Skip to main content

Advertisement

Log in

HIV-Specific Immune Dysregulation and Atherosclerosis

  • Metabolic Complications and Comorbidity (JM Kilby, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

HIV + patients face a heightened risk of cardiovascular disease (CVD), which cannot be fully explained by traditional risk factors or antiretroviral therapy (ART)-related cardiotoxicity. Increasing evidence suggests a significant contribution of HIV-specific immune dysregulation to atherosclerosis. HIV-specific immune dysregulation may have the following atherogenic effects: 1) activation of endothelial and immune cells; 2) enhancement of the percentage of circulating atherogenic immune cell subsets; and 3) modification of lipid function. Efforts are underway to link immune dysregulation markers with validated CVD endpoints and to identify genetic predispositions for HIV-induced atherogenesis. Moreover, immune suppressants are under evaluation in HIV + patients to attempt modification of immune-mediated CVD risk. Taken together, these studies will enhance understanding of CVD risk stratification and reduction strategies in HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Palella Jr FJ, Baker RK, Moorman AC, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006;43(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  2. Lohse N, Hansen AB, Pedersen G, et al. Survival of persons with and without HIV infection in Denmark, 1995–2005. Ann Intern Med. 2007;146(2):87–95.

    PubMed  Google Scholar 

  3. Sackoff JE, Hanna DB, Pfeiffer MR, Torian LV. Causes of death among persons with AIDS in the era of highly active antiretroviral therapy: New York City. Ann Intern Med. 2006;145(6):397–406.

    PubMed  Google Scholar 

  4. Dolan SE, Hadigan C, Killilea KM, et al. Increased cardiovascular disease risk indices in HIV-infected women. J Acquir Immune Defic Syndr. 2005;39(1):44–54.

    Article  PubMed  Google Scholar 

  5. Saves M, Chene G, Ducimetiere P, et al. Risk factors for coronary heart disease in patients treated for human immunodeficiency virus infection compared with the general population. Clin Infect Dis. 2003;37(2):292–8.

    Article  PubMed  Google Scholar 

  6. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92(7):2506–12.

    Article  PubMed  CAS  Google Scholar 

  7. • Lo J, Abbara S, Shturman L, et al. Increased prevalence of subclinical coronary atherosclerosis detected by coronary computed tomography angiography in HIV-infected men. AIDS. 2010;24(2):243–53. A study which demonstrated in HIV+ men a higher prevalence of subclinical atherosclerosis versus non-HIV men matched on traditional CVD risk factors. Subclinical atherosclerosis was characterized via coronary computed tomography angiography as presence of coronary plaque.

    Article  PubMed  Google Scholar 

  8. Stein JH. Cardiovascular risks of antiretroviral therapy. N Engl J Med. 2007;356(17):1773–5.

    Article  PubMed  CAS  Google Scholar 

  9. Friis-Moller N, Sabin CA, Weber R, et al. Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med. 2003;349(21):1993–2003.

    Article  PubMed  Google Scholar 

  10. El-Sadr WM, Lundgren JD, Neaton JD, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med. 2006;355(22):2283–96.

    Article  PubMed  CAS  Google Scholar 

  11. • Oliviero U, Bonadies G, Apuzzi V, et al. Human immunodeficiency virus per se exerts atherogenic effects. Atherosclerosis. 2009;204(2):586–9. A study which demonstrated in HIV+ ART-naive subjects increased mean carotid IMT and impaired brachial FMD versus healthy control subjects matched on metabolic risk factors.

    Article  PubMed  CAS  Google Scholar 

  12. • Hsue PY, Hunt PW, Schnell A, et al. Role of viral replication, antiretroviral therapy, and immunodeficiency in HIV-associated atherosclerosis. AIDS. 2009;23(9):1059–67. A study which demonstrated in HIV+ elite controllers increased mean carotid IMT versus non-HIV subjects even after retrospectively controlling for CVD risk factors.

    Article  PubMed  CAS  Google Scholar 

  13. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  14. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.

    Article  PubMed  CAS  Google Scholar 

  15. Packard RR, Lichtman AH, Libby P. Innate and adaptive immunity in atherosclerosis. Semin Immunopathol. 2009;31(1):5–22.

    Article  PubMed  CAS  Google Scholar 

  16. Koenen RR, Weber C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat Rev Drug Discov. 2010;9(2):141–53.

    Article  PubMed  CAS  Google Scholar 

  17. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.

    Article  PubMed  CAS  Google Scholar 

  18. Park IW, Wang JF, Groopman JE. HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. Blood. 2001;97(2):352–8.

    Article  PubMed  CAS  Google Scholar 

  19. Dhawan S, Puri RK, Kumar A, Duplan H, Masson JM, Aggarwal BB. Human immunodeficiency virus-1-tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood. 1997;90(4):1535–44.

    PubMed  CAS  Google Scholar 

  20. Liu K, Chi DS, Li C, Hall HK, Milhorn DM, Krishnaswamy G. HIV-1 Tat protein-induced VCAM-1 expression in human pulmonary artery endothelial cells and its signaling. Am J Physiol Lung Cell Mol Physiol. 2005;289(2):L252–60.

    Article  PubMed  CAS  Google Scholar 

  21. Cota-Gomez A, Flores NC, Cruz C, et al. The human immunodeficiency virus-1 Tat protein activates human umbilical vein endothelial cell E-selectin expression via an NF-kappa B-dependent mechanism. J Biol Chem. 2002;277(17):14390–9.

    PubMed  CAS  Google Scholar 

  22. Matzen K, Dirkx AE, Oude Egbrink MG, et al. HIV-1 Tat increases the adhesion of monocytes and T-cells to the endothelium in vitro and in vivo: implications for AIDS-associated vasculopathy. Virus Res. 2004;104(2):145–55.

    Article  PubMed  CAS  Google Scholar 

  23. Ren Z, Yao Q, Chen C. HIV-1 envelope glycoprotein 120 increases intercellular adhesion molecule-1 expression by human endothelial cells. Lab Invest. 2002;82(3):245–55.

    Article  PubMed  CAS  Google Scholar 

  24. Takano Y, Shimokado K, Hata Y, Yoshida M. HIV envelope protein gp120-triggered CD4+ T-cell adhesion to vascular endothelium is regulated via CD4 and CXCR4 receptors. Biochim Biophys Acta. 2007;1772(5):549–55.

    Article  PubMed  CAS  Google Scholar 

  25. Conaldi PG, Serra C, Dolei A, et al. Productive HIV-1 infection of human vascular endothelial cells requires cell proliferation and is stimulated by combined treatment with interleukin-1 beta plus tumor necrosis factor-alpha. J Med Virol. 1995;47(4):355–63.

    Article  PubMed  CAS  Google Scholar 

  26. Park IW, Ullrich CK, Schoenberger E, Ganju RK, Groopman JE. HIV-1 Tat induces microvascular endothelial apoptosis through caspase activation. J Immunol. 2001;167(5):2766–71.

    PubMed  CAS  Google Scholar 

  27. Huang MB, Khan M, Garcia-Barrio M, Powell M, Bond VC. Apoptotic effects in primary human umbilical vein endothelial cell cultures caused by exposure to virion-associated and cell membrane-associated HIV-1 gp120. J Acquir Immune Defic Syndr. 2001;27(3):213–21.

    Article  PubMed  CAS  Google Scholar 

  28. Westhorpe CL, Zhou J, Webster NL, et al. Effects of HIV-1 infection in vitro on transendothelial migration by monocytes and monocyte-derived macrophages. J Leukoc Biol. 2009;85(6):1027–35.

    Article  PubMed  CAS  Google Scholar 

  29. Percario Z, Olivetta E, Fiorucci G, et al. Human immunodeficiency virus type 1 (HIV-1) Nef activates STAT3 in primary human monocyte/macrophages through the release of soluble factors: involvement of Nef domains interacting with the cell endocytotic machinery. J Leukoc Biol. 2003;74(5):821–32.

    Article  PubMed  CAS  Google Scholar 

  30. Olivetta E, Percario Z, Fiorucci G, et al. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. J Immunol. 2003;170(4):1716–27.

    PubMed  CAS  Google Scholar 

  31. Schlitt A, Heine GH, Blankenberg S, et al. CD14 + CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost. 2004;92(2):419–24.

    PubMed  CAS  Google Scholar 

  32. Frostegard J, Ulfgren AK, Nyberg P, et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999;145(1):33–43.

    Article  PubMed  CAS  Google Scholar 

  33. Benagiano M, Azzurri A, Ciervo A, et al. T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions. Proc Natl Acad Sci U S A. 2003;100(11):6658–63.

    Article  PubMed  CAS  Google Scholar 

  34. Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N. CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol. 1995;25(12):3418–24.

    Article  PubMed  CAS  Google Scholar 

  35. Palmer S, Hamblin AS. Increased CD11/CD18 expression on the peripheral blood leucocytes of patients with HIV disease: relationship to disease severity. Clin Exp Immunol. 1993;93(3):344–9.

    Article  PubMed  CAS  Google Scholar 

  36. Hunt PW, Brenchley J, Sinclair E, et al. Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis. 2008;197(1):126–33.

    Article  PubMed  Google Scholar 

  37. Baker J, Ayenew W, Quick H, et al. High-density lipoprotein particles and markers of inflammation and thrombotic activity in patients with untreated HIV infection. J Infect Dis. 2010;201(2):285–92.

    Article  PubMed  CAS  Google Scholar 

  38. Ross AC, Armentrout R, O’Riordan MA, et al. Endothelial activation markers are linked to HIV status and are independent of antiretroviral therapy and lipoatrophy. J Acquir Immune Defic Syndr. 2008;49(5):499–506.

    Article  PubMed  Google Scholar 

  39. Schillaci G, De Socio GV, Pucci G, et al. Aortic stiffness in untreated adult patients with human immunodeficiency virus infection. Hypertension. 2008;52(2):308–13.

    Article  PubMed  CAS  Google Scholar 

  40. Baker JV, Duprez D, Rapkin J, et al. Untreated HIV infection and large and small artery elasticity. J Acquir Immune Defic Syndr. 2009;52(1):25–31.

    Article  PubMed  Google Scholar 

  41. Papasavvas E, Pistilli M, Reynolds G, et al. Delayed loss of control of plasma lipopolysaccharide levels after therapy interruption in chronically HIV-1-infected patients. AIDS. 2009;23(3):369–75.

    Article  PubMed  CAS  Google Scholar 

  42. Tebas P, Henry WK, Matining R, et al. Metabolic and immune activation effects of treatment interruption in chronic HIV-1 infection: implications for cardiovascular risk. PLoS One. 2008;3(4):e2021.

    Article  PubMed  Google Scholar 

  43. Kuller LH, Tracy R, Belloso W, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008;5(10):e203.

    Article  PubMed  Google Scholar 

  44. Papasavvas E, Azzoni L, Pistilli M, et al. Increased soluble vascular cell adhesion molecule-1 plasma levels and soluble intercellular adhesion molecule-1 during antiretroviral therapy interruption and retention of elevated soluble vascular cellular adhesion molecule-1 levels following resumption of antiretroviral therapy. AIDS. 2008;22(10):1153–61.

    Article  PubMed  CAS  Google Scholar 

  45. Francisci D, Giannini S, Baldelli F, et al. HIV type 1 infection, and not short-term HAART, induces endothelial dysfunction. AIDS. 2009;23(5):589–96.

    Article  PubMed  Google Scholar 

  46. Calmy A, Gayet-Ageron A, Montecucco F, et al. HIV increases markers of cardiovascular risk: results from a randomized, treatment interruption trial. AIDS. 2009;23(8):929–39.

    Article  PubMed  CAS  Google Scholar 

  47. • Torriani FJ, Komarow L, Parker RA, et al. Endothelial function in human immunodeficiency virus-infected antiretroviral-naive subjects before and after starting potent antiretroviral therapy: the ACTG (AIDS Clinical Trials Group) Study 5152s. J Am Coll Cardiol. 2008;52(7):569–76. A study which demonstrated that the initiation of any of 3 ART regimens in ART-naive HIV+ subjects improved brachial FMD.

    Article  PubMed  CAS  Google Scholar 

  48. Grunfeld C, Pang M, Doerrler W, Shigenaga JK, Jensen P, Feingold KR. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab. 1992;74(5):1045–52.

    Article  PubMed  CAS  Google Scholar 

  49. Riddler SA, Smit E, Cole SR, et al. Impact of HIV infection and HAART on serum lipids in men. JAMA. 2003;289(22):2978–82.

    Article  PubMed  CAS  Google Scholar 

  50. Grinspoon S, Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N Engl J Med. 2005;352(1):48–62.

    Article  PubMed  CAS  Google Scholar 

  51. Khovidhunkit W, Kim MS, Memon RA, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004;45(7):1169–96.

    Article  PubMed  CAS  Google Scholar 

  52. Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8(4):222–32.

    Article  PubMed  CAS  Google Scholar 

  53. Mujawar Z, Rose H, Morrow MP, et al. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages. PLoS Biol. 2006;4(11):e365.

    Article  PubMed  Google Scholar 

  54. Cui HL, Grant A, Mukhamedova N, et al. HIV-1 Nef mobilizes lipid rafts in macrophages through a pathway that competes with ABCA1-dependent cholesterol efflux. J Lipid Res. 2012;53(4):696–708.

    Article  PubMed  CAS  Google Scholar 

  55. Rose H, Hoy J, Woolley I, et al. HIV infection and high density lipoprotein metabolism. Atherosclerosis. 2008;199(1):79–86.

    Article  PubMed  CAS  Google Scholar 

  56. Kelesidis T, Yang OO, Currier JS, Navab K, Fogelman AM, Navab M. HIV-1 infected patients with suppressed plasma viremia on treatment have pro-inflammatory HDL. Lipids Health Dis. 2011;10:35.

    Article  PubMed  Google Scholar 

  57. Duong M, Petit JM, Martha B, et al. Concentration of circulating oxidized LDL in HIV-infected patients treated with antiretroviral agents: relation to HIV-related lipodystrophy. HIV Clin Trials. 2006;7(2):41–7.

    Article  PubMed  Google Scholar 

  58. • Baker JV, Neuhaus J, Duprez D, et al. Inflammation predicts changes in high-density lipoprotein particles and apolipoprotein A1 following initiation of antiretroviral therapy. AIDS. 2011;25(17):2133–42. A study which demonstrated that ART-naive HIV+ subjects randomized to ART had higher HDL-P and ApoA1 than those randomized to drug conservation.

    Article  PubMed  CAS  Google Scholar 

  59. • Kaplan RC, Sinclair E, Landay AL, et al. T cell activation and senescence predict subclinical carotid artery disease in HIV-infected women. J Infect Dis. 2011;203(4):452–63. A study demonstrating that makers of T cell activation and senescence are higher in HIV+ women than in non-HIV controls. Among HIV+ women, T-cell activation and senescence markers correlated closely with prevalence of subclinical atherosclerosis on carotid ultrasound.

    Article  PubMed  CAS  Google Scholar 

  60. • Burdo TH, Lo J, Abbara S, et al. Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients. J Infect Dis. 2011;204(8):1227–36. A study demonstrating that sCD163—a marker of monocyte/macrophage activation—is higher among ART-treated HIV+ men than non-HIV controls. Among HIV+ men, sCD163 correlates with segments of noncalcified plaque on computed tomography coronary angiography.

    Article  PubMed  CAS  Google Scholar 

  61. • Parra S, Marsillach J, Aragones G, et al. Paraoxonase-1 gene haplotypes are associated with metabolic disturbances, atherosclerosis, and immunologic outcome in HIV-infected patients. J Infect Dis. 2010;201(4):627–34. A study demonstrating that among HIV+ subjects, haplotype H7 of the PON1 gene (whose protein product is an HDL-associated antioxidant enzyme) associated with lower rates of subclinical atherosclerosis on carotid and femoral ultrasound.

    Article  PubMed  CAS  Google Scholar 

  62. • Shrestha S, Irvin MR, Taylor KD, et al. A genome-wide association study of carotid atherosclerosis in HIV-infected men. AIDS. 2010;24(4):583–92. A genome-wide association study showing that among HIV+ subjects, SNP’s in the RYR3 gene are associated with subclinical atherosclerosis on carotid ultrasound.

    Article  PubMed  CAS  Google Scholar 

  63. • Gupta SK, Johnson RM, Mather KJ, et al. Anti-inflammatory treatment with pentoxifylline improves HIV-related endothelial dysfunction: a pilot study. AIDS. 2010;24(9):1377–80. A pilot single-arm study demonstrating that treatment of untreated HIV+ subjects with the TNF-α antagonist pentoxifylline improved brachial FMD.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

M. V. Zanni: none; S. K. Grinspoon: consultant to Theratechnologies and Serono.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markella V. Zanni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanni, M.V., Grinspoon, S.K. HIV-Specific Immune Dysregulation and Atherosclerosis. Curr HIV/AIDS Rep 9, 200–205 (2012). https://doi.org/10.1007/s11904-012-0123-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-012-0123-y

Keywords

Navigation