Skip to main content

Advertisement

Log in

Mechanisms of Neuroimmunity and Neurodegeneration Associated with HIV-1 Infection and AIDS

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Infection with the human immunodeficiency virus-1 (HIV-1) and acquired immunodeficiency syndrome (AIDS) are a persistent health problem worldwide. HIV-1 seems to enter the brain very soon after peripheral infection and can induce severe and debilitating neurological problems that include behavioral abnormalities, motor dysfunction, and frank dementia. Infected peripheral immune-competent cells, in particular macrophages, appear to infiltrate the CNS and provoke a neuropathological response involving all cell types in the brain. The course of HIV-1 disease is strongly influenced by viral and host factors, such as the viral strain and the response of the host's immune system. In addition, HIV-1-dependent disease processes in the periphery have a substantial effect on the pathological changes in the central nervous system (CNS), although the brain eventually harbors a distinctive viral population of its own. In the CNS, HIV-1 also incites activation of chemokine receptors, inflammatory mediators, extracellular matrix-degrading enzymes, and glutamate receptor-mediated excitotoxicity, all of which can initiate numerous downstream signaling pathways and disturb neuronal and glial function. Although there have been many major improvements in the control of viral infection in the periphery, an effective therapy for HIV-1-associated dementia (HAD) is still not available. This article addresses recently uncovered pathologic neuroimmune and degenerative mechanisms contributing to neuronal damage induced by HIV-1 and discusses experimental and potentially future therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Adamson DC, Wildemann B, Sasaki M, Glass JD, McArthur JC, Christov VI, Dawson TM, Dawson VL (1996) Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274:1917–1921

    Article  PubMed  CAS  Google Scholar 

  • Adle-Biassette H, Chretien F, Wingertsmann L, Hery C, Ereau T, Scaravilli F, Tardieu M, Gray F (1999) Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol Appl Neurobiol 25:123–133

    Article  PubMed  CAS  Google Scholar 

  • Agace WW, Amara A, Roberts AI, Pablos JL, Thelen S, Uguccioni M, Li XY, Marsal J, Arenzana-Seisdedos F, Delaunay T, Ebert EC, Moser B, Parker CM (2000) Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Curr Biol 10:325–328

    Article  PubMed  CAS  Google Scholar 

  • Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640

    Article  PubMed  CAS  Google Scholar 

  • Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE (2005) Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol 64:529–536

    PubMed  CAS  Google Scholar 

  • Asensio VC, Campbell IL (1999) Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22:504–512

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    Article  PubMed  CAS  Google Scholar 

  • Brenneman DE, Westbrook GL, Fitzgerald SP, Ennist DL, Elkins KL, Ruff MR, Pert CB (1988) Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature 335:639–642

    Article  PubMed  CAS  Google Scholar 

  • Bruno V, Copani A, Besong G, Scoto G, Nicoletti F (2000) Neuroprotective activity of chemokines against N-methyl-d-aspartate or beta-amyloid-induced toxicity in culture. Eur J Pharmacol 399:117–121

    Article  PubMed  CAS  Google Scholar 

  • Butovsky O, Talpalar AE, Ben Yaakov K, Schwartz M (2005) Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29:381–393

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25:1788–1796

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Sulcove J, Frank I, Jaffer S, Ozdener H, Kolson DL (2002) Development of a human neuronal cell model for human immunodeficiency virus (HIV)-infected macrophage-induced neurotoxicity: apoptosis induced by HIV type 1 primary isolates and evidence for involvement of the Bcl-2/Bcl-xL-sensitive intrinsic apoptosis pathway. J Virol 76:9407–9419

    Article  PubMed  CAS  Google Scholar 

  • Cocchi F, Devico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815

    Article  PubMed  CAS  Google Scholar 

  • Cunningham PH, Smith DG, Satchell C, Cooper DA, Brew B (2000) Evidence for independent development of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinal fluid. AIDS 14:1949–1954

    Article  PubMed  CAS  Google Scholar 

  • D'hooge R, Franck F, Mucke L, De Deyn PP (1999) Age-related behavioural deficits in transgenic mice expressing the HIV-1 coat protein gp120. Eur J Neurosci 11:4398–4402

    Article  PubMed  Google Scholar 

  • Digicaylioglu M, Kaul M, Fletcher L, Dowen R, Lipton SA (2004) Erythropoietin protects cerebrocortical neurons from HIV-1/gp120-induced damage. Neuroreport 15:761–763

    Article  PubMed  Google Scholar 

  • Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673

    Article  PubMed  CAS  Google Scholar 

  • Dreyer EB, Kaiser PK, Offermann JT, Lipton SA (1990) HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248:364–367

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Deutsch R, Heaton RK, Marcotte TD, McCutchan JA, Nelson JA, Abramson I, Thal LJ, Atkinson JH, Wallace MR, Grant I (1997) Neurocognitive impairment is an independent risk factor for death in HIV infection. San Diego HIV Neurobehavioral Research Center Group. Arch Neurol 54: 416–424

    PubMed  CAS  Google Scholar 

  • Everall IP, Bell C, Mallory M, Langford D, Adame A, Rockestein E, Masliah E (2002) Lithium ameliorates HIV-gp120-mediated neurotoxicity. Mol Cell Neurosci 21:493–501

    Article  PubMed  CAS  Google Scholar 

  • Fiala M, Looney DJ, Stins M, Way DD, Zhang L, Gan X, Chiappelli F, Schweitzer ES, Shapshak P, Weinand M, Graves MC, Witte M, Kim KS (1997) TNF-alpha opens a paracellular route for HIV-1 invasion across the blood–brain barrier. Mol Med 3:553–564

    PubMed  CAS  Google Scholar 

  • Fontana G, Valenti L, Raiteri M (1997) gp120 can revert antagonism at the glycine site of NMDA receptors mediating GABA release from cultured hippocampal neurons. J Neurosci Res 49:732–738

    Article  PubMed  CAS  Google Scholar 

  • Garden GA, Budd SL, Tsai E, Hanson L, Kaul M, D'Emilia DM, Friedlander RM, Yuan J, Masliah E, Lipton SA (2002) Caspase cascades in human immunodeficiency virus-associated neurodegeneration. J Neurosci 22:4015–4024

    PubMed  CAS  Google Scholar 

  • Garden GA, Guo W, Jayadev S, Tun C, Balcaitis S, Choi J, Montine TJ, Moller T, Morrison RS (2004) HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J 18:1141–1143

    PubMed  CAS  Google Scholar 

  • Gartner S (2000) HIV infection and dementia. Science 287:602–604

    Article  PubMed  CAS  Google Scholar 

  • Gendelman HE, Grant I, Lipton SA, Everall I, Swindells S (2005) The neurology of AIDS. Oxford University Press, London

    Google Scholar 

  • Giulian D, Vaca K, Noonan CA (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250:1593–1596

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Wendt E, Vaca K, Noonan CA (1993) The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotoxins from monocytes. Proc Natl Acad Sci USA 90:2769–2773

    Article  PubMed  CAS  Google Scholar 

  • Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38:755–762

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S, Kulkarni H, Bamshad MJ, Telles V, Anderson SA, Walter EA, Stephan KT, Deucher M, Mangano A, Bologna R, Ahuja SS, Dolan MJ, Ahuja SK (2002) HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci USA 99:13795–13800

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  PubMed  CAS  Google Scholar 

  • He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Busciglio J, Yang X, Hofmann W, Newman W, Mackay CR, Sodroski J, Gabuzda D (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385:645–649

    Article  PubMed  CAS  Google Scholar 

  • Hesselgesser J, Taub D, Baskar P, Greenberg M, Hoxie J, Kolson DL, Horuk R (1998) Neuronal apoptosis induced byHIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr Biol 8:595–598

    Article  PubMed  CAS  Google Scholar 

  • Heyes MP, Brew BJ, Martin A, Price RW, Salazar AM, Sidtis JJ, Yergey JA, Mouradian MM, Sadler AE, Keilp J, Rubinow D, Markey SP (1991) Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol 29:202–209

    Article  PubMed  CAS  Google Scholar 

  • Ho DD, Rota TR, Schooley RT, Kaplan JC, Allan JD, Groopman JE, Resnick L, Felsenstein D, Andrews CA, Hirsch MS (1985) Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N Engl J Med 313:1493–1497

    PubMed  CAS  Google Scholar 

  • Jana A, Pahan K (2004) Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J Neurosci 24:9531–9540

    Article  PubMed  CAS  Google Scholar 

  • Johnston JB, Jiang Y, van Marle G, Mayne MB, Ni W, Holden J, McArthur JC, Power C (2000) Lentivirus infection in the brain induces matrix metalloproteinase expression: role of envelope diversity. J Virol 74:7211–7220

    Article  PubMed  CAS  Google Scholar 

  • Jordan-Sciutto KL, Wang G, Murphey-Corb M, Wiley CA (2002) Cell cycle proteins exhibit altered expression patterns in lentiviral-associated encephalitis. J Neurosci 22:2185–2195

    PubMed  CAS  Google Scholar 

  • Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994

    Article  PubMed  CAS  Google Scholar 

  • Kaul M, Lipton SA (1999) Chemokines and activated macrophages in gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96:8212–8216

    Article  PubMed  CAS  Google Scholar 

  • Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892

    Article  PubMed  CAS  Google Scholar 

  • Khan MZ, Brandimarti R, Musser BJ, Resue DM, Fatatis A, Meucci O (2003) The chemokine receptor CXCR4 regulates cell-cycle proteins in neurons. J Neurovirol 9:300–314

    Article  PubMed  CAS  Google Scholar 

  • Khan MZ, Brandimarti R, Patel JP, Huynh N, Wang J, Huang Z, Fatatis A, Meucci O (2004) Apoptotic and antiapoptotic effects of CXCR4: is it a matter of intrinsic efficacy? Implications for HIV neuropathogenesis. AIDS Res Hum Retrovir 20:1063–1071

    Article  PubMed  CAS  Google Scholar 

  • Khan MZ, Shimizu S, Patel JP, Nelson A, Le MT, Mullen-Przeworski A, Brandimarti R, Fatatis A, Meucci O (2005) Regulation of neuronal P53 activity by CXCR4. Mol Cell Neurosci 30:58–66

    Article  PubMed  CAS  Google Scholar 

  • Koedel U, Kohleisen B, Sporer B, Lahrtz F, Ovod V, Fontana A, Erfle V, Pfister HW (1999) HIV type 1 Nef protein is a viral factor for leukocyte recruitment into the central nervous system. J Immunol 163:1237–1245

    PubMed  CAS  Google Scholar 

  • Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111:194–213

    Article  PubMed  CAS  Google Scholar 

  • Krathwohl MD, Kaiser JL (2004a) Chemokines promote quiescence and survival of human neural progenitor cells. Stem Cells 22:109–118

    Article  PubMed  CAS  Google Scholar 

  • Krathwohl MD, Kaiser JL (2004b) HIV-1 promotes quiescence in human neural progenitor cells. J Infect Dis 190:216–226

    Article  PubMed  CAS  Google Scholar 

  • Langford D, Sanders VJ, Mallory M, Kaul M, Masliah E (2002) Expression of stromal cell-derived factor 1alpha protein in HIV encephalitis. J Neuroimmunol 127:115–126

    Article  PubMed  CAS  Google Scholar 

  • Langford TD, Letendre SL, Larrea GJ, Masliah E (2003) Changing patterns in the neuropathogenesis of HIV during the HAART era. Brain Pathol 13:195–210

    PubMed  CAS  Google Scholar 

  • Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30:973–981

    Article  PubMed  CAS  Google Scholar 

  • Lavi E, Kolson DL, Ulrich AM, Fu L, Gonzalez-Scarano F (1998) Chemokine receptors in the human brain and their relationship to HIV infection. J Neurovirol 4:301–311

    PubMed  CAS  Google Scholar 

  • Letendre SL, Lanier ER, McCutchan JA (1999) Cerebrospinal fluid beta chemokine concentrations in neurocognitively impaired individuals infected with human immunodeficiency virus type 1. J Infect Dis 180:310–319

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA (1997) Treating AIDS dementia [letter; comment]. Science 276:1629–1630

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Sucher NJ, Kaiser PK, Dreyer EB (1991) Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron 7:111–118

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 Tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387

    Article  PubMed  CAS  Google Scholar 

  • Locati M, Murphy PM (1999) Chemokines and chemokine receptors: biology and clinical relevance in inflammation and AIDS. Annu Rev Med 50:425–440

    Article  PubMed  CAS  Google Scholar 

  • Lopalco L, Barassi C, Paolucci C, Breda D, Brunelli D, Nguyen M, Nouhin J, Luong TT, Truong LX, Clerici M, Calori G, Lazzarin A, Pancino G, Burastero SE (2005) Predictive value of anti-cell and anti-human immunodeficiency virus (HIV) humoral responses in HIV-1-exposed seronegative cohorts of European and Asian origin. J Gen Virol 86:339–348

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A 95:9448–9453

    Article  PubMed  CAS  Google Scholar 

  • Marshall DC, Wyss-Coray T, Abraham CR (1998) Induction of matrix metalloproteinase-2 in human immunodeficiency virus-1 glycoprotein 120 transgenic mouse brains. Neurosci Lett 254:97–100

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, Achim CL, McCutchan JA, Nelson JA, Atkinson JH, Grant I (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC group. The HIV Neurobehavioral Research Center. Ann Neurol 42:963–972

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12:893–904

    Article  PubMed  CAS  Google Scholar 

  • McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NM, McArthur JH, Selnes OA, Jacobson LP (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43:2245–2252

    PubMed  CAS  Google Scholar 

  • McArthur JC, Haughey N, Gartner S, Conant K, Pardo C, Nath A, Sacktor N (2003) Human immunodeficiency virus-associated dementia: an evolving disease. J Neurovirol 9:205–221

    Article  PubMed  CAS  Google Scholar 

  • McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213:442–456

    Article  PubMed  CAS  Google Scholar 

  • Melton ST, Kirkwood CK, Ghaemi SN (1997) Pharmacotherapy of HIV dementia. Ann Pharmacother 31:457–473

    PubMed  CAS  Google Scholar 

  • Meucci O, Miller RJ (1996) Gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci 16:4080–4088

    PubMed  CAS  Google Scholar 

  • Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA 95:14500–14505

    Article  PubMed  CAS  Google Scholar 

  • Meucci O, Fatatis A, Simen AA, Miller RJ (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci 97:8075–8080

    Article  PubMed  CAS  Google Scholar 

  • Michael NL, Moore JP (1999) HIV-1 entry inhibitors: evading the issue [news] [see comments]. Nat Med 5:740–742

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Meucci O (1999) AIDS and the brain: is there a chemokine connection? Trends Neurosci 22:471–479

    Article  PubMed  CAS  Google Scholar 

  • Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321

    Article  PubMed  CAS  Google Scholar 

  • New DR, Ma M, Epstein LG, Nath A, Gelbard HA (1997) Human immunodeficiency virus type 1 tat protein induces death by apoptosis in primary human neuron cultures. J Neurovirol 3:168–173

    PubMed  CAS  Google Scholar 

  • Nicotera P, Ankarcrona M, Bonfoco E, Orrenius S, Lipton SA (1997) Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress. Adv Neurol 72:95–101

    PubMed  CAS  Google Scholar 

  • Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE (1996) Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 156:1284–1295

    PubMed  CAS  Google Scholar 

  • Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382:833–835

    Article  PubMed  CAS  Google Scholar 

  • Ohagen A, Ghosh S, He J, Huang K, Chen Y, Yuan M, Osathanondh R, Gartner S, Shi B, Shaw G, Gabuzda D (1999) Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: evidence for a role of the envelope. J Virol 73:897–906

    PubMed  CAS  Google Scholar 

  • Paxton WA, Martin SR, Tse D, O'Brien TR, Skurnick J, VanDevanter NL, Padian N, Braun JF, Kotler DP, Wolinsky SM, Koup RA (1996) Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med 2:412–417

    Article  PubMed  CAS  Google Scholar 

  • Persidsky Y, Buttini M, Limoges J, Bock P, Gendelman HE (1997) An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. J Neurovirol 3:401–416

    Article  PubMed  CAS  Google Scholar 

  • Petito CK, Roberts B (1995) Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 146:1121–1130

    PubMed  CAS  Google Scholar 

  • Petito CK, Cho ES, Lemann W, Navia BA, Price RW (1986) Neuropathology of acquired immunodeficiency syndrome (AIDS): an autopsy review. J Neuropathol Exp Neurol 45:635–646

    Article  PubMed  CAS  Google Scholar 

  • Piller SC, Jans P, Gage PW, Jans DA (1998) Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: implications for AIDS pathology. Proc Natl Acad Sci U S A 95:4595–4600

    Article  PubMed  CAS  Google Scholar 

  • Power C, McArthur JC, Nath A, Wehrly K, Mayne M, Nishio J, Langelier T, Johnson RT, Chesebro B (1998) Neuronal death induced by brain-derived human immunodeficiency virus type 1 envelope genes differs between demented and nondemented AIDS patients. J Virol 72:9045–9053

    PubMed  CAS  Google Scholar 

  • Power C, Gill MJ, Johnson RT (2002) Progress in clinical neurosciences: the neuropathogenesis of HIV infection: host–virus interaction and the impact of therapy. Can J Neurol Sci 29:19–32

    PubMed  CAS  Google Scholar 

  • Talley AK, Dewhurst S, Perry SW, Dollard SC, Gummuluru S, Fine SM, New D, Epstein LG, Gendelman HE, Gelbard HA (1995) Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetylcysteine and the genes Bcl-2 and crma. Mol Cell Biol 15:2359–2366

    PubMed  CAS  Google Scholar 

  • Tenneti L, D'Emilia DM, Troy CM, Lipton SA (1998) Roleofcaspases in N-methyl-d-aspartate-induced apoptosisin cerebrocortical neurons. J Neurochem 71:946– 959

    Article  PubMed  CAS  Google Scholar 

  • Toggas SM, Masliah E, Mucke L (1996) Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res 706:303–307

    Article  PubMed  CAS  Google Scholar 

  • Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367:188–193

    Article  PubMed  CAS  Google Scholar 

  • Tran PB, Miller RJ (2003) Chemokine receptors: signposts to brain development and disease. Nat Rev Neurosci 4:444–455

    Article  PubMed  CAS  Google Scholar 

  • Turchan J, Sacktor N, Wojna V, Conant K, Nath A (2003) Neuroprotective therapy for HIV dementia. Curr HIV Res 1:373–383

    Article  PubMed  CAS  Google Scholar 

  • Turrin NP, Rivest S (2004) Unraveling the molecular details involved in the intimate link between the immune and neuroendocrine systems. Exp Biol Med (Maywood) 229:996–1006

    CAS  Google Scholar 

  • UNAIDS (2004) 2004 report on the global AIDS epidemic; executive summary. Report

  • Verani A, Lusso P (2002) Chemokines as natural HIV antagonists. Curr Mol Med 2:691–702

    Article  PubMed  CAS  Google Scholar 

  • Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE (1997) Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol 74:1–8

    Article  PubMed  CAS  Google Scholar 

  • Xiong H, Zeng YC, Lewis T, Zheng J, Persidsky Y, Gendelman HE (2000) HIV-1 infected mononuclear phagocyte secretory products affect neuronal physiology leading to cellular demise: relevance for HIV-1-associated dementia. J Neurovirol 6:S14–S23

    PubMed  CAS  Google Scholar 

  • Yeh MW, Kaul M, Zheng J, Nottet HS, Thylin M, Gendelman HE, Lipton SA (2000) Cytokine-stimulated, but not HIV-infected, human monocyte-derived macrophages produce neurotoxic levels of l-cysteine. J Immunol 164:4265–4270

    PubMed  CAS  Google Scholar 

  • Zhang K, McQuibban GA, Silva C, Butler GS, Johnston JB, Holden J, Clark-Lewis I, Overall CM, Power C (2003) HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nat Neurosci 6:1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Zhao ML, Si Q, Lee SC (2004) IL-16 expression in lymphocytes and microglia in HIV-1 encephalitis. Neuropathol Appl Neurobiol 30:233–242

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Thylin MR, Ghorpade A, Xiong H, Persidsky Y, Cotter R, Niemann D, Che M, Zeng YC, Gelbard HA, Shepard RB, Swartz JM, Gendelman HE (1999) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98:185–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M.K. and S.A.L. are supported by the National Institutes of Health, R01 NS050621 (to M.K.), P01 HD029587, R01 EY09024, R01 NS046994, R01 EY05477, and R01 NS41207 (to S.A.L.). S.A.L. is/has been a consultant to Allergan, Alcon, Forest Laboratories, NeuroMolecular Pharmaceuticals, Inc., and Neurobiological Technologies, Inc. in the field of neuroprotective agents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Kaul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaul, M., Lipton, S.A. Mechanisms of Neuroimmunity and Neurodegeneration Associated with HIV-1 Infection and AIDS. Jrnl NeuroImmune Pharm 1, 138–151 (2006). https://doi.org/10.1007/s11481-006-9011-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-006-9011-9

Keywords

Navigation