Skip to main content

Advertisement

Log in

Tight Junction Regulation by Morphine and HIV-1 Tat Modulates Blood–Brain Barrier Permeability

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus (HIV)-1 patients who abuse opiates are at a greater risk of developing neurological complications of AIDS. Alterations in blood–brain barrier (BBB) integrity are associated with cytoskeletal disorganization and disruption of tight junction (TJ) integrity. We hypothesize that opiates in combination with HIV-1 viral proteins can modulate TJ expression in primary brain microvascular endothelial cells (BMVEC), thereby compromising BBB integrity and exacerbating HIV-1 neuropathogenesis. We investigated the effect of morphine and/or tat on the expression of TJ proteins ZO-1, JAM-2, Occludin and P-glycoprotein and the functional effects of TJ modulation in BMVEC. Morphine and/or tat, via the activation of pro-inflammatory cytokines, intracellular Ca2+ release, and activation of myosin light chain kinase, modulated TJ expression resulting in decreased transendothelial electric resistance and enhanced transendothelial migration across the BBB. These studies may lead to the development of novel anti-HIV-1 therapeutics that target specific TJ proteins, thus preventing TJ disruption in opiate using HIV-1 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ozdener H. Molecular mechanisms of HIV-1 associated neurodegeneration. J Biosci 2005;30(3):391–405.

    Article  PubMed  CAS  Google Scholar 

  2. Trujillo JR, Jaramillo-Rangel G, Ortega-Martinez M, Penalva de Oliveira AC, Vidal JE, Bryant J, et al. International neuroAIDS: prospects of HIV-1 associated neurological complications. Cell Res 2005;15(11–12):962–9.

    Article  PubMed  CAS  Google Scholar 

  3. Lipton SA. HIV-related neurotoxicity. Brain Pathol 1991;1:193.

    Article  PubMed  CAS  Google Scholar 

  4. Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, et al. Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 1996;156:1284.

    PubMed  CAS  Google Scholar 

  5. Nottet HS. Interactions between macrophages and brain microvascular endothelial cells: role in pathogenesis of HIV-1 infection and blood–brain barrier function. J Neurovirol 1999;5:659.

    Article  PubMed  CAS  Google Scholar 

  6. Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 2002;186(Suppl 2):S193.

    Article  PubMed  CAS  Google Scholar 

  7. Gendelman HE, Persidsky Y, Ghorpade A, Limoges J, Stins M, Fiala M, et al. The neuropathogenesis of the AIDS dementia complex. AIDS 1997;11(Suppl A):S35.

    PubMed  Google Scholar 

  8. Persidsky Y, Ghorpade A, Rasmussen J, Limoges J, Liu XJ, Stins M, et al. Microglial and astrocyte chemokines regulate monocyte migration through the blood–brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol 1999;155:1599.

    PubMed  CAS  Google Scholar 

  9. Boven LA, Middel J, Breij EC, Schotte D, Verhoef J, Soderland C, et al. Interactions between HIV-infected monocyte-derived macrophages and human brain microvascular endothelial cells result in increased expression of CC chemokines. J Neurovirol 2000;6:382.

    Article  PubMed  CAS  Google Scholar 

  10. Krebs FC, Ross H, McAllister J, Wigdahl B. HIV-1-associated central nervous system dysfunction. Adv Pharmacol 2000;49:315.

    Article  PubMed  CAS  Google Scholar 

  11. Wu DT, Woodman SE, Weiss JM, McManu CM, D’Aversa TG, Hesselgesser J, et al. Mechanisms of leukocyte trafficking into the CNS. J Neurovirol 2000;6(Suppl 1):S82.

    PubMed  CAS  Google Scholar 

  12. Worthylake RA, Burridge K. Leukocyte transendothelial migration: orchestrating the underlying molecular machinery. Curr Opin Cell Biol 2001;13:569.

    Article  PubMed  CAS  Google Scholar 

  13. Kolson DL. Neuropathogenesis of central nervous system HIV-1 infection. Clin Lab Med 2002;22:703.

    Article  PubMed  Google Scholar 

  14. Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 2006;26(4):1098–106.

    Article  PubMed  CAS  Google Scholar 

  15. Chang SL, Felix B, Jiang Y, Fiala M. Actions of endotoxin and morphine. Adv Exp Med Biol 2001;493:187–96.

    Article  PubMed  CAS  Google Scholar 

  16. Mahajan SD, Schwartz SA, Shanahan TC, Chawda RP, Nair MP. Morphine regulates gene expression of alpha- and beta-chemokines and their receptors on astroglial cells via the opioid mu receptor. J Immunol 2002;169(7):3589–99.

    PubMed  CAS  Google Scholar 

  17. Mahajan SD, Aalinkeel R, Reynolds JL, Nair BB, Fernandez SF, Schwartz SA, et al. Morphine exacerbates HIV-1 viral protein gp120 induced modulation of chemokine gene expression in U373 astrocytoma cells. Curr HIV Res 2005;3(3):277–88.

    Article  PubMed  CAS  Google Scholar 

  18. Nath A, Anderson C, Jones M, Maragos W, Booze R, Mactutus C, et al. Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia. J Psychopharmacol 2000;14(3):222–7.

    PubMed  CAS  Google Scholar 

  19. Li W, Galey D, Mattson MP, Nath A. Molecular and cellular mechanisms of neuronal cell death in HIV dementia. Neurotoxicol Res 2005;8(1–2):119–34.

    CAS  Google Scholar 

  20. Donahoe RM, Vlahov D. Opiates as potential cofactors in progression of HIV-1 infections to AIDS. J Neuroimmunol 1998;83(1–2):77–87.

    Article  PubMed  CAS  Google Scholar 

  21. Hauser KF, El-Hage N, Buch S, Berger JR, Tyor WR, Nath A, et al. Molecular targets of opiate drug abuse in neuroAIDS. Neurotox Res 2005;8(1–2):63–80.

    PubMed  CAS  Google Scholar 

  22. Hauser KF, El-Hage N, Buch S, Nath A, Tyor WR, Bruce-Keller AJ, et al. Impact of opiate-HIV-1 interactions on neurotoxic signaling. J Neuroimmune Pharmacol 2006;1(1):98–105.

    Article  PubMed  Google Scholar 

  23. Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 1996;134(4):1031–49.

    Article  PubMed  CAS  Google Scholar 

  24. Balda M, Matter K. Tight junctions. J Cell Sci 1998;111(5):541–7.

    PubMed  CAS  Google Scholar 

  25. Ma TY, Tran D, Hoa N, Nguyen D, Merryfield M, Tarnawski A. Mechanism of extracellular calcium regulation of intestinal epithelial tight junction permeability: role of cytoskeletal involvement. Microsc Res Tech 2000;51:156.

    Article  PubMed  CAS  Google Scholar 

  26. Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci 2001;24:719.

    Article  PubMed  CAS  Google Scholar 

  27. Aurrand-Lions M, Duncan L, Ballestrem C, Imhof BA. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cell. J Biol Chem 2001;276(4):2733–41.

    Article  PubMed  CAS  Google Scholar 

  28. Aurrand-Lions M, Johnson-Leger C, Lamagna C, Ozaki H, Kita T, Imhof BA. Junctional adhesion molecules and interendothelial junctions. Cells Tissues Organs 2002;172(3):152–60.

    Article  PubMed  CAS  Google Scholar 

  29. Luscinskas FW, Ma S, Nusrat A, Parkos CA, Shaw SK. The role of endothelial cell lateral junctions during leukocyte trafficking. Immunol Rev 2002;186:57.

    Article  PubMed  CAS  Google Scholar 

  30. Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M. HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 2003;74:255–65.

    Article  PubMed  CAS  Google Scholar 

  31. Andras IE, Pu H, Tian J, Deli MA, Nath A, Hennig B, et al. Signaling mechanisms of HIV-1 Tat-induced alterations of claudin-5 expression in brain endothelial cells. J Cereb Blood Flow Metab 2005;25(9):1159–70.

    Article  PubMed  CAS  Google Scholar 

  32. Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 2004;286(6):C1213–28.

    Article  PubMed  CAS  Google Scholar 

  33. Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57(2):173–85.

    Article  PubMed  CAS  Google Scholar 

  34. Denker BM, Nigam SK. Molecular structure and assembly of the tight junction. Am J Physiol Renal Physiol 1998;274:F1–F9.

    CAS  Google Scholar 

  35. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998;141(7):1539–50.

    Article  PubMed  CAS  Google Scholar 

  36. Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 1999;147:891.

    Article  PubMed  CAS  Google Scholar 

  37. Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 2000;275(27):20520–6.

    Article  PubMed  CAS  Google Scholar 

  38. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006;86(1):279–367.

    Article  PubMed  CAS  Google Scholar 

  39. Tsukita S, Furuse M, Itoh M. Molecular architecture of tight junctions: occludin and ZO-1. Soc Gen Physiol Ser 1997;52:69–76.

    PubMed  CAS  Google Scholar 

  40. Pu H, Tian J, Flora G, Lee YW, Nath A, Hennig B, Toborek M. HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol Cell Neurosci 2003;24(1):224–37.

    Article  PubMed  CAS  Google Scholar 

  41. Cabral GA. Drugs of abuse, immune modulation, and AIDS. J Neuroimmune Pharmacol 2006;1(3):280–95.

    Article  PubMed  Google Scholar 

  42. Toborek M, Lee YW, Flora G, Pu H, Andras IE, Wylegala E, et al. Mechanisms of the blood–brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 2005;25(1):181–99.

    Article  PubMed  Google Scholar 

  43. Persidsky Y, Gendelman HE. Development of laboratory and animal model systems for HIV-1 encephalitis and its associated dementia. J Leukoc Biol 1997;62(1):100–6.

    PubMed  CAS  Google Scholar 

  44. Persidsky Y, Stins M, Way D, Witte MH, Weinand M, Kim KS, et al. A model for monocyte migration through the blood–brain barrier during HIV-1 encephalitis. J Immunol 1997;158(7):3499–510.

    PubMed  CAS  Google Scholar 

  45. Mahajan S, Schwartz SA, Sykes D, Chawda R, Aalinkeel R, Nair MPN. Effect of HIV peptides on trans-endothelial migration of dendritic cells across the blood brain barrier. 12th International Congress of Immunology and 4th Annual Conference of FOCIS, Montreal, Canada, July 2004, Medimond Press, p. 153–159, 2004.

  46. Meyer TP, Zehnter I, Hofmann B, Zaisserer J, Burkhart J, Rapp S, et al. Filter buffy coats (FBC): a source of peripheral blood leukocytes recovered from leukocyte depletion filters. J Immunol Methods 2005;307(1–2):150–66.

    Article  PubMed  CAS  Google Scholar 

  47. Banks WA, Kastin AJ, Akerstrom V. HIV-1 protein gp120 crosses the blood–brain barrier: role of adsorptive endocytosis. Life Sci 1997;61:PL119–25.

    Article  PubMed  CAS  Google Scholar 

  48. Ricardo-Dukelow M, Kadiu I, Rozek W, Schlautman J, Persidsky Y, Ciborowski P, et al. HIV-1 infected monocyte-derived macrophages affect the human brain microvascular endothelial cell proteome: new insights into blood–brain barrier dysfunction for HIV-1-associated dementia. J Neuroimmunol 2007;185(1–2):37–46.

    Article  PubMed  CAS  Google Scholar 

  49. Chomczynski P, Saachi N. Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162:156–9.

    Article  PubMed  CAS  Google Scholar 

  50. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 2002;29(1):23–39.

    Article  PubMed  CAS  Google Scholar 

  51. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 2004;313(4):856–62.

    Article  PubMed  CAS  Google Scholar 

  52. Current Protocols in Immunology, CopyrightÓ 2007 by Wiley, Hoboken, NJ. 2007.

  53. Fernandez SF, Huang MH, Davidson BA, Knight PR 3rd, Izzo JL Jr. Mechanisms of angiotensin II-mediated decreases in intraneuronal Ca2+ in calcium-loaded stellate ganglion neurons. Hypertension 2005;45(2):276–82.

    Article  PubMed  CAS  Google Scholar 

  54. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006;1(3):223–36.

    Article  PubMed  Google Scholar 

  55. Marie-Claire C, Courtin C, Roques BP, Noble F. Cytoskeletal genes regulation by chronic morphine treatment in rat striatum. Neuropsychopharmacology 2004;29(12):2208–15.

    Article  PubMed  CAS  Google Scholar 

  56. Khurdayan VK, Buch S, El-Hage N, Lutz SE, Goebel SM, Singh IN, et al. Preferential vulnerability of astroglia and glial precursors to combined opioid and HIV-1 tat exposure in vitro. Eur J Neurosci 2004;19(12):3171–82.

    Article  PubMed  Google Scholar 

  57. Collins NT, Cummins PM, Colgan OC, Ferguson G, Birney YA, Murphy RP, et al. Cyclic strain-mediated regulation of vascular endothelial occludin and ZO-1: influence on intercellular tight junction assembly and function. Arterioscler Thromb Vasc Biol 2006;26(1):62–8.

    Article  PubMed  CAS  Google Scholar 

  58. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998;142:117.

    Article  PubMed  CAS  Google Scholar 

  59. Ryan LA, Brester M, Bohac D, Morgello S, Zheng J. Up-regulation of soluble tumor necrosis factor receptor two in plasma of HIV-seropositive individuals who use opiates. AIDS Res Hum Retroviruses 2004;20(1):41–5.

    Article  PubMed  CAS  Google Scholar 

  60. Xie R, et al. The role of P-glycoprotein in blood–brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (−/−) and mdr1a (+/+) mice. Br J Pharmacol 1999;128(3):563–8.

    Article  PubMed  CAS  Google Scholar 

  61. Aquilante CL, Letrent SP, Pollack GM, Brouwer KL. Increased brain P-glycoprotein in morphine tolerant rats. Life Sci 2000;66(4):PL47–51.

    Article  PubMed  CAS  Google Scholar 

  62. Hayashi K, Pu H, Tian J, Andras IE, Lee YW, Hennig B, et al. HIV-tat protein induces P-glycoprotein expression in brain microvascular endothelial cells. J Neurochem 2005;93(5):1231–41.

    Article  PubMed  CAS  Google Scholar 

  63. Hayashi K, Pu H, Andras IE, Eum SY, Yamauchi A, Hennig B, et al. HIV-TAT protein upregulates expression of multidrug resistance protein 1 in the blood–brain barrier. J Cereb Blood Flow Metab 2006;26(8):1052–65.

    Article  PubMed  CAS  Google Scholar 

  64. Yu C, Kastin AJ, Tu H, Waters S, Pan W. TNF activates P-glycoprotein in cerebral microvascular endothelial cells. Cell Physiol Biochem 2007;20(6):853–8.

    Article  PubMed  CAS  Google Scholar 

  65. Wong D, Dorovini-Zis K, Vincent SR. Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood–brain barrier. Exp Neurol 2004;190 (2):446–55.

    Article  PubMed  CAS  Google Scholar 

  66. El-Hage N, Gurwell JA, Singh IN, Knapp PE, Nath A, Hauser KF. Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 tat. Glia 2005;50(2):91–106.

    Article  PubMed  Google Scholar 

  67. Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, et al. Identification of a human immunodeficiency virus type 1 tat epitope that is neuroexcitatory and neurotoxic. J Virol 1996;70(3):1475–80.

    PubMed  CAS  Google Scholar 

  68. Haorah J, Heilman D, Knipe B, Chrastil J, Leibhart J, Ghorpade A, et al. Ethanol-induced activation of myosin light chain kinase leads to dysfunction of tight junctions and blood–brain barrier compromise. Alcohol Clin Exp Res 2005;29(6):999–1009.

    Article  PubMed  CAS  Google Scholar 

  69. Ishmael JE, Löhr CV, Fischer K, Kioussi C. Localization of myosin II regulatory light chain in the cerebral vasculature. Acta Histochem 2008;110:172–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Margaret Duffy and Robert Cameron Troup Memorial Fund of Kaleida Health and the Kaleida Health Foundation. Authors would like to thank Elizabeth Hemedinger, Manager of Laboratory Services at Upstate New York Transplant Services, 110 Broadway, Buffalo, NY 14203 for her assistance in providing leukocyte depletion filters as source of peripheral leukocyte populations for these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley A. Schwartz.

Appendix: Abbreviations

Appendix: Abbreviations

HIV-1:

human immunodeficiency virus-1

ADC:

AIDS dementia complex

BBB:

blood–brain barrier

BMVEC:

brain microvascular endothelial cells

CNS:

central nervous system

DEPC:

diethyl pyrocarbonate

HAD:

HIV-1-associated dementia

HIVE:

human immunodeficiency virus associated encephalopathy

IL-8:

Interleukin-8

JAM-2:

junctional adhesion molecule-2

MLCK:

myosin light chain kinase

NHA:

normal human astrocytes

PBS:

phosphate buffer saline

TAI:

transcript accumulation index

TEER:

transendothelial electrical resistance

TJ:

tight junctions

TNF-α:

tumor necrosis factor-alpha

ZO-1:

zona occludins

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahajan, S.D., Aalinkeel, R., Sykes, D.E. et al. Tight Junction Regulation by Morphine and HIV-1 Tat Modulates Blood–Brain Barrier Permeability. J Clin Immunol 28, 528–541 (2008). https://doi.org/10.1007/s10875-008-9208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-008-9208-1

Keywords

Navigation