Skip to main content

Advertisement

Log in

Chronic Inflammation and the Role for Cofactors (Hepatitis C, Drug Abuse, Antiretroviral Drug Toxicity, Aging) in HAND Persistence

  • Central Nervous System and Cognition (I Grant, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

HIV-associated neurocognitive disorders (HAND) is a group of syndromes of varying degrees of cognitive impairment affecting up to 50 % of HIV-infected individuals. The neuropathogenesis of HAND is thought to be driven by HIV invasion and productive replication within brain perivascular macrophages and endogenous microglia, and to some degree by restricted infection of astrocytes. The persistence of HAND in individuals experiencing suppression of systemic HIV viral load with antiretroviral therapy (ART) is incompletely explained, and suggested factors include chronic inflammation, persistent HIV replication in brain macrophages, effects of aging on brain vulnerability, and co-morbid conditions including hepatitis C (HCV) co-infection, substance abuse, and CNS toxicity of ART, among other factors. This review discusses several of these conditions: chronic inflammation, co-infection with HCV, drugs of abuse, aging, and antiretroviral drug effects. Effectively managing these co-morbid conditions in individuals with and without HAND is critical for improving neurocognitive outcomes and decreasing HIV-associated morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69:1789–99.

    Article  CAS  PubMed  Google Scholar 

  2. Canizares S, Cherner M, Ellis RJ. HIV and aging: effects on the central nervous system. Semin Neurol. 2014;34:27–34. This is a comprehensive review of published (and some unpublished) studies HIV, aging, and associated risk factors, including APOE e4 allele status, metabolic syndrome and other factors. The strengths and weaknesses of published studies are effectively discussed.

    Article  PubMed  Google Scholar 

  3. Price RW, Spudich SS, Peterson J, et al. Evolving character of chronic central nervous system HIV infection. Semin Neurol. 2014;34:7–13.

    Article  PubMed  Google Scholar 

  4. Hearps AC, Martin GE, Rajasuriar R, et al. Inflammatory co-morbidities in HIV+ individuals: learning lessons from healthy ageing. Curr HIV/AIDS Rep. 2014;11:20–34. This review thoroughly discusses the interactions among inflammation, immune activation and associated HIV morbidity. The role for microbial translocation is integrated and a particularly thoughtful discussion of therapeutic targeting of the inflammatory response is presented.

    Article  PubMed  Google Scholar 

  5. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. The Antiretroviral Therapy Cohort Collaboration. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008;372:293–9.

    Article  PubMed Central  Google Scholar 

  7. Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev. 2013;26:2–18. A comprehensive review of the process of microbial translocation across the gut mucosa, associated host responses, and the implications for SIV and HIV disease pathogenesis.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mutlu EA, Keshavarzian A, Losurdo J, et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 2014;10:e1003829. Analysis of the GI microbiome in HIV+ and HIV- individuals revealed less diversity, loss of commensal bacteria, and gain of some potential pathogenic bacterial taxa in HIV+ individuals. This study validates several earlier studies and further supports the hypothesis that changes in the gut microbiome due to HIV infection directly link to pathogenic immune activation. Therapeutic implications are discussed.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12:1365–71.

    Article  CAS  PubMed  Google Scholar 

  10. Ancuta P, Kamat A, Kunstman KJ, et al. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One. 2008;3:e2516.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hamann L, Alexander C, Stamme C, et al. Acute-phase concentrations of lipopolysaccharide (LPS)-binding protein inhibit innate immune cell activation by different LPS chemotypes via different mechanisms. Infect Immun. 2005;73:193–200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Neuhaus J, Jacobs Jr DR, Baker JV, et al. Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis. 2010;201:1788–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tien PC, Choi AI, Zolopa AR, et al. Inflammation and mortality in HIV-infected adults: analysis of the FRAM study cohort. J Acquir Immune Defic Syndr. 2010;55:316–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Han J, Wang B, Han N, et al. CD14(high)CD16(+) rather than CD14(low)CD16(+) monocytes correlate with disease progression in chronic HIV-infected patients. J Acquir Immune Defic Syndr. 2009;52:553–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ellery PJ, Tippett E, Chiu YL, et al. The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol. 2007;178:6581–9.

    Article  CAS  PubMed  Google Scholar 

  16. Douek DC. Disrupting T-cell homeostasis: how HIV-1 infection causes disease. AIDS Rev. 2003;5:172–7.

    PubMed  Google Scholar 

  17. Wallet MA, Rodriguez CA, Yin L, et al. Microbial translocation induces persistent macrophage activation unrelated to HIV-1 levels or T-cell activation following therapy. AIDS. 2010;24:1281–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gori A, Tincati C, Rizzardini G, et al. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J Clin Microbiol. 2008;46:757–8.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Castro P, Plana M, Gonzalez R, et al. Influence of episodes of intermittent viremia (“blips”) on immune responses and viral load rebound in successfully treated HIV-infected patients. AIDS Res Hum Retroviruses. 2013;29:68–76. A retrospective analysis of a randomized, double-blinded, placebo-controlled study of HIV-infected individuals on stable cART and receiving vaccinations. All patients had monthly viral loads. Planned cART interruption for 6 months after 12 months of cART during the study. Those with ‘blips’ above 200 copies/ml during cART had higher viral rebound, worse CD4+ T cell recovery, and increased levels of immune activation markers.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Grennan JT, Loutfy MR, Su D, et al. Magnitude of virologic blips is associated with a higher risk for virologic rebound in HIV-infected individuals: a recurrent events analysis. J Infect Dis. 2012;205:1230–8. A large observational cohort study (3550 HIV+ patients with confirmed virological suppression) that demonstrated a correlation between HIV viral load ‘blip’ amplitude and subsequent virologic rebound. This study emphasizes the importance of determining ‘effective’ virological suppression to potentially determine future risk of disease progression.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Canestri A, Lescure FX, Jaureguiberry S, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010;50:773–8.

    Article  PubMed  Google Scholar 

  22. Gelman BBMDJ. HIV-1 neuropathology. In: Gendelman HEGI, Everall IP, Fox HS, Gelbard HA, Lipton SA, Swindells S, editors. The neurology of AIDS. Oxford: Oxford University Press; 2012. p. 518–35.

    Google Scholar 

  23. Anthony IC, Ramage SN, Carnie FW, et al. Accelerated Tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathol. 2006;111:529–38.

    Article  CAS  PubMed  Google Scholar 

  24. Silva AC, Rodrigues BS, Micheletti AM, et al. Neuropathology of AIDS: an autopsy review of 284 cases from Brazil comparing the findings Pre- and Post-HAART (Highly Active Antiretroviral Therapy) and Pre- and postmortem correlation. AIDS Res Treat. 2012;2012:186850.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Neaton JD, Neuhaus J, Emery S. Soluble biomarkers and morbidity and mortality among people infected with HIV: summary of published reports from 1997 to 2010. Curr Opin HIV AIDS. 2010;5:480–90.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Nixon DE, Landay AL. Biomarkers of immune dysfunction in HIV. Curr Opin HIV AIDS. 2010;5:498–503.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lyons JL, Uno H, Ancuta P, et al. Plasma sCD14 is a biomarker associated with impaired neurocognitive test performance in attention and learning domains in HIV infection. J Acquir Immune Defic Syndr. 2011;57:371–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Burdo TH, Lo J, Abbara S, et al. Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients. J Infect Dis. 2011;204:1227–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Burdo TH, Lentz MR, Autissier P, et al. Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis. 2011;204:154–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Burdo TH, Woods A, Letendre S, et al. Elevated sCD163 is a Marker of Neurocognitive Impairment in HIV-infected Individuals on Effective ART. AIDS. 2013;27:1387–95. Thirty four virally suppressed HIV+ patients (15 with HAND, 19 with normal neurocognitive testing) and 34 HIV negative matched controls were assessed for plasma sCD163 at consecutive visits 7-32 months apart. Neuropyschological impairment correlated significantly with plasma sCD163 levels, consistent with a causal link between monocyte activation and neurocognitive dysfunction in the setting of viral suppression.

    Article  CAS  PubMed  Google Scholar 

  31. Kamat A, Lyons JL, Misra V, et al. Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J Acquir Immune Defic Syndr. 2012;60:234–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Simioni S, Cavassini M, Annoni JM, et al. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS. 2010;24:1243–50.

    PubMed  Google Scholar 

  33. Heaton RK, Franklin DR, Ellis RJ, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17:3–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Heaton RK, Clifford DB, Franklin Jr DR, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75:2087–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mothobi NZ, Brew BJ. Neurocognitive dysfunction in the highly active antiretroviral therapy era. Curr Opin Infect Dis. 2012;25:4–9. This review summarizes findings of CHARTER studies and discusses the ‘paradoxical’ lack of efficacy of HAART in effectively preventing HAND. Particular attention is given to possible CNS ART neurotoxicity.

    Article  CAS  PubMed  Google Scholar 

  36. Letendre S, Marquie-Beck J, Capparelli E, et al. Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65:65–70.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Robertson KR, Su Z, Margolis DM, et al. Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology. 2010;74:1260–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Marra CM, Zhao Y, Clifford DB, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS. 2009;23:1359–66.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Perez-Valero I, Gonzalez-Baeza A, Estebanez M, et al. Neurocognitive impairment in patients treated with protease inhibitor monotherapy or triple drug antiretroviral therapy. PLoS One. 2013;8:e69493. This is the first prospective study of PI monotherapy in comparison to triple ART associations with neurocognitive functioning. No differences in functioning were seen, suggesting that PI monotherapy does not have an increased risk for neurotoxicity.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Parikh N, Nonnemacher MR, Pirrone V, et al. Substance abuse, HIV-1 and hepatitis. Curr HIV Res. 2012;10:557–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Byrnes V, Miller A, Lowry D, et al. Effects of anti-viral therapy and HCV clearance on cerebral metabolism and cognition. J Hepatol. 2012;56:549–56. This study describes evidence that effective HCV antiviral treatment (sustained HCV suppression) can improve neurocognitive functioning and MRS parameters of neuronal injury and glial activation in HIV/HCV co-infection. It is a limited, small study that should prompt thoughtful discussions and larger definitive trials.

    Article  CAS  PubMed  Google Scholar 

  42. Weissenborn K, Tryc AB, Heeren M, et al. Hepatitis C virus infection and the brain. Metab Brain Dis. 2009;24:197–210.

    Article  PubMed  Google Scholar 

  43. Chak E, Talal AH, Sherman KE, et al. Hepatitis C virus infection in USA: an estimate of true prevalence. Liver Int. 2011;31:1090–101.

    Article  PubMed  Google Scholar 

  44. Sherman KE, Thomas D, Chung RT. Human immunodeficiency virus and liver disease forum 2012. Hepatology. 2014;59:307–17.

    Article  CAS  PubMed  Google Scholar 

  45. Letendre SL, Cherner M, Ellis RJ, et al. The effects of hepatitis C, HIV, and methamphetamine dependence on neuropsychological performance: biological correlates of disease. AIDS. 2005;19 Suppl 3:S72–8.

    Article  CAS  PubMed  Google Scholar 

  46. Wilkinson J, Radkowski M, Laskus T. Hepatitis C virus neuroinvasion: identification of infected cells. J Virol. 2009;83:1312–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wilkinson J, Radkowski M, Eschbacher JM, et al. Activation of brain macrophages/microglia cells in hepatitis C infection. Gut. 2010;59:1394–400.

    Article  CAS  PubMed  Google Scholar 

  48. Hinkin CH, Castellon SA, Levine AJ, et al. Neurocognition in individuals co-infected with HIV and hepatitis C. J Addict Dis. 2008;27:11–7.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Bladowska J, Zimny A, Knysz B, et al. Evaluation of early cerebral metabolic, perfusion and microstructural changes in HCV-positive patients: a pilot study. J Hepatol. 2013;59:651–7.

    Article  PubMed  Google Scholar 

  50. Jernigan TL, Archibald SL, Fennema-Notestine C, et al. Clinical factors related to brain structure in HIV: the CHARTER study. J Neurovirol. 2011;17:248–57.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Vassallo M, Dunais B, Durant J, et al. Relevance of lipopolysaccharide levels in HIV-associated neurocognitive impairment: the Neuradapt study. J Neurovirol. 2013;19:376–82.

    Article  CAS  PubMed  Google Scholar 

  52. Garvey LJ, Pavese N, Ramlackhansingh A, et al. Acute HCV/HIV coinfection is associated with cognitive dysfunction and cerebral metabolite disturbance, but not increased microglial cell activation. PLoS One. 2012;7:e38980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Clifford DB, Smurzynski M, Park LS, et al. Effects of active HCV replication on neurologic status in HIV RNA virally suppressed patients. Neurology. 2009;73:309–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Garvey LJ, Pflugrad H, Thiyagarajan A, et al. Effects of active HCV replication on neurologic status in HIV RNA virally suppressed patients. Neurology. 2010;74:779. author reply 779-780.

    Article  CAS  PubMed  Google Scholar 

  55. Clifford DB, Evans SR, Yang Y, et al. The neuropsychological and neurological impact of hepatitis C virus co-infection in HIV-infected subjects. AIDS. 2005;19 Suppl 3:S64–71.

    Article  PubMed  Google Scholar 

  56. Muir AJ. The rapid evolution of treatment strategies for hepatitis C. Am J Gastroenterol. 2014;109:628–35. This review describes the groundbreaking discovery of the first anti-HCV drug to win FDA approval for treatment of HIV/HCV co-infected individuals. This interferon-sparing drug may be used as monotherapy or combined therapy with other HCV inhibitors with the realistic hope of high efficacy in curing HCV infection.

    Article  CAS  PubMed  Google Scholar 

  57. Martin-Thormeyer EM, Paul RH. Drug abuse and hepatitis C infection as comorbid features of HIV associated neurocognitive disorder: neurocognitive and neuroimaging features. Neuropsychol Rev. 2009;19:215–31.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Nath A. Human immunodeficiency virus-associated neurocognitive disorder: pathophysiology in relation to drug addiction. Ann N Y Acad Sci. 2010;1187:122–8.

    Article  PubMed  Google Scholar 

  59. Beyrer C, Wirtz AL, Baral S, et al. Epidemiologic links between drug use and HIV epidemics: an international perspective. J Acquir Immune Defic Syndr. 2010;55 Suppl 1:S10–6.

    Article  PubMed  Google Scholar 

  60. Substance Abuse and Mental Health Services Administration CfBHSaQ. The NSDUH Report: HIV/AIDS and Substance Use. 2010. Rockville.

  61. Dutta R, Roy S. Mechanism(s) involved in opioid drug abuse modulation of HAND. Curr HIV Res. 2012;10:469–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Byrd DA, Fellows RP, Morgello S, et al. Neurocognitive impact of substance use in HIV infection. J Acquir Immune Defic Syndr. 2011;58:154–62. This is large cohort study by the CHARTER group examed the relationship between substance abuse history and neurocognitive impairment. The majority of the individuals with substance abuse had sustained abstinence from drug use at time of neurocognitive analysis. The study found no significant effect of substance use status on neurocognitive impairment, suggesting that drugs of abuse may have a limited legacy effect on neurocognitive impairment in HIV+ individuals.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Banerjee A, Strazza M, Wigdahl B, et al. Role of mu-opioids as cofactors in human immunodeficiency virus type 1 disease progression and neuropathogenesis. J Neurovirol. 2011;17:291–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Iudicello JE, Woods SP, Vigil O, et al. Longer term improvement in neurocognitive functioning and affective distress among methamphetamine users who achieve stable abstinence. J Clin Exp Neuropsychol. 2010;32:704–18.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Wang X, Wang Y, Ye L, et al. Modulation of intracellular restriction factors contributes to methamphetamine-mediated enhancement of acquired immune deficiency syndrome virus infection of macrophages. Curr HIV Res. 2012;10:407–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Reynolds JL, Law WC, Mahajan SD, et al. Morphine and galectin-1 modulate HIV-1 infection of human monocyte-derived macrophages. J Immunol. 2012;188:3757–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Dave RS, Khalili K. Morphine treatment of human monocyte-derived macrophages induces differential miRNA and protein expression: impact on inflammation and oxidative stress in the central nervous system. J Cell Biochem. 2010;110:834–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Mantri CK, Pandhare Dash J, Mantri JV, et al. Cocaine enhances HIV-1 replication in CD4+ T cells by down-regulating MiR-125b. PLoS One. 2012;7:e51387.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Kim SG, Jung JB, Dixit D, et al. Cocaine exposure enhances permissiveness of quiescent T cells to HIV infection. J Leukoc Biol. 2013;94:835–43.

    Article  CAS  PubMed  Google Scholar 

  70. Mantri CK, Mantri JV, Pandhare J, et al. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression. Am J Pathol. 2014;184:92–100. This study presents evidence of an inhibitory effect of methamphetamine on HIV replication in CD4+ T lymphocytes through miRNA regulation, in contrast to other published reports of methamphetamine enhancement of HIV replication. These conflicting results are discussed in detail, and appropriate caution is urged when extrapolating in vitro results in such studies to pathogenic mechanisms in vivo.

    Article  CAS  PubMed  Google Scholar 

  71. Gaskill PJ, Calderon TM, Coley JS, et al. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J Neuroimmune Pharmacol. 2013;8:621–42.

    Article  PubMed  Google Scholar 

  72. Gaskill PJ, Calderon TM, Luers AJ, et al. Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol. 2009;175:1148–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Czub S, Koutsilieri E, Sopper S, et al. Enhancement of central nervous system pathology in early simian immunodeficiency virus infection by dopaminergic drugs. Acta Neuropathol. 2001;101:85–91.

    CAS  PubMed  Google Scholar 

  74. Czub S, Czub M, Koutsilieri E, et al. Modulation of simian immunodeficiency virus neuropathology by dopaminergic drugs. Acta Neuropathol. 2004;107:216–26.

    Article  CAS  PubMed  Google Scholar 

  75. Marcondes MC, Flynn C, Watry DD, et al. Methamphetamine increases brain viral load and activates natural killer cells in simian immunodeficiency virus-infected monkeys. Am J Pathol. 2010;177:355–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Bokhari SM, Hegde R, Callen S, et al. Morphine potentiates neuropathogenesis of SIV infection in rhesus macaques. J Neuroimmune Pharmacol. 2011;6:626–39.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Weed M, Adams RJ, Hienz RD, et al. SIV/macaque model of HIV infection in cocaine users: minimal effects of cocaine on behavior, virus replication, and CNS inflammation. J Neuroimmune Pharmacol. 2012;7:401–11.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Buch S, Yao H, Guo M, et al. Cocaine and HIV-1 interplay in CNS: cellular and molecular mechanisms. Curr HIV Res. 2012;10:425–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Liu X, Silverstein PS, Singh V, et al. Methamphetamine increases LPS-mediated expression of IL-8, TNF-alpha and IL-1beta in human macrophages through common signaling pathways. PLoS One. 2012;7:e33822.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Cisneros IE, Ghorpade A. HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res. 2012;10:392–406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Yang Y, Yao H, Lu Y, et al. Cocaine potentiates astrocyte toxicity mediated by human immunodeficiency virus (HIV-1) protein gp120. PLoS One. 2010;5:e13427.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Strazza M, Pirrone V, Wigdahl B, et al. Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res. 2011;1399:96–115. A review of the effects of HIV infection on the BBB, specifically addressing the role of HIV proteins, monocyte chemotaxis across the BBB, and the compounding effects of drug abuse.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Martins T, Baptista S, Goncalves J, et al. Methamphetamine transiently increases the blood-brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9. Brain Res. 2011;1411:28–40.

    CAS  PubMed  Google Scholar 

  84. Dhillon NK, Peng F, Bokhari S, et al. Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood-brain barrier: implications for HIV-dementia. J Neuroimmune Pharmacol. 2008;3:52–6.

    Article  PubMed  Google Scholar 

  85. Sharma HS, Ali SF. Alterations in blood-brain barrier function by morphine and methamphetamine. Ann N Y Acad Sci. 2006;1074:198–224.

    Article  CAS  PubMed  Google Scholar 

  86. Yousif S, Saubamea B, Cisternino S, et al. Effect of chronic exposure to morphine on the rat blood-brain barrier: focus on the P-glycoprotein. J Neurochem. 2008;107:647–57.

    Article  CAS  PubMed  Google Scholar 

  87. Mellins CA, Havens JF, McDonnell C, et al. Adherence to antiretroviral medications and medical care in HIV-infected adults diagnosed with mental and substance abuse disorders. AIDS Care. 2009;21:168–77.

    Article  PubMed  Google Scholar 

  88. Roux P, Carrieri MP, Villes V, et al. The impact of methadone or buprenorphine treatment and ongoing injection on highly active antiretroviral therapy (HAART) adherence: evidence from the MANIF2000 cohort study. Addiction. 2008;103:1828–36.

    Article  PubMed  Google Scholar 

  89. Carrico AW. Substance use and HIV disease progression in the HAART era: implications for the primary prevention of HIV. Life Sci. 2011;88:940–7.

    Article  CAS  PubMed  Google Scholar 

  90. Deeks SG. Immune dysfunction, inflammation, and accelerated aging in patients on antiretroviral therapy. Top HIV Med. 2009;17:118–23.

    PubMed  Google Scholar 

  91. Xu J, Ikezu T. The comorbidity of HIV-associated neurocognitive disorders and Alzheimer's disease: a foreseeable medical challenge in post-HAART era. J Neuroimmune Pharmacol. 2009;4:200–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Achim CL, Adame A, Dumaop W, et al. Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J Neuroimmune Pharmacol. 2009;4:190–9.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Khanlou N, Moore DJ, Chana G, et al. Increased frequency of alpha-synuclein in the substantia nigra in human immunodeficiency virus infection. J Neurovirol. 2009;15:131–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Soontornniyomkij V, Moore DJ, Gouaux B, et al. Cerebral beta-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE epsilon4 carriers. AIDS. 2012;26:2327–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Smith DB, Simmonds P, Bell JE. Brain viral burden, neuroinflammation and neurodegeneration in HAART-treated HIV positive injecting drug users. J Neurovirol. 2014;20:28–38.

    Article  CAS  PubMed  Google Scholar 

  96. Fields J, Dumaop W, Rockenstein E, et al. Age-dependent molecular alterations in the autophagy pathway in HIVE patients and in a gp120 tg mouse model: reversal with beclin-1 gene transfer. J Neurovirol. 2013;19:89–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Salminen A, Kaarniranta K, Kauppinen A, et al. Impaired autophagy and APP processing in Alzheimer's disease: the potential role of Beclin 1 interactome. Prog Neurobiol. 2013;106–107:33–54. An exhaustive review of autophagy, APP processing and the unique role for Beclin-1, a critical component of the autophagosome. Although dealing primarily with AD, it presents an interesting discussion of the implications for several viral diseases, including HIV CNS infection.

    Article  PubMed  Google Scholar 

  98. Seider TR, Luo X, Gongvatana A, et al. Verbal memory declines more rapidly with age in HIV infected versus uninfected adults. J Clin Exp Neuropsychol. 2014;36:356–67.

    Article  PubMed  Google Scholar 

  99. Holt JL, Kraft-Terry SD, Chang L. Neuroimaging studies of the aging HIV-1-infected brain. J Neurovirol. 2012;18:291–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Cassol E, Misra V, Dutta A, et al. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS. 2014;28.

  101. Chang L, Holt JL, Yakupov R, et al. Lower cognitive reserve in the aging human immunodeficiency virus-infected brain. Neurobiol Aging. 2013;34:1240–53. This large (n = 122 patients) fMRI study demonstrated poorer regional brain compensation through recruitment of functional attention networks in HIV infected individuals under demand test conditions. Synergistic effects of HIV and aging were proposed.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Thomas JB, Brier MR, Snyder AZ, et al. Pathways to neurodegeneration: effects of HIV and aging on resting-state functional connectivity. Neurology. 2013;80:1186–93.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Alexander J. Gill and Dennis L. Kolson declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis L. Kolson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, A.J., Kolson, D.L. Chronic Inflammation and the Role for Cofactors (Hepatitis C, Drug Abuse, Antiretroviral Drug Toxicity, Aging) in HAND Persistence. Curr HIV/AIDS Rep 11, 325–335 (2014). https://doi.org/10.1007/s11904-014-0210-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-014-0210-3

Keywords

Navigation