otherwise asymptomatic HIV-infected patients. Neurology 76(16):1403–1409

    Article  CAS  PubMed  Google Scholar 

  150. Tovar-y-Romo LB et al (2012) Dendritic spine injury induced by the 8-hydroxy metabolite of efavirenz. J Pharmacol Exp Ther 343(3):696–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rakhmanina NY, van den Anker JN (2010) Efavirenz in the therapy of HIV infection. Expert Opin Drug Metab Toxicol 6(1):95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Giunta B et al (2011) Antiretroviral medications disrupt microglial phagocytosis of beta-amyloid and increase its production by neurons: implications for HIV-associated neurocognitive disorders. Mol Brain 4(1):23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Brown LA et al (2014) Efavirenz promotes beta-secretase expression and increased Abeta1-40,42 via oxidative stress and reduced microglial phagocytosis: implications for HIV associated neurocognitive disorders (HAND). PLoS One 9(4):e95500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Paik IJ, Kotler DP (2011) The prevalence and pathogenesis of diabetes mellitus in treated HIV-infection. Best Pract Res Clin Endocrinol Metab 25(3):469–478

    Article  PubMed  Google Scholar 

  155. Calza L, Manfredi R, Chiodo F (2004) Dyslipidemia associated with antiretroviral therapy in HIV-infected patients. J Antimicrob Chemother 53(1):10–14

    Article  CAS  PubMed  Google Scholar 

  156. Zanni MV, Grinspoon SK (2012) HIV-specific immune dysregulation and atherosclerosis. Curr HIV/AIDS Rep 9(3):200–205

    Article  PubMed  Google Scholar 

  157. Becker JT et al (2009) Vascular risk factors, HIV serostatus, and cognitive dysfunction in gay and bisexual men. Neurology 73(16):1292–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Valcour VG et al (2005) Diabetes, insulin resistance, and dementia among HIV-1-infected patients. J Acquir Immune Defic Syndr 38(1):31–36

    Article  PubMed  PubMed Central  Google Scholar 

  159. Robertson K, Liner J, Meeker RB (2012) Antiretroviral neurotoxicity. J Neurovirol 18(5):388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Azzam R et al (2006) Adverse effects of antiretroviral drugs on HIV-1-infected and -uninfected human monocyte-derived macrophages. J Acquir Immune Defic Syndr 42(1):19–28

    CAS  PubMed  Google Scholar 

  161. Kaul M, Lipton SA (2006) Mechanisms of neuronal injury and death in HIV-1 associated dementia. Curr HIV Res 4(3):307–318

    Article  CAS  PubMed  Google Scholar 

  162. Maldarelli F et al (2007) ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog 3(4):e46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Vojnov L et al (2012) The majority of freshly sorted simian immunodeficiency virus (SIV)-specific CD8(+) T cells cannot suppress viral replication in SIV-infected macrophages. J Virol 86(8):4682–4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Imamichi H et al (2016) Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Natl Acad Sci U S A 113(31):8783–8788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mocchetti I, Bachis A, Avdoshina V (2012) Neurotoxicity of human immunodeficiency virus-1: viral proteins and axonal transport. Neurotox Res 21(1):79–89

    Article  CAS  PubMed  Google Scholar 

  166. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410(6831):988–994

    Article  CAS  PubMed  Google Scholar 

  167. Hu S et al (2009) Preferential sensitivity of human dopaminergic neurons to gp120-induced oxidative damage. J Neurovirol 15(5–6):401–410

    Article  CAS  PubMed  Google Scholar 

  168. Li W et al (2009) Role of tat protein in HIV neuropathogenesis. Neurotox Res 16(3):205–220

    Article  CAS  PubMed  Google Scholar 

  169. Chompre G et al (2013) Astrocytic expression of HIV-1 Nef impairs spatial and recognition memory. Neurobiol Dis 49:128–136

    Article  CAS  PubMed  Google Scholar 

  170. Jones GJ et al (2007) HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci 27(14):3703–3711

    Article  CAS  PubMed  Google Scholar 

  171. Saito Y et al (1994) Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology 44(3 Pt 1):474–481

    Article  CAS  PubMed  Google Scholar 

  172. Hesselgesser J et al (1998) Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr Biol 8(10):595–598

    Article  CAS  PubMed  Google Scholar 

  173. Bruce-Keller AJ et al (2003) Synaptic transport of human immunodeficiency virus-tat protein causes neurotoxicity and gliosis in rat brain. J Neurosci 23(23):8417–8422

    CAS  PubMed  Google Scholar 

  174. Mediouni S et al (2012) Antiretroviral therapy does not block the secretion of the human immunodeficiency virus tat protein. Infect Disord Drug Targets 12(1):81–86

    Article  CAS  PubMed  Google Scholar 

  175. Wang T et al (2015) Intracellular Nef detected in peripheral blood mononuclear cells from HIV patients. AIDS Res Hum Retrovir 31(2):217–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yan YF et al (2011) HIV-1B gp120 genes from one patient with AIDS dementia complex can affect the secretion of tumor necrosis factor and interleukin 1beta in glial cells. Chin Med J 124(24):4217–4222

    CAS  PubMed  Google Scholar 

  177. Ben Haij N et al (2015) HIV-1 tat protein induces production of Proinflammatory cytokines by human dendritic cells and monocytes/macrophages through engagement of TLR4-MD2-CD14 complex and activation of NF-kappaB pathway. PLoS One 10(6):e0129425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Lee JH et al (2016) HIV-Nef and ADAM17-containing plasma extracellular vesicles induce and correlate with immune pathogenesis in chronic HIV infection. EBioMedicine 6:103–113

    Article  PubMed  PubMed Central  Google Scholar 

  179. Roesch F et al (2015) Vpr enhances tumor necrosis factor production by HIV-1-infected T cells. J Virol 89(23):12118–12130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Anzinger JJ et al (2014) Monocytes as regulators of inflammation and HIV-related comorbidities during cART. J Immunol Res 2014:569819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Hsu DC, Sereti I (2016) Serious non-AIDS events: therapeutic targets of immune activation and chronic inflammation in HIV infection. Drugs 76(5):533–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ghislain M et al (2015) Late antiretroviral therapy (ART) initiation is associated with long-term persistence of systemic inflammation and metabolic abnormalities. PLoS One 10(12):e0144317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Anthony IC et al (2005) Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol 64(6):529–536

    Article  CAS  PubMed  Google Scholar 

  184. Tavazzi E et al (2014) Brain inflammation is a common feature of HIV-infected patients without HIV encephalitis or productive brain infection. Curr HIV Res 12(2):97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yuan L et al (2013) Cytokines in CSF correlate with HIV-associated neurocognitive disorders in the post-HAART era in China. J Neurovirol 19(2):144–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Heyes MP et al (1991) Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol 29(2):202–209

    Article  CAS  PubMed  Google Scholar 

  187. Kerr SJ et al (1998) Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS 12(4):355–363

    Article  CAS  PubMed  Google Scholar 

  188. Gelbard HA et al (1994) Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J Virol 68(7):4628–4635

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Sei S et al (1995) Increased human immunodeficiency virus (HIV) type 1 DNA content and quinolinic acid concentration in brain tissues from patients with HIV encephalopathy. J Infect Dis 172(3):638–647

    Article  CAS  PubMed  Google Scholar 

  190. Kandanearatchi A, Brew BJ (2012) The kynurenine pathway and quinolinic acid: pivotal roles in HIV associated neurocognitive disorders. FEBS J 279(8):1366–1374

    Article  CAS  PubMed  Google Scholar 

  191. Valle M et al (2004) CSF quinolinic acid levels are determined by local HIV infection: cross-sectional analysis and modelling of dynamics following antiretroviral therapy. Brain 127(Pt 5):1047–1060

    Article  PubMed  Google Scholar 

  192. Drewes JL et al (2015) Quinolinic acid/tryptophan ratios predict neurological disease in SIV-infected macaques and remain elevated in the brain under cART. J Neurovirol 21(4):449–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chan DP et al (2016) Sexually acquired hepatitis C virus infection: a review. Int J Infect Dis 49:47–58

    Article  PubMed  Google Scholar 

  194. Rezaei N et al (2016) Risk factor analysis of hepatitis C virus seropositivity in Iranian blood donors: a case-control study. Transfusion 56(7):1891–1898

    Article  PubMed  Google Scholar 

  195. Operskalski EA, Kovacs A (2011) HIV/HCV co-infection: pathogenesis, clinical complications, treatment, and new therapeutic technologies. Curr HIV/AIDS Rep 8(1):12–22

    Article  PubMed  PubMed Central  Google Scholar 

  196. Hilsabeck RC, Perry W, Hassanein TI (2002) Neuropsychological impairment in patients with chronic hepatitis C. Hepatology 35(2):440–446

    Article  PubMed  Google Scholar 

  197. Posada C et al (2010) Implications of hepatitis C virus infection for behavioral symptoms and activities of daily living. J Clin Exp Neuropsychol 32(6):637–644

    Article  PubMed  PubMed Central  Google Scholar 

  198. Paulino AD et al (2011) Neurotoxic effects of the HCV core protein are mediated by sustained activation of ERK via TLR2 signaling. J Neurovirol 17(4):327–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gill AJ, Kolson DL (2014) Chronic inflammation and the role for cofactors (hepatitis C, drug abuse, antiretroviral drug toxicity, aging) in HAND persistence. Curr HIV/AIDS Rep 11(3):325–335

    Article  PubMed  PubMed Central  Google Scholar 

  200. Mathew S et al (2016) Hepatitis C virus and neurological damage. World J Hepatol 8(12):545–556

    PubMed  PubMed Central  Google Scholar 

  201. Clifford DB et al (2015) Absence of neurocognitive effect of hepatitis C infection in HIV-coinfected people. Neurology 84(3):241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Fletcher NF et al (2010) Hepatitis C virus infection of neuroepithelioma cell lines. Gastroenterology 139(4):1365–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wilkinson J, Radkowski M, Laskus T (2009) Hepatitis C virus neuroinvasion: identification of infected cells. J Virol 83(3):1312–1319

    Article  CAS  PubMed  Google Scholar 

  204. Pflugrad H et al (2016) Cerebral microglia activation in hepatitis C virus infection correlates to cognitive dysfunction. J Viral Hepat 23(5):348–357

    Article  CAS  PubMed  Google Scholar 

  205. Han ZQ et al (2015) Expression profile and kinetics of cytokines and chemokines in patients with chronic hepatitis C. Int J Clin Exp Med 8(10):17995–18003

    PubMed  PubMed Central  Google Scholar 

  206. Korolevskaya LB et al (2016) Systemic activation of the immune system in HIV infection: the role of the immune complexes (hypothesis). Med Hypotheses 88:53–56

    Article  CAS  PubMed  Google Scholar 

  207. Byrd DA et al (2013) Isolating cognitive and neurologic HIV effects in substance-dependent, confounded cohorts: a pilot study. J Int Neuropsychol Soc 19(4):463–473

    Article  PubMed  Google Scholar 

  208. Mahajan SD et al (2008) Tight junction regulation by morphine and HIV-1 tat modulates blood-brain barrier permeability. J Clin Immunol 28(5):528–541

    Article  CAS  PubMed  Google Scholar 

  209. Mahajan SD et al (2008) Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res 1203:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Dave RS (2012) Morphine affects HIV-induced inflammatory response without influencing viral replication in human monocyte-derived macrophages. FEMS Immunol Med Microbiol 64(2):228–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Peterson PK et al (1990) Morphine promotes the growth of HIV-1 in human peripheral blood mononuclear cell cocultures. AIDS 4(9):869–873

    Article  CAS  PubMed  Google Scholar 

  212. Pitcher J et al (2010) Disruption of neuronal CXCR4 function by opioids: preliminary evidence of ferritin heavy chain as a potential etiological agent in neuroAIDS. J Neuroimmunol 224(1–2):66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. El-Hage N et al (2006) HIV-1 tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia 53(2):132–146

    Article  PubMed  PubMed Central  Google Scholar 

  214. Bell JE et al (1998) HIV encephalitis, proviral load and dementia in drug users and homosexuals with AIDS. Effect of neocortical involvement. Brain 121(Pt 11):2043–2052

    Article  PubMed  Google Scholar 

  215. Sawaya BE et al (2009) TNF alpha production in morphine-treated human neural cells is NF-kappaB-dependent. J Neuroimmune Pharmacol 4(1):140–149

    Article  PubMed  Google Scholar 

  216. Bruce-Keller AJ et al (2008) Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 tat transgenic mice. Glia 56(13):1414–1427

    Article  PubMed  PubMed Central  Google Scholar 

  217. Fitting S et al (2010) Interactive comorbidity between opioid drug abuse and HIV-1 tat: chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. Am J Pathol 177(3):1397–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gurwell JA et al (2001) Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 tat protein in striatal neurons in vitro. Neuroscience 102(3):555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hauser KF et al (2012) Opiate drug use and the pathophysiology of neuroAIDS. Curr HIV Res 10(5):435–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. El-Hage N et al (2008) Morphine exacerbates HIV-1 tat-induced cytokine production in astrocytes through convergent effects on [ca(2+)](i), NF-kappaB trafficking and transcription. PLoS One 3(12):e4093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Cheng YC et al (2016) Cocaine use and risk of ischemic stroke in young adults. Stroke 47(4):918–922

    Article  CAS  PubMed  Google Scholar 

  222. Webber MP et al (1999) A prospective study of HIV disease progression in female and male drug users. AIDS 13(2):257–262

    Article  CAS  PubMed  Google Scholar 

  223. Fiala M et al (2005) Cocaine increases human immunodeficiency virus type 1 neuroinvasion through remodeling brain microvascular endothelial cells. J Neurovirol 11(3):281–291

    Article  CAS  PubMed  Google Scholar 

  224. Buch S et al (2012) Cocaine and HIV-1 interplay in CNS: cellular and molecular mechanisms. Curr HIV Res 10(5):425–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Aksenov MY et al (2006) Cocaine-mediated enhancement of tat toxicity in rat hippocampal cell cultures: the role of oxidative stress and D1 dopamine receptor. Neurotoxicology 27(2):217–228

    Article  CAS  PubMed  Google Scholar 

  226. Araos P et al (2015) Plasma profile of pro-inflammatory cytokines and chemokines in cocaine users under outpatient treatment: influence of cocaine symptom severity and psychiatric co-morbidity. Addict Biol 20(4):756–772

    Article  CAS  PubMed  Google Scholar 

  227. Moratalla R et al (2015) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: main mechanisms. Prog Neurobiol 155:149–170

    Google Scholar 

  228. Cherner M et al (2010) Methamphetamine use parameters do not predict neuropsychological impairment in currently abstinent dependent adults. Drug Alcohol Depend 106(2–3):154–163

    Article  PubMed  Google Scholar 

  229. Liu X et al (2012) Methamphetamine increases LPS-mediated expression of IL-8, TNF-alpha and IL-1beta in human macrophages through common signaling pathways. PLoS One 7(3):e33822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Carrico AW (2011) Substance use and HIV disease progression in the HAART era: implications for the primary prevention of HIV. Life Sci 88(21–22):940–947

    Article  CAS  PubMed  Google Scholar 

  231. Hoefer MM et al (2015) Combination of methamphetamine and HIV-1 gp120 causes distinct long-term alterations of behavior, gene expression, and injury in the central nervous system. Exp Neurol 263:221–234

    Article  CAS  PubMed  Google Scholar 

  232. Mediouni S et al (2015) The cross-talk of HIV-1 tat and methamphetamine in HIV-associated neurocognitive disorders. Front Microbiol 6:1164

    Article  PubMed  PubMed Central  Google Scholar 

  233. Chana G et al (2006) Cognitive deficits and degeneration of interneurons in HIV+ methamphetamine users. Neurology 67(8):1486–1489

    Article  CAS  PubMed  Google Scholar 

  234. Quiros-Roldan E et al (2016) Incidence of cardiovascular events in HIV-positive patients compared to general population over the last decade: a population-based study from 2000 to 2012. AIDS Care 28(12):1551–1558

    Article  PubMed  Google Scholar 

  235. Thakur KT et al (2016) Stroke in HIV-infected African Americans: a retrospective cohort study. J Neurovirol 22(1):50–55

    Article  PubMed  Google Scholar 

  236. Webb MS et al (2007) Cigarette smoking among HIV+ men and women: examining health, substance use, and psychosocial correlates across the smoking spectrum. J Behav Med 30(5):371–383

    Article  PubMed  PubMed Central  Google Scholar 

  237. Nou E, Lo J, Grinspoon SK (2016) Inflammation, immune activation, and cardiovascular disease in HIV. AIDS 30(10):1495–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Willig AL, Overton ET (2016) Metabolic complications and glucose metabolism in HIV infection: a review of the evidence. Curr HIV/AIDS Rep 13(5):289–296

    Article  PubMed  Google Scholar 

  239. Levitt NS et al (2016) Increased risk of dysglycaemia in South Africans with HIV; especially those on protease inhibitors. Diabetes Res Clin Pract 119:41–47

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elyse J. Singer MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Singer, E.J., Nemanim, N.M. (2017). The Persistence of HIV-Associated Neurocognitive Disorder (HAND) in the Era of Combined Antiretroviral Therapy (cART). In: Shapshak, P., et al. Global Virology II - HIV and NeuroAIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7290-6_16

Download citation

Publish with us

Policies and ethics