Skip to main content

Oxidation of Inorganic Nitrogen Compounds as an Energy Source

  • Reference work entry
The Prokaryotes

1 Introduction

Life depends on the element nitrogen. In nature, nitrogen exists mainly in the oxidation states -III (NH3), O (N2), +I (N2O), +II (NO), +III (NO2 ), +IV (NO2), and +V (NO3 ). Owing to nitrogen transformations by the activity of living organisms and to chemical instability, any form of oxidation state has only a transient existence. Dinitrogen (N2) is the most inert and frequent constituent of the atmosphere.

Taking into account also abiotic transformations, three cycles of nitrogen can be distinguished:

  1. 1.

    The cycle of the atmosphere

  2. 2.

    The interaction between the atmosphere and the biosphere

  3. 3.

    The cycle of the biosphere

The nitrogen cycle mediated by the biosphere (Fig. 1) can also be characterized by mobilization and immobilization of nitrogen compounds. Most of the reactions are catalyzed exclusively by prokaryotes. By microbial nitrogen fixation, dinitrogen is reduced to ammonia and subsequently transferred to amino acids and assimilated into cell material. On...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aakra, A., J. B. Utaker, and I. F. Nes. 1999 RFLP of rRNA genes and sequencing ot the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: A phylogenetic approach Int. J. Syst. Bacteriol. 49 123–130

    Article  PubMed  CAS  Google Scholar 

  • Abeliovich, A., and A. Vonshak. 1992 Anaerobic metabolism of Nitrosomonas europaea Arch. Microbiol. 158 267–270

    Article  CAS  Google Scholar 

  • Abeliovich, A., and A. Vonshak. 1993 Factors inhibiting nitrification of ammonia in deep wastewater reservoirs Water Res. 27 1585–1590

    Article  CAS  Google Scholar 

  • Ahlers, B., W. König, and E. Bock. 1990 Nitrite reductase activity in Nitrobacter vulgaris FEMS Microbiol. Lett. 67 121–126

    Article  CAS  Google Scholar 

  • Aleem, M. I. H. 1965aPath of carbon and assimilatory power in chemosynthetic bacteria. I. Nitrobacter agilis Biochim. Biophys. Acta 107 14–28

    Article  PubMed  CAS  Google Scholar 

  • Aleem, M. I. H., G. E. Hoch, and J. E. Varner. 1965bWater is the source of oxidant and reductant in bacterial chemosynthesis Proc. Natl. Acad. Sci. USA 54 869–873

    Article  PubMed  CAS  Google Scholar 

  • Aleem, M. I. H. 1966 Generation of reducing power in chemosynthesis. II: Energy-linked reduction of pyridine nucleotides in the chemoautotroph Nitrosomonas europaea Biochim. Biophys. Acta 113 216–224

    Article  PubMed  CAS  Google Scholar 

  • Aleem, M. I. H. 1968 Mechanism of oxidative phosphorylation in the chemoautotroph Nitrobacter agilis Biochim. Biophys. Acta 162 338–347

    Article  PubMed  CAS  Google Scholar 

  • Aleem, M. I. H., and D. L. Sewell. 1981 Mechanism of nitrite oxidation and oxidoreductase-systems in Nitrobacter agilis Curr. Microbiol. 5 267–272

    Article  CAS  Google Scholar 

  • Aleem, M. I. H., and D. L. Sewell. 1984 Oxidoreductase systems in Nitrobacter agilis In: W. R. Strohl and O. H. Tuovinen (Eds.) Microbial Chemoautotrophy Ohio State University Press Columbus OH 185–210

    Google Scholar 

  • Allison, S. M., and J. I. Prosser. 1993 Survival of ammonia oxidizing bacteria in air-dried soil FEMS Microbiol. Lett. 79 65–68

    Article  Google Scholar 

  • Alzerreca, J. J., J. M. Norton, and M. G. Klotz. 1999 The amo operon in marine ammonia-oxidzing gamma-proteobacteria FEMS Microbiol. Lett. 180 21–29

    PubMed  CAS  Google Scholar 

  • Andersson, K. K., and A. B. Hooper. 1983 O2 and H2O are each the source of one O in NO2-produced from NH3 by Nitrosomonas; 15N-NMR evidence FEBS Lett. 164 236–240

    Article  CAS  Google Scholar 

  • Andersson, K. K., T. A. Kent, J. D. Lipscomb, A. B. Hooper, and E. Münck. 1984 Mössbauer, EPR and optical studies of the P-460 center of hydroxylamine oxidoreductase from Nitrosomonas J. Biol. Chem. 259 6833–6840

    PubMed  CAS  Google Scholar 

  • Andersson, I. C., and J. S. Levine. 1986aRelative rates of NO and N2O production by nitrifiers, denitrifiers and nitrate respirers Appl. Environ. Microbiol. 51 938–945

    Google Scholar 

  • Andersson, K. K., D. J. Lipscomb, M. Valentine, E. Munck, and A. B. Hooper. 1986b Tetraheme cytochrome c-554 from Nitrosomonas europaea: Heme-heme interactions and ligand bindings J. Biol. Chem. 261 1126–1138

    PubMed  CAS  Google Scholar 

  • Anthonisen, A. C., R. C. Loehr, T. B. S. Prakasam, and E. G. Srinath. 1976 Inhibition of nitrification by ammonia and nitrous acid J. Wat. Poll. Control Fed. 48 835–852

    CAS  Google Scholar 

  • Anthony, C. 1982 The Biochemistry of Methanotrophs Academic Press London United Kingdom

    Google Scholar 

  • Arciero, D. M., C. Balny, and A. B. Hooper. 1991 Spectroscopic and rapid kinetic studies of reduction of cytochrome c554 by hydroxylamine oxidoreductase from Nitrosomonas europaea Biochem. 30 11466–11472

    Article  CAS  Google Scholar 

  • Arciero, D. M., and A. B. Hooper. 1993 Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octa-heme subunit J. Biol. Chem. 268 14645–14654

    PubMed  CAS  Google Scholar 

  • Arciero, D. M., and A. B. Hooper. 1994 A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced state J. Biol. Chem. 269 11878–11886

    PubMed  CAS  Google Scholar 

  • Barraclough, D., and G. Puri. 1995 The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification Soil Biol. Biochem. 27 17–22

    Article  CAS  Google Scholar 

  • Bartosch, S., I. Wolgast, E. Spieck, and E. Bock. 1999 Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase Appl. Environ. Microbiol. 65 4126–4233

    PubMed  CAS  Google Scholar 

  • Batchelor, S. E., M. Cooper, S. R. Chhabra, L. A. Glover, G. S. Stewart, P. Williams, and J. I. Prosser. 1997 Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria Appl. Environ. Microbiol. 63 2281–2286

    PubMed  CAS  Google Scholar 

  • Baumgärtner, M. 1991 Umsetzung von Stickoxiden (NOx) in Böden, auf Gebäudeoberflächen und in Mikroorganismen. Konstanzer Dissertationen Nr. 327. Hartung-Gorre Konstanz Germany. Konstanzer Dissertationen Nr. 327.

    Google Scholar 

  • Baumgärtner, M., M. Koschorreck, and R. Conrad. 1996 Oxidative consumption of nitric oxide by heterotrophic bacteria in soil FEMS Microbiol. Ecol. 19 165–170

    Article  Google Scholar 

  • Bedard, C., and R. Knowles. 1989 Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers Microbiol. Rev. 53 68–84

    PubMed  CAS  Google Scholar 

  • Belser, L. W., and E. L. Schmidt. 1978 Serological diversity within a terrestrial ammonia-oxidizing population Appl. Environ. Microbiol. 36 589–593

    PubMed  CAS  Google Scholar 

  • Belser, L. W. 1979 Population ecology of nitrifying bacteria Ann. Rev. Microbiol. 33 309–333

    Article  CAS  Google Scholar 

  • Belser, L. W., and E. L. Mays. 1982 Use of nitrifier activity measurements to estimate the efficiency of viable nitrifier counts in soilsand sediments Appl. Environ. Microbiol. 43 945–948

    PubMed  CAS  Google Scholar 

  • Berben, G. 1996 Nitrobacter winogradskyi cytochrome c oxidase genes are organized in a repeated gene cluster Ant. v. Leeuwenhoek 69 305–315

    Article  CAS  Google Scholar 

  • Bergmann, D. J., and A. B. Hooper. 1994aPrimary structure of cytochrome P-460 of Nitrosomonas FEBS Lett. 353 324–326

    Article  PubMed  CAS  Google Scholar 

  • Bergmann, D. J., and A. B. Hooper. 1994bSequence of the gene amoB for the 43 kDa polypeptide of ammonia monooxygenase of Nitrosomonas europaea Biochim. Biophys. Res. Comm. 204 759–762

    Article  CAS  Google Scholar 

  • Bergmann, D. J., D. Arciero, and A. B. Hooper. 1994cOrganization of the HAO gene cluster of Nitrosomonas europaea: Genes for two tetraheme cytochromes J. Bacteriol. 176 3148–3153

    PubMed  CAS  Google Scholar 

  • Bergmann, D. J., J. A. Zahn, and A. A. DiSpirito. 2000 Primary structure of cytochrome c of Methylococcus capsulatus Bath: Evidence of a phylogenetic link between P460 and c′-type cytochromes Arch. Microbiol. 173 29–34

    Article  PubMed  CAS  Google Scholar 

  • Blasco, F., C. Lobbi, J. Ratouchniak, V. Bonnefoy, and M. Chippaux. 1990 Nitrate reductases of Escherichia coli: Ssequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon Molec. Gen. Genet. 222 104–111

    PubMed  CAS  Google Scholar 

  • Bock, E. 1965 Vergleichende Untersuchungen über die Wirkung sichtbaren Lichtes auf Nitrosomonas europaea und Nitrobacter winogradskyi Arch. Mikrobiol. 51 18–41

    Article  PubMed  CAS  Google Scholar 

  • Bock, E. 1970 Untersuchungen über die Wechselwirkung zwischen Licht und Chemosynthese am Beispiel von Nitrobacter winogradskyi Arch. Mikrobiol. 70 217–239

    Article  PubMed  CAS  Google Scholar 

  • Bock, E. 1976 Growth of Nitrobacter in the presence of organic matter. II. Chemoorganotrophic growth of Nitrobacter agilis Arch. Microbiol. 108 305–312

    Article  PubMed  CAS  Google Scholar 

  • Bock, E., P. A. Wilderer, and A. Freitag. 1988 Growth of Nitrobacter in the absence of dissolved oxygen Water Res. 22 245–250

    Article  CAS  Google Scholar 

  • Bock, E., H.-P. Koops, U. C. Möller, and M. Rudert. 1990 A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov Arch. Microbiol. 153 105–110

    Article  Google Scholar 

  • Bock, E., H.-P. Koops, H. Harms, and B. Ahlers. 1991 The biochemistry of nitrifying organisms In: J. M. Shively (Ed.) Variations of Autotrophic Life Academic Press London 171–200

    Google Scholar 

  • Bock, E., and H.-P. Koops. 1992 The genus Nitrobacter and related genera In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) [{http://www.prokaryotes.com} The Prokaryotes (2nd ed.)] Springer New York NY 2302–2309

    Google Scholar 

  • Bock, E., and W. Sand. 1993 The Microbiology of masonry biodeterioration J. Appl. Bacteriol. 74 503–514

    CAS  Google Scholar 

  • Bock, E., R. Stüven, I. Schmidt, and D. Zart. 1995 Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium, or hydroxylamine as electron donors and nitrite as electron acceptor Arch. Microbiol. 163 16–20

    Article  CAS  Google Scholar 

  • Bodelier, P. L., and P. Frenzel. 1999 Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 + oxidation in the rhizosphere of rice plants as determined by new methods of discrimination Appl. Environ. Microbiol. 65 1826–1833

    PubMed  CAS  Google Scholar 

  • Bodenstein, M. 1918 Die Geschwindigkeit der Reaktion zwischen Stickoxid und Sauerstoff Z. f. Elektroch. 24 183–201

    CAS  Google Scholar 

  • Bömeke, H. 1954 Über das Verhältnis des oxidierten Stickstoffs zum reduzierten Kohlenstoff beim Nitratbildner Arch. Mikrobiol. 20 176–182

    Article  PubMed  Google Scholar 

  • Böttcher, B., and H.-P. Koops. 1994 Growth of lithotrophic ammonia-oxidizing bacteria on hydroxylamine FEMS Microbiol. Lett. 122 263–266

    Article  Google Scholar 

  • Bouwman, A. F., I. Fung, E. Matthews, and J. John. 1993 Global analysis of the potential for N2O production in natural soils Global Biogeochem. Cycles 7 557–597

    Article  CAS  Google Scholar 

  • Brady, N. C. 1984 The Nature and Properties of Soils Macmillan New York NY 283–302

    Google Scholar 

  • Braun, C., and W. G. Zumft. 1991 Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stuzeri at nitric oxide J. Biol. Chem. 266 22785–22788

    PubMed  CAS  Google Scholar 

  • Broda, E. 1977 Two kinds of lithotrophs missing in nature Z. Allg. Mikrobiol. 17 491–493

    Article  PubMed  CAS  Google Scholar 

  • Brown, C. M. 1988 Nitrate metabolism in aquatic bacteria In: B. Austin (Ed.) Methods in Aquatic Bacteriology John Wiley New York NY 367–388

    Google Scholar 

  • Buchanan, R. E. 1917 Studies on the nomenclature and classification of bacteria J. Bacteriol. 2 347–350

    PubMed  CAS  Google Scholar 

  • Burrell, P. C., J. Keller, and L. L. Blackall. 1998 Microbiology of a nitrite-oxidizing bioreactor Appl. Environ. Microbiol. 64 1878–1883

    PubMed  CAS  Google Scholar 

  • Carr, G. J., and S. J. Ferguson. 1990 Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions Biochim. Biophys. Acta 1017 57–62

    Article  PubMed  CAS  Google Scholar 

  • Casciotti, K. L., and B. B. Ward. 2001 Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria Appl. Environ. Microbiol. 67 2213–2221

    Article  PubMed  CAS  Google Scholar 

  • Castignetti, D., and H. B. Gunner. 1980 Sequential nitrification by an Alcaligenes sp. and Nitrobacter agilis Can. J. Microbiol. 26 1114–1119

    Article  PubMed  CAS  Google Scholar 

  • Castignetti, D., and T. C. Hollocher. 1984 Heterotrophic nitrification among denitrifiers Appl. Environ. Microbiol. 47 620–623

    PubMed  CAS  Google Scholar 

  • Chaudhry, G. R., I. Suzuki, H. W. Duckworth, and H. Lees. 1981 Isolation and properties of cytochrome c553, cytochrome c550, and cytochrome c549, 554 from Nitrobacter agilis Biochim. Biophys. Acta 637 18–27

    Article  CAS  Google Scholar 

  • Clark, C., and E. L. Schmidt. 1967 Growth response of Nitrosomonas europaea to amino acids J. Bacteriol. 93 1302–1309

    PubMed  CAS  Google Scholar 

  • Cobley, J. B. 1976aEnergy-conserving reactions in phosphorylating electron-transport particles from Nitrobacter winogradskyi. Activation of nitrite oxidation by the electrical component of the proton motive force Biochem. J. 156 481–491

    PubMed  CAS  Google Scholar 

  • Cobley, J. B. 1976bReduction of cytochromes by nitrite in electron-transport particles from Nitrobacter winogradskyi Biochem. J. 156 493–498

    PubMed  CAS  Google Scholar 

  • Collins, M. J., D. M. Arciero, and A. B. Hooper. 1993 Optical spectropotentiometric resolution of the hemes of hydroxylamine oxidoreductase. Heme quantitation and pH dependence of EM J. Biol. Chem. 268 14655–14662

    PubMed  CAS  Google Scholar 

  • Conrad, R. 1996 Metabolism of nitric oxide in soil and soil microorganisms and regulation of flux into the atmosphere In: J. C. Murrell and D. P. Kelly (Eds.) Microbiology of Atmospheric Trace Gases: Sources, Sinks and Global Change Processes NATO ASI Series Springer-Verlag Berlin Germany 167–203

    Google Scholar 

  • Crossmann, L. C., J. W. B. Moir, J. J. Enticknap, D. J. Richardson, and S. Spiro. 1997 Heterologous expression of heterotrophic nitrification genes Microbiology 143 3775–3783

    Article  Google Scholar 

  • Crutzen, P. J. 1979 The role of NO and NO2 in the chemistry of the troposphere and stratosphere Ann. Rev. Earth Planet. Sci. 74 443–472

    Article  Google Scholar 

  • Daims, H., P. H. Nielsen, J. L. Nielsen, S. Juretschko, and M. Wagner. 2000 Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: Diversity and in situ physiology Wat. Sci. Tech. 41 85–90

    CAS  Google Scholar 

  • Daims, H., J. L. Nielsen, P. H. Nielsen, K.-H. Schleifer, and M. Wagner. 2001 In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants Appl. Environ. Microbiol. 67(11) 5273–5284

    Article  Google Scholar 

  • De Boer, W., P. J. A. Klein Gunnewiek, M. Veenhuis, E. Bock, and H. J. Laanbroek. 1991 Nitrification at low pH by aggregated chemolithotrophic bacteria Appl. Environ. Microbiol. 57 3600–3604

    PubMed  Google Scholar 

  • De Bruijn, P., A. A. van de Graaf, M. S. M. Jetten, L. A. Robertson, and J. G. Kuenen. 1995 Growth of Nitrosomonas europaea on hydroxylamine FEMS Microbiol. Lett. 125 179–184

    Article  Google Scholar 

  • Degrange, V., and R. Bardin. 1995 Detection and counting of Nitrobacter populations in soil by PCR Appl. Environ. Microbiol. 61 2093–2098

    PubMed  CAS  Google Scholar 

  • DiSpirito, A. A., L. R. Taaffe, and A. B. Hooper. 1985 Localization and concentration of hydroxylamine oxidoreductase and cytochromes c552, c554, cm553, cm552, and a in Nitrosomonas europaea Biochim. Biophys. Acta 806 320–330

    Article  CAS  Google Scholar 

  • DiSpirito, A. A., J. D. Lipscomp, and A. B. Hooper. 1986 Cytochrome aa3 from Nitrosomonas europaea J. Bacteriol. 261 17048–17056

    CAS  Google Scholar 

  • Drozd, J. W. 1976 Energy coupling and respiration in Nitrosomonas europaea Arch. Microbiol. 101 257–262

    Article  Google Scholar 

  • Drozd, J. W. 1980 Respiration in ammonia-oxidizing chemoautotrophic bacteria In: R. Knowles (Ed.) Diversity of Bacterial Respiratory Systems CRC Press Boca Raton FL 2 87–111

    Google Scholar 

  • Dua, R. D., B. Bhandari, and D. J. D. Nicholas. 1979 Stable isotope studies on the oxidation of ammonia to hydroxylamine by Nitrosomonas europaea FEBS Lett. 106 401–404

    Article  PubMed  CAS  Google Scholar 

  • Ehrich, S., D. Behrens, E. Lebedeva, W. Ludwig, and E. Bock. 1995 A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship Arch. Microbiol. 164 16–23

    Article  PubMed  CAS  Google Scholar 

  • Eigener, U., and E. Bock. 1975 Study on the regulation of oxidation and CO2 assimilation in intact Nitrobacter winogradskyi cells Arch. Microbiol. 102 241–246

    Article  PubMed  CAS  Google Scholar 

  • Eighmy, T. T., and P. L. Bishop. 1989 Distribution and role of bacterial nitrifying populations in nitrogen removal in aquatic treatment systems Water Res. 23 947–955

    Article  CAS  Google Scholar 

  • El-Demerdash, M. E., and J. C. G. Ottow. 1983 Einfluss einer hohen Nitratdüngung auf Kinetik und Gaszusammensetzung der Denitrifikation in unterschiedlichen Böden Z. Pflanzenernährung und Bodenkunde 146 138–150

    Article  CAS  Google Scholar 

  • Engel, M. S., and M. Alexander. 1958 Growth and autotrophic metabolism of Nitrosomonas europaea J. Bacteriol. 76 217–222

    PubMed  CAS  Google Scholar 

  • Ensign, S. A., M. R. Hyman, and D. J. Arp. 1993 In vitro activation of ammonia monooxygenase from Nitrosomonas by copper J. Bacteriol. 175 1971–1998

    PubMed  CAS  Google Scholar 

  • Erickson, R. H., A. B. Hooper, and K. R. Terry. 1972 Solubilization and purification of cytochrome a, from Nitrosomonas Biochim. Biophys. Acta 283 155–166

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, S. 1982 Is a proton-pumping cytochrome oxidase essential for energy conservation in Nitrobacter? FEBS Lett. 146 239–243

    Article  CAS  Google Scholar 

  • Fliermanns, C. B., B. B. Bohlool, and E. L. Schmidt. 1974 Autecological study of the chemoautotroph Nitrobacter by immunofluorescence Appl. Environ. Microbiol. 27 124–129

    Google Scholar 

  • Focht, D. D., and W. Verstraete. 1977 Biochemical ecology of nitrification and denitrification Adv. Microbial Ecol. 1 135–214

    Article  CAS  Google Scholar 

  • Ford, P. C., D. A. Wink, and D. M. Stanbury. 1993 Autoxidation kinetics of aqueous nitric oxide FEBS Lett. 326 1–3

    Article  PubMed  CAS  Google Scholar 

  • Freitag, A., M. Rudert, and E. Bock. 1987 Growth of Nitrobacter by dissimilatoric nitrate reduction FEMS Microbiol. Lett. 48 105–109

    Article  CAS  Google Scholar 

  • Freitag, A., and E. Bock. 1990 Energy conservation in Nitrobacter FEMS Microbiol. Lett. 66 157–162

    Article  CAS  Google Scholar 

  • Fukuoka, M., Y. Fukumori, and T. Yamanaka. 1987 Nitrobacter winogradskyi cytochrome a1c1 is an iron-sulfur molybdo-enzyme having hemes a and c J. Biochem. 102 525–530

    PubMed  CAS  Google Scholar 

  • Galbally, I. E., and C. R. Roy. 1983 The fate of nitrogen compounds in the atmosphere Devel. Plant Soil Sci. 9 263–284

    Google Scholar 

  • Giannakis, C., D. J. Miller, and D. J. D. Nicholas. 1985 Comparative studies on redox proteins from ammonia oxidizing bacteria FEMS Microbiol. Lett. 30 81–85

    Article  CAS  Google Scholar 

  • Goreau, T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy, F. W. Valois, and S. W. Watson. 1980 Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen Appl. Environ. Microbiol. 40 526–532

    PubMed  CAS  Google Scholar 

  • Groffmann, P. M. 1987 Nitrification and denitrification in soil: A comparison of enzyme assay, incubation and enumeration methods Plant Soil 97 445–450

    Article  Google Scholar 

  • Grundmann, G. L., M. Neyra, and P. Normand. 2000 High-resolution phylogenetic genetic analysis of NO2-oxidizing Nitrobacter species using the rrs-rrl IGS sequence and rrl genes Int. J. Syst. Microbiol. 50 1893–1898

    CAS  Google Scholar 

  • Hall, G. H. 1986 Nitrification in lakes In: J. I. Prosser (Ed.) Nitrification IRL Press Oxford UK 127–156

    Google Scholar 

  • Harms, H., H.-P. Koops, H. Martiny, and W. Wullenweber. 1981 D-Ribulose 1,5-biphosphate carboxylase and polhedral inclusions in Nitrosomonas spec Arch. Microbiol. 128 280–281

    Article  CAS  Google Scholar 

  • Hass, R., S. Veit, and T. F. Meyer. 1992 Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates Molec. Microbiol. 6 197–208

    Article  Google Scholar 

  • Hausladen, A., C. T. Privalle, T. Keng, J. DeAngelo, and J. S. Stamler. 1996 Nitrosative stress: Activation of the transcription factor OxyR Cell 86 719–729

    Article  PubMed  CAS  Google Scholar 

  • Head, I. M., W. D. Hiorns, T. M. Embley, A. J. McCarthy, and J. R. Saunders. 1993 The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences J. Gen. Microbiol. 139 1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Henry, Y., C. Ducrocq, J.-C. Drapier, D. Servent, C. Pellat, and A. Guissani. 1991 Nitric oxide, a biological effector—electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells Eur. Biophys. J. 20 1–15

    Article  PubMed  CAS  Google Scholar 

  • Hiorns, W. D., R. C. Hastings, I. M. Head, G. R. Hall, A. J. McCarthy, J. R. Saunders, and R. W. Pickup. 1995 Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of Nitrosospiras in the environment Microbiol. 141 2793–2800

    Article  Google Scholar 

  • Hochstein, L. I., and G. A. Tomlinson. 1988 The enzymes associated with denitrification Ann. Rev. Microbiol. 42 231–261

    Article  CAS  Google Scholar 

  • Hoffman, T., and H. Lees. 1953 The biochemistry of the nitrifying bacteria Biochem. J. 54 579–583

    Google Scholar 

  • Hollocher, T. C., M. E. Tate, and D. J. D. Nicholas. 1981 Oxidation of ammonia by Nitrosomonas europaea. Definitive 18O-tracer evidence that hydroxylamine formation involves a monooxygenase J. Biol. Chem. 256 10834–10836

    PubMed  CAS  Google Scholar 

  • Hollocher, T. C., S. Kumar, and D. J. D. Nicholas. 1982 Respiration dependent proton translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis during inorganic oxidation J. Bacteriol. 149 1013–1020

    PubMed  CAS  Google Scholar 

  • Hollocher, T. C. 1984 Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation Arch. Biochem. Biophys. 233 721–727

    Article  PubMed  CAS  Google Scholar 

  • Hommes, N. G., L. A. Sayavedra-Soto, and D. J. Arp. 1994 Sequence of hcy, a gene encoding cytochrome c-554 from Nitrosomonas europaea Gene 146 87–89

    Article  PubMed  CAS  Google Scholar 

  • Hommes, N. G., L. A. Sayavedra-Soto, and D. J. Arp. 1996 Mutagenesis of hydroxylamine oxidoreductase in Nitrosomonas europaea by transformation and recombination J. Bacteriol. 178 3710–3714

    PubMed  CAS  Google Scholar 

  • Hommes, N. G., L. A. Sayavedra-Soto, and D. J. Arp. 1998 Mutagenesis and expression of amo, which codes for ammonia monooxygenase in Nitrosomonas europaea J. Bacteriol. 180 3353–3359

    PubMed  CAS  Google Scholar 

  • Hommes, N. G., L. A. Sayavedra-Soto, and D. J. Arp. 2001 Transcript analysis of multiple copies of amo (encoding ammonia monooxygenase) and hao (encoding hydroxylamine oxidoreductase) in Nitrosomonas europaea J. Bacteriol. 183 1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Hooper, A. B. 1968 A nitrite-reducing enzyme from Nitrosomonas europaea. Preliminary characterization with hydroxylamine as electron donor Biochim. Biophys. Acta 162 49–65

    Article  PubMed  CAS  Google Scholar 

  • Hooper, A. B. 1969 Lag phase of ammonia oxidation of resting cells of Nitrosomonas europaea J. Bacteriol. 97 968–969

    PubMed  CAS  Google Scholar 

  • Hooper, A. B., R. H. Erickson, and R. H. Terry. 1972 Electron transport systems in Nitrosomonas: Isolation of a membrane-envelope fraction J. Bacteriol. 110 430–438

    PubMed  CAS  Google Scholar 

  • Hooper, A. B., and K. R. Terry. 1973 Specific inhibitors of ammonia oxidation in Nitrosomonas J. Bacteriol. 115 480–485

    PubMed  CAS  Google Scholar 

  • Hooper, A. B., and K. R. Terry. 1974 Photoinactivation of ammonia oxidation in Nitrosomonas J. Bacteriol. 119 899–906

    PubMed  CAS  Google Scholar 

  • Hooper, A. B., and K. R. Terry. 1977 Hydroxylamine oxidoreductase from Nitrosomonas: Inactivation by hydrogen-peroxide Biochemistry 16 455–459

    Article  PubMed  CAS  Google Scholar 

  • Hooper, A. B., P. C. Maxwell, and K. R. Terry. 1978 Hydroxylamine oxidoreductase from Nitrosomonas europaea: Absorption spectra and content of heme and metal Biochemistry 17 2984–2989

    Article  PubMed  CAS  Google Scholar 

  • Hooper, A. B., and K. R. Terry. 1979 Hydroxylamine oxidoreductase of Nitrosomonas: Production of nitric oxide from hydroxylamine Biochim. Biophys. Acta 571 12–20

    Article  PubMed  CAS  Google Scholar 

  • Hooper, A. B., and C. Balny. 1982 Reaction of oxygen with hydroxylamine oxidoreductase of Nitrosomonas FEBS Lett. 144 299–303

    Article  PubMed  CAS  Google Scholar 

  • Hooper, A. B. 1984aAmmonia oxidation and energy transduction in the nitrifying bacteria In: W. R. Strohl and O. H. Tuovinen (Eds.) Microbial Chemoautotrophy Ohio State University Press Columbus OH 133–167

    Google Scholar 

  • Hooper, A. B., A. A. DiSpirito, T. C. Olson, K. A. Andersson, W. Cunningham, and L. R. Taaffe. 1984bGeneration of the proton gradient by a periplasmic dehydrogenase In: R. L. Crawford and R. S. Hanson (Eds.) Microbial Growth on C1 Compounds American Society for Microbiology Washington DC 53–58

    Google Scholar 

  • Hooper, A. B., and A. A. DiSpirito. 1985 In bacteria which grow on simple reductants generation of a proton gradient involves extracytoplasmic oxidation of substrate Microbiol. Rev. 49 140–157

    PubMed  CAS  Google Scholar 

  • Hooper, A. B. 1989 Biochemistry of the nitrifying lithoautotrophic bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Science Tech Madison WI 239–265

    Google Scholar 

  • Hooper, A. B., T. Vannelli, D. J. Bergmann, and D. M. Arciero. 1997 Enzymology of the oxidation of ammonia to nitrite by bacteria Ant. v. Leeuwenhoek 71 59–67

    Article  CAS  Google Scholar 

  • Hoppert, M., T. J. Mahony, F. Mayer, and D. J. Miller. 1995 Quaterny structure of the hydroxylamine oxidoreduktase from Nitrosomonas europaea Arch. Microbiol. 163 300–306

    Article  CAS  Google Scholar 

  • Horz, H. P., J. H. Rotthauwe, T. Lukow, and W. Liesack. 2000 Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products J. Microbiol. Meth. 39 197–204

    Article  CAS  Google Scholar 

  • Hovanec, T. A., L. T. Taylor, A. Blakis, and E. F. Delong. 1998 Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria Appl. Environ. Microbiol. 64 258–264

    PubMed  CAS  Google Scholar 

  • Huber, D. M., H. L. Warren, D. W. Nelson, and C. Y. Tsai. 1977 Nitrification inhibitors—new tools for food production BioScience 27 523–529

    Article  Google Scholar 

  • Huie, R. E. 1994 The reaction kinetics of NO2 Toxicology 89 193–216

    Article  PubMed  CAS  Google Scholar 

  • Hyman, M. R., and P. M. Wood. 1983 Methane oxidation by Nitrosomonas europaea Biochem. J. 212 31–37

    PubMed  CAS  Google Scholar 

  • Hyman, M. R., and P. M. Wood. 1984aBromocarbon oxidation by Nitrosomonas europaea In: R. L. Crawford and R. S. Hanson (Eds.) Microbial Growth on C1 Compounds American Society for Microbiology Washington DC 49–52

    Google Scholar 

  • Hyman, M. R., and P. M. Wood. 1984bEthylene oxidation by Nitrosomonas europaea Arch. Microbiol. 137 155–158

    Article  CAS  Google Scholar 

  • Hyman, M. R., and P. M. Wood. 1985aSuicidal inactivation and labeling of ammonia mono-oxygenase by acetylene Biochem. J. 227 719–725

    PubMed  CAS  Google Scholar 

  • Hyman, M. R., A. W. Sansome-Smith, J. H. Shears, and R. M. Wood. 1985bA kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas europaea and evidence for further oxidation to hydroquinone Arch. Microbiol. 43 302–306

    Article  Google Scholar 

  • Hyman, M. R., I. B. Murton, and D. J. Arp. 1988 Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes Appl. Environ. Microbiol. 54 3187–3190

    PubMed  CAS  Google Scholar 

  • Hyman, M. R., and D. J. Arp. 1992 14C2H2-and 14CO2-labelling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase J. Biol. Chem. 267 1534–1545

    PubMed  CAS  Google Scholar 

  • Hyman, M. R., C. L. Page, and D. J. Arp. 1994 Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas eutropha Appl. Environ. Microbiol. 60 3033–3035

    PubMed  CAS  Google Scholar 

  • Hyman, M. R., and D. J. Arp. 1995 Effects of ammonia on the de novo synthesis of polypeptides in cells of Nitrosomonas europaea denied ammonia as an energy source J. Bacteriol. 177 4974–4979

    PubMed  CAS  Google Scholar 

  • Hynes, R. K., and R. Knowles. 1978 Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea FEMS Microbiol. Lett. 4 319–321

    Article  CAS  Google Scholar 

  • Igarashi, N., H. Moriyama, T. Fujiwara, Y. Fukumori, and N. Tanaka. 1997 The 2.8 A structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea Nat. Struct. Biol. 4 276–284

    Article  PubMed  CAS  Google Scholar 

  • Ingledew, W. J., and P. J. Halling. 1976 Paramagnetic centers of the nitrite oxidizing bacterium Nitrobacter FEBS Lett. 67 90–93

    Article  PubMed  CAS  Google Scholar 

  • Jetten, M. S. M., S. Logemann, G. Muyzer, L. A. Robertson, S. de Vries, M. C. M. van Loosdrecht, and J. G. Kuenen. 1997 Novel principles in the microbial conversion of nitrogen compounds Ant. v. Leeuwenhoek 71 75–93

    Article  CAS  Google Scholar 

  • Jetten, M., M. Wagner, J. Fuerst, M. van Loosdrecht, G. Kuenen, and M. Strous. 2001 Microbiology and application of the anaerobic ammonium oxidation (“anamox”) process Curr. Opin. Biotechnol. 12 283–288

    Article  PubMed  CAS  Google Scholar 

  • Jlang, Q. Q., and L. R. Bakken. 1999 Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria Appl. Environ. Microbiol. 65 2679–2684

    Google Scholar 

  • Johnston, H. 1972 Newly recognized vital nitrogen cycle Proc. Natl. Acad. Sci. USA 69 2369–2372

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, B. H., and R. D. Jones. 1988 Physiological effects of long energy-source deprivation on the survival of a marine chemolithtrophic ammonium-oxidizing bacterium Marine Ecol. Prog. Ser. 49 295–303

    Article  CAS  Google Scholar 

  • Jones, R. D., and R. Y. Morita. 1983 Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea Appl. Environ. Microbiol. 45 401–410

    PubMed  CAS  Google Scholar 

  • Jones, R. D., and R. Y. Morita. 1985 Survival of an marine ammonium oxidizer under energy source deprivation Marine Ecol. Prog. Ser. 26 175–179

    Article  Google Scholar 

  • Jones, R. D., R. Y. Morita, H.-P. Koops, and S. W. Watson. 1988 A new marine ammonium-oxidizing bacterium, Nitrosomonas cryotolerans sp. nov Can. J. Microbiol. 34 1122–1128

    Article  CAS  Google Scholar 

  • Juretschko, S., G. Timmermann, M. Schmid, K.-H. Schleifer, A. Pommerening-Röser, H.-P. Koops, and M. Wagner. 1998 Combined molecular and conventional analysis of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations Appl. Environ. Microbiol. 64 3042–3051

    PubMed  CAS  Google Scholar 

  • Keener, W. K., and D. J. Arp. 1993 Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay Appl. Environ. Microbiol. 59 2501–2510

    PubMed  CAS  Google Scholar 

  • Keener, W. K., and D. J. Arp. 1994 Transformation of aromatic compounds by Nitrosomonas europaea Appl. Environ. Microbiol. 60 1914–1920

    PubMed  CAS  Google Scholar 

  • Keeny, D. R. 1986 Inhibition of nitrification in soil In: J. J. Prosser (Ed.) Nitrification IRL Press Oxford UK 99–115

    Google Scholar 

  • Kester, R. A., W. de Boer, and H. J. Laanbroek. 1996 Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples FEMS Microbiol. Ecol. 20 111–120

    CAS  Google Scholar 

  • Kester, R. A., M. E. Meijer, and J. A. Libochant. 1997aContribution of nitrification and denitrification to the NO and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil Soil Biol. Biochem. 29 1655–1664

    Article  CAS  Google Scholar 

  • Kester, R. A., W. de Boer, and H. J. Laanbroek. 1997bProduction of NO and N2O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration Appl. Environ. Microbiol. 63 3872–3877

    PubMed  CAS  Google Scholar 

  • Kiesow, L. 1964 On the assimilation of energy from inorganic sources in autotrophic forms of life Proc. Natl. Acad. Sci. USA 52 980–988

    Article  PubMed  CAS  Google Scholar 

  • Killham, K. 1986 Heterotrophic nitrification In: J. I. Prosser (Ed.) Nitrification IRL Press Oxford UK 117–126

    Google Scholar 

  • Killham, K. 1987 A new perfusion system for measurement and characterization of potential rates of soil nitrification Plant Soil 97 267–272

    Article  CAS  Google Scholar 

  • Kirstein, K. O., E. Bock, D. J. Miller, and D. J. D. Nicholas. 1986 Membrane-bound b-type cytochromes in Nitrobacter FEMS Microbiol. Lett. 36 63–67

    Article  CAS  Google Scholar 

  • Kirstein, K., and E. Bock. 1993 Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases Arch. Microbiol. 160 447–453

    Article  PubMed  CAS  Google Scholar 

  • Kleiner, D. 1985 Bacterial ammonium transport FEMS Microbiol. Rev. 32 87–100

    Article  CAS  Google Scholar 

  • Klotz, M. G., J. Alzerreca, and M. L. Norton. 1997 A gene encoding a membrane protein exists upstream of the amo A/amo B genes in ammonia oxidizing bacteria: A third member of the amo operon? FEMS Microbiol. Lett. 150 65–73

    Article  PubMed  CAS  Google Scholar 

  • Klotz, M. G., and J. M. Norton. 1998 Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria FEMS Microbiol. Lett. 168 303–311

    Article  PubMed  CAS  Google Scholar 

  • Kluyver, A. J., and H. J. K. Donker. 1926 Die Einheit der Biochemie Chem. Zelle und Gewebe. 13 134–190

    CAS  Google Scholar 

  • Koops, H.-P., H. Harms, and H. Wehrmann. 1976 Isolation of a moderate halophilic ammonia-oxidizing bacterium, Nitrosococcus mobilis nov. sp Arch. Microbiol. 10 277–282

    Article  Google Scholar 

  • Koops, H. P., and H. Harms. 1985 Deoxyribonucleic acid homologies among 96 strains of ammonia-oxidizing bacteria Arch. Microbiol. 141(3) 214–218

    Article  Google Scholar 

  • Koops, H.-P., B. Böttcher, U. C. Möller, A. Pommerening-Röser, and G. Stehr. 1990 Description of a new species of Nitrosococcus Arch. Microbiol. 154 244–248

    Article  CAS  Google Scholar 

  • Koops, H.-P., B. Böttcher, U. C. Möller, A. Pommerening-Röser, and G. Stehr. 1991 Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov., and Nitrosomonas halophila sp. nov J. Gen. Microbiol. 137 1689–1699

    Article  CAS  Google Scholar 

  • Koops, H.-P., and U. C. Möller. 1992 The lithotrophic ammonia-oxidizing bacteria In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) [{http://www.prokaryotes.com} The Prokaryotes (2nd ed.)] Springer New York NY 2626–2637

    Google Scholar 

  • Koschorreck, M., E. Moore, and R. Conrad. 1996 Oxidation of nitric oxide by a new heterotrophic Pseudomonas sp Arch. Microbiol. 166 23–31

    Article  PubMed  CAS  Google Scholar 

  • Kowalchuk, G. A., J. R. Stephen, W. de Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997 Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments Appl. Environ. Microbiol. 63 1489–1497

    PubMed  CAS  Google Scholar 

  • Krüger, B., O. Meyer, M. Nagel, J. R. Andreesen, M. Meincke, E. Bock, S. Blümle, and W. G. Zumft. 1987 Evidence for the presence of bactopterin in the eubacterial molybdoenzymes nicotinic acid dehydrogenase, nitrite oxidoreductase, and respiratory nitrate reductase FEMS Microbiol. Lett. 48 225–227

    Article  Google Scholar 

  • Krümmel, A., and H. Harms. 1982 Effect of organic matter on growth and cell yield of ammonia-oxidizing bacteria Arch. Microbiol. 133 50–54

    Article  Google Scholar 

  • Kuenen, J. G., and L. A. Robertson. 1987 Ecology of nitrification and denitrificationM In: J. A. Cole and S. Ferguson (Eds.) The Nitrogen and sulfur cycles Cambridge University Press Cambridge UK 162–218

    Google Scholar 

  • Kumar, S., and D. J. D. Nicholas. 1982 A proton motive force-dependent adenosine-5′ triphosphate synthesis in spheroplasts of Nitrosomonas europaea FEMS Microbiol. Lett. 14 21–25

    CAS  Google Scholar 

  • Kumar, S., D. J. D. Nicholas, and E. H. Williams. 1983 Definitive 15N NMR evidence that water serves as a source of “O” during nitrite oxidation by Nitrobacter agilis FEMS Microbiol. Lett. 152 71–74

    CAS  Google Scholar 

  • Kurokawa, T., Y. Fukumori, and T. Yamanaka. 1987 Purification of a flavoprotein having NADPH-cytochrome c reductase and transhydrogenase activities from Nitrobacter winogradskyi and its molecular and enzymatic properties Arch. Microbiol. 148 95–99

    Article  CAS  Google Scholar 

  • Kusian, B., R. Bednarski, M. Husemann, and B. Bowien. 1995 Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus J. Bacteriol. 177 4442–4450

    PubMed  CAS  Google Scholar 

  • Lees, H. 1952 The biochemistry of the nitrifying organisms. The ammonia-oxidizing systems of Nitrosomonas Biochem. J. 52 134–139

    PubMed  CAS  Google Scholar 

  • Lewis, R. S., and W. M. Deen. 1994 Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions Chem. Res. Toxicol. 7 568–574

    Article  PubMed  CAS  Google Scholar 

  • Lipschultz, R., O. C. Zafiriou, S. C. Wofsy, M. B. McElroy, E. W. Valois, and S. W. Watson. 1981 Production of NO and N2O by soil nitrifying bacteria Nature 294 641–643

    Article  CAS  Google Scholar 

  • Lipscomb, J. D., and A. B. Hooper. 1982aResolution of multiple heme centers of hydroxylamine oxidoreductase from Nitrosomonas. 1: Electron paramagnetic resonance spectroscopy Biochemistry 21 3965–3972

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb, J. D., K. K. Andersson, E. Münck, T. A. Kent, and A. B. Hooper. 1982bResolution of multiple heme centers of hydroxylamine oxidoreductase from Nitrosomonas. 2: Mössbauer spectroscopy Biochemistry 21 3973–3976

    Article  PubMed  CAS  Google Scholar 

  • Loveless, J. E., and H. A. Painter. 1968 The influence of metal ion concentrations and pH value on the growth of a Nitrosomonas strain isolated from activated sludge J. Gen. Microbiol. 52 1–14

    Article  CAS  Google Scholar 

  • Lu, W. P., and D. P. Kelly. 1988 Chemolithotrophic ATP synthesis and NAD(P) reduction in Thiobacillus tepidarius and Thiobacillus versutus Arch. Microbiol. 130 250–254

    Google Scholar 

  • Mahony, T. J., and D. J. Miller. 1998 Linkage of genes encoding enolase (eno) and CTP synthase (pyr G) in the beta-subdivision proteobacterium Nitrsomonas europaea FEMS Micrbiol. Lett. 165 153–157

    CAS  Google Scholar 

  • Mancinelli, R. L., and C. P. McKay. 1983 Effects of nitric oxide and nitrogen dioxide on bacterial growth Appl. Environ. Microbiol. 46 198–202

    PubMed  CAS  Google Scholar 

  • Mansch, R., and E. Bock. 1998 Biodeterioration of natural stone with special reference to nitrifying bacteria Biodegradation 9 47–64

    Article  PubMed  CAS  Google Scholar 

  • Matin, A. 1978 Organic nutrition of chemoorganotrophic bacteria Ann. Rev. Microbiol. 32 433–468

    Article  CAS  Google Scholar 

  • Matulewich, V. A., P. F. Strom, and M. S. Finstein. 1975 Length of incubation for enumerating nitrifying bacteria present in various environments Appl. Environ. Microbiol. 29 265–268

    CAS  Google Scholar 

  • McCaig, A. E., T. M. Embley, and J. I. Prosser. 1994 Molecular analysis of enrichment cultures of marine ammonia oxidizers FEMS Microbiol. Lett. 120 363–368

    Article  PubMed  CAS  Google Scholar 

  • McTavish, H., J. Fuchs, and A. B. Hooper. 1993 Sequence of the gene for ammonia monooxygenase of Nitrosomonas europaea J. Bacteriol. 175 2436–2444

    PubMed  CAS  Google Scholar 

  • Meincke, M., E. Krieg, and E. Bock. 1989 Nitrosovibrio s the dominant ammonia oxidizing bacteria in building stones Appl. Environ. Microbiol. 56 2108–2110

    Google Scholar 

  • Meincke, M., E. Bock, D. Kastrau, and P. M. H. Kroneck. 1992 Nitrite oxidoreductase from Nitrobacter hamburgensis: Redox centers and their catalytic role Arch. Microbiol. 158 127–131

    Article  Google Scholar 

  • Miller, D. J., and P. M. Wood. 1982 Characterization of the c-type cytochromes of Nitrosomonas europaea with the aid of fluorescent gels Biochem. J. 207 511–517

    PubMed  CAS  Google Scholar 

  • Miller, D. J., and P. M. Wood. 1983 Two membrane-bound b-type cytochromes in Nitrosomonas europaea FEMS Microbiol. Lett. 20 323–326

    Article  CAS  Google Scholar 

  • Miller, D. J., and D. J. D. Nicholas. 1985 Further characterization of the soluble cytochrome oxidase/nitrite reductase from Nitrosomonas europaea J. Gen. Microbiol. 131 2851–2854

    CAS  Google Scholar 

  • Miller, L. G., M. D. Coutlakis, R. S. Oremland, and B. B. Ward. 1993 Selective inhibition of ammonium oxidation and nitrification-linked N2O Appl. Environ. Microbiol. 59 2457–2464

    PubMed  CAS  Google Scholar 

  • Mitchell, P. D. 1975 Protonmotive redox mechanism of the cytochrome bc1 complex in the respiratory chain: Protonmotive ubiquinone cycle FEBS Lett. 56 1–6

    Article  PubMed  CAS  Google Scholar 

  • Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl. 1996 Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria [published erratum appears in Appl. Environ. Microbiol. Feb. 1997;63(2), 815] Appl. Environ. Microbiol. 62 2156–2162

    PubMed  CAS  Google Scholar 

  • Moir, J. W. B., L. C. Crossmann, S. Spiro, and D. J. Richardson. 1996aThe purification of ammonia monooxygenase from Paracoccus denitrificans FEBS Lett. 387 71–74

    Article  PubMed  CAS  Google Scholar 

  • Moir, J. W. B., J.-M. Wehrfritz, S. Spiro, and D. J. Richardson. 1996bThe biochemical characterisation of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17 Biochem. J. 319 823–827

    PubMed  CAS  Google Scholar 

  • Morgenroth, E., A. Obermayer, E. Arnold, A. Brühl, M. Wagner, and P. A. Wilderer. 2000 Effect of long-term idle periods on the performance of sequencing batch reactors Wat. Sci. Tech. 41 105–113

    CAS  Google Scholar 

  • Mulder, J., N. van Breemen, W. Rasmussen, and C. T. Driscoll. 1989 Aluminium chemistry of acidic sandy soils affected by atmospheric depositions in the Netherlands and Denmark In: T. E. Lewis (Ed.) Environmental Chemistry and Toxicology of Aluminium Lewis Publishing Chelsea MI 171–194

    Google Scholar 

  • Mulder, A., A. A. van de Graaf, L. A. Robertson, and J. G. Kuenen. 1995 Anaerobic ammonia oxidation discovered in a denitrifying fluidized bed reactor FEMS Microbiol. Lett. 16 177–184

    Article  CAS  Google Scholar 

  • Nicholas, D. J. D., and O. T. G. Jones. 1960 Oxidation of hydroxylamine in cell-free extracts of Nitrosomonas europaea Nature 185 512–514

    Article  CAS  Google Scholar 

  • Nielsen, L. P. 1992 Denitrification in sediment determined from nitrogen isotope pairing FEMS Microbiol. Ecol. 86 357–362

    Article  CAS  Google Scholar 

  • Norton, J. M., J. M. Low, and M. G. Klotz. 1996 The gene encoding ammonia monooxygenase subunit A exists in three nearly identical copies in Nitrosospira sp. NpAv FEMS Microbiol. Lett. 139 181–188

    PubMed  CAS  Google Scholar 

  • O’Kelley, J. C., G. E. Becker, and A. Nason. 1970 Characterization of the particulate nitrite oxidase and its component activities from the chemoautotroph Nitrobacter agilis Biochim. Biophys. Acta 205 409–425

    Article  PubMed  Google Scholar 

  • Olson, T. C., and A. B. Hooper. 1983 Energy coupling in the bacterial oxidation of small molecules: An extracytoplasmic dehydrogenase in Nitrosomonas FEMS Microbiol. Lett. 19 47–50

    Article  CAS  Google Scholar 

  • O’Neil, J. G., and J. F. Wilkinson. 1977 Oxidation of ammonia by methane-oxidizing bacteria and the effect of ammonia on methane oxidation J. Gen. Microbiol. 100 407–412

    Article  Google Scholar 

  • Orso, S., M. Gouy, E. Navarro, and P. Normand. 1994 Molecular phylogenetic analysis of Nitrobacter spp Int. J. Syst. Bacteriol. 44 83–86

    Article  PubMed  CAS  Google Scholar 

  • Painter, H. A. 1988 Nitrification in the treatment of sewage and waste-waters In: J. I. Prosser (Ed.) Nitrification IRL Press Oxford UK 185–211

    Google Scholar 

  • Papen, H., R. von Berg, I. Hinkel, B. Thoene, and H. Rennenberg. 1989 Heterotrophic nitrification by Alcaligenes faecalis: NO2-, NO3-, N2O, and NO production in exponentially growing cultures Appl. Environ. Microbiol. 55 2068–2072

    PubMed  CAS  Google Scholar 

  • Pinck, C., C. Coeur, P. Potier, and E. Bock. 2001 Polyclonal antibodies recognizing the AmoB protein of ammonia oxidizers of the beta-subclass of the class Proteobacteria Appl. Environ. Microbiol. 67 118–124

    Article  PubMed  CAS  Google Scholar 

  • Pires, M., M. J. Rossi, and D. S. Ross. 1994 Kinetic and mechanistic aspects of the NO oxidation by O2 in aqueous phase Int. J. Chem. Kin. 26 1207–1227

    Article  CAS  Google Scholar 

  • Pommerening-Röser, A., G. Rath, and H.-P. Koops. 1996 Phylogenetic diversity within the genus Nitrosomonas Syst. Appl. Microbiol. 19 344–351

    Article  Google Scholar 

  • Poth, M., and D. D. Focht. 1985 14N kinetic analysis of N2O production by Nitrosomonas europaea: An examination of nitrifier denitrification Appl. Environ. Microbiol. 49 1134–1141

    PubMed  CAS  Google Scholar 

  • Poth, M. 1986 Dinitrogen production from nitrite by a Nitrosomonas isolate Appl. Environ. Microbiol. 52 957–959

    PubMed  CAS  Google Scholar 

  • Prince, R. C., C. Larroque, and A. B. Hooper. 1983 Resolution of the hemes of hydroxylamine oxidoreductase by redox potentiometry and optical spectroscopy FEBS Lett. 163 25–27

    Article  PubMed  CAS  Google Scholar 

  • Prosser, J. I. 1989 Autotrophic nitrification in bacteria In: A. H. Rose and D. W. Tempest (Eds.) Advances in Microbial Physiology Academic Press London 30 125–181

    Google Scholar 

  • Purkhold, U., A. Pommerening-Röser, S. Juretschko, M. C. Schmid, H.-P. Koops, and M. Wagner. 2000 Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys Appl. Environ. Microbiol. 66 5368–5382

    Article  PubMed  CAS  Google Scholar 

  • Ralt, D., R. F. Gomez, and S. R. Tannerbaum. 1981 Conversion of acetohydroxamate and hydroxylamine to nitrite by intestinal microorganisms Eur. J. Appl. Microbiol. Biotechnol. 12 226–230

    Article  CAS  Google Scholar 

  • Rees, M., and A. Nason. 1966 Incorporation of atmospheric oxygen into nitrite formed during ammonia oxidation by Nitrosomonas europaea Biochim. Biophys. Acta 1(13) 398–401

    Article  PubMed  CAS  Google Scholar 

  • Remde, A., and R. Conrad. 1990 Production of nitric oxide by Nitrosomonas europaea by reduction of nitrite Arch. Microbiol. 154 187–191

    Article  CAS  Google Scholar 

  • Robertson, L. A., and J. G. Kuenen. 1983 Thiosphaera pantotropha gen. nov. sp. nov., a new facultative anaerobic, facultative autotrophic sulfur bacterium J. Gen. Microbiol. 129 2847–2855

    CAS  Google Scholar 

  • Robertson, L. A., and J. G. Kuenen. 1984 Aerobic denitrificationL A controversy revived Arch. Microbiol. 139 351–354

    Article  CAS  Google Scholar 

  • Robertson, L. A., and J. G. Kuenen. 1988 Heterotrophic nitrification in Thiosphaera pantotropha—oxygen uptake and enzyme studies J. Gen. Microbiol. 134 857–863

    CAS  Google Scholar 

  • Robertson, L. A., R. Cornelisse, P. de Vos, R. Hadioetomo, and J. G. Kuenen. 1989 Aerobic denitrification in various heterotrophic nitrifiers Ant. v. Leeuwenhoek 56 289–300

    Article  CAS  Google Scholar 

  • Robertson, L. A., and J. G. Kuenen. 1990 Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria Ant. v. Leeuwenhoek 57 139–152

    Article  CAS  Google Scholar 

  • Rotthauwe, J. H., W. de Boer, and W. Liesack. 1995 Comparative analysis of gene sequences encoding ammonia monooxygenase of Nitrosospira sp. AHB1 and Nitrosolobus multiformis C-71 FEMS Microbiol. Lett. 133 131–135

    Article  PubMed  CAS  Google Scholar 

  • Rotthauwe, J.-H., K.-P. Witzel, and W. Liesack. 1997 The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations Appl. Environ. Microbiol. 63 4704–4712

    PubMed  CAS  Google Scholar 

  • Sayavedra-Soto, L. A., N. G. Hommes, and D. J. Arp. 1994 Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea J. Bacteriol. 176 504–510

    PubMed  CAS  Google Scholar 

  • Sayavedra-Soto, L. A., N. G. Hommes, S. A. Russell, and D. J. Arp. 1996 Induction of ammonia monooxygenase and hydroxylamine oxidoreductase mRNAs by ammonium in Nitrosomonas europaea Molec. Microbiol. 20 541–548

    Article  CAS  Google Scholar 

  • Schimel, J. P. M., K. Firestone, and K. S. Killham. 1984 Identification of heterotrophic nitrification in a Sierran forest soil Appl. Environ. Microbiol. 48 802–806

    PubMed  CAS  Google Scholar 

  • Schmid, M., U. Twachtmann, M. Klein, M. Strous, S. Juretschko, M. Jetten, J. W. Metzger, K.-H. Schleifer, and M. Wagner. 2000 Molecular evidence for a genus-level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation System. Appl. Microbiol. 23 93–106

    Article  CAS  Google Scholar 

  • Schmid, M., S. Schmitz-Esser, M. Jetten, and M. Wagner. 2001 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium oxidizers: Implications for phylogeny and in situ detection Environ. Microbiol. 3 450–459

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, E. L. 1982 Nitrification in soil In: Stevenson, F. J. Nitrogen in Agricultural Soils ASA-CSSA-SSSA Madison WI 253–288

    Google Scholar 

  • Schmidt, I., and E. Bock. 1997 Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha Arch. Microbiol. 167 106–111

    Article  CAS  Google Scholar 

  • Schmidt, I., and E. Bock. 1998 Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha Ant. v. Leeuwenhoek 73 271–278

    Article  CAS  Google Scholar 

  • Schmidt, I., E. Bock, and M. S. M. Jetten. 2001aAmmonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene Microbiology 147 2247–2253

    PubMed  CAS  Google Scholar 

  • Schmidt, I., D. Zart, and E. Bock. 2001bEffects of gaseous NO2 on cells of Nitrosomonas eutropha previously incapable of using ammonia as an energy source Ant. v. Leeuwenhoek 79 39–47

    Article  CAS  Google Scholar 

  • Seewaldt, E., K.-H. Schleifer, E. Bock, and E. Stackebrandt. 1982 The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris Arch. Microbiol. 131 287–290

    Article  CAS  Google Scholar 

  • Sela, S., D. Yogev, S. Razin, and H. Bercovier. 1989 Duplication of the tuf gene: A new insight into the phylogeny of eubacteria J. Bacteriol. 177 581–584

    Google Scholar 

  • Sewell, D. L., M. I. H. Aleem, and D. F. Wilson. 1972 The oxidation-reduction potentials and rates of oxidation of the cytochromes of Nitrobacter agilis Arch. Biochem. Biophys. 153 312–319

    Article  PubMed  CAS  Google Scholar 

  • Sewell, D. L., and M. I. H. Aleem. 1979 NADH-linked oxidative phosphorylation in Nitrobacter agilis Curr. Microbiol. 2 35–37

    Article  CAS  Google Scholar 

  • Shank, J. L., J. H. Silliker, and J. H. Harper. 1962 The effect of nitric oxide on bacteria Appl. Microbiol. 10 185–189

    PubMed  CAS  Google Scholar 

  • Shears, J. H., and P. M. Wood. 1985 Spectroscopic evidence for a photosensitive oxygenated state of ammonia monooxygenase Biochem. J. 226 499–507

    PubMed  CAS  Google Scholar 

  • Slangen, J. H. G., and P. Kerkhoff. 1984 Nitrification inhibitors in agriculture and horticulture: A literature review Fertilizer Res. 5 1–76

    Article  CAS  Google Scholar 

  • Smith, A. J., and D. S. Hoare. 1968 Acetate assimilation by Nitrobacter agilis in relation to its “obligate autotrophy” J. Bacteriol. 95 844–855

    PubMed  CAS  Google Scholar 

  • Sone, N., Y. Yanagita, K. Hon-nami, Y. Fukumori, and T. Yamanaka. 1983 Proton-pump activity of Nitrobacter agilis and Thermus thermophilus cytochrome c oxidase FEBS Lett. 155 150–155

    Article  CAS  Google Scholar 

  • Sone, N. 1986 Measurement of proton pump activity of the thermophilic bacterium PS 3 and Nitrobacter agilis at the cytochrome oxidase level using total membranes and heptyl-thioglycoside J. Biochem. 100 1465–1476

    PubMed  CAS  Google Scholar 

  • Sorokin, D. Y., G. Myzer, T. Brinkhoff, J. G. Kuenen, and M. S. M. Jetten. 1998 Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov Arch. Microbiol. 170 345–352

    Article  PubMed  CAS  Google Scholar 

  • Sorokin, D. Y., T. Tourova, M. Schmid, M. Wagner, H. P. Koops, J. G. Kuenen, and M. Jetten. 2001 Isolation and properties of obligately chemolithoautotrophic and extremely alkalitolerant ammonia oxidizing bacteria from Mongolian soda lakes Arch. Microbiol. 176 170–177

    Article  PubMed  CAS  Google Scholar 

  • Spieck, E., M. Meincke, and E. Bock. 1992 Taxonomic diversity of Nitrosovibrio strains isolated from building sandstone FEMS Microbiol. Ecol. 102 21–26

    Article  Google Scholar 

  • Spieck, E., J. Aamand, S. Bartosch, and E. Bock. 1996 Immunocytochemical detection and location of the membrane-bound nitrite oxidoreductase in cells of Nitrobacter and Nitrospira FEMS Microbiol. Lett. 139 71–76

    Article  CAS  Google Scholar 

  • Spiller, H., E. Dietsch, and E. Kessler. 1976 Intracellular appearance of nitrite and nitrate in nitrogen-starved cells of Ankistrodesmus braunii Planta 129 175–181

    Article  CAS  Google Scholar 

  • Stammler, J. S., D. J. Simon, V. Osborne, M. E. Mullins, O. Jaraki, T. Michel, D. J. Singel, and J. Loscalzo. 1992 S-nitrosylation of proteins with nitric oxide: Synthesis and characterization of biologically active compounds Proc. Natl. Acad. Sci. USA 82 7738–7742

    Google Scholar 

  • Stams, A. J. M., E. M. Flameling, and E. C. L. Marnette. 1990 The importance of autotrophic versus heterotrophic oxidation of atmospheric ammonium in forest ecosystems with acid soil FEMS Microbiol. Ecol. 74 337–344

    Article  CAS  Google Scholar 

  • Stams, A. J. M., H. W. G. Booltink, I. J. Lutke-Schipholt, B. Beemsterboer, J. R. W. Woittiez, and N. Van Breemen. 1991 A field study on the fate of 15N-ammonium to demonstrate nitrification of atmospheric ammonium in an acid forest soil Biogeochemistry 13 241–255

    Article  CAS  Google Scholar 

  • Stehr, G., B. Böttcher, P. Dittberner, G. Rath, and H.-P. Koops. 1995 The ammonia-oxidizing nitrifying population of the river Elbe estuary FEMS Microbiol. Ecol. 17 177–186

    Article  CAS  Google Scholar 

  • Stein, L. Y., D. J. Arp, and M. R. Hyman. 1997 Regulation of the synthesis and activity of ammonia monooxygenase in Nitrosomonas europaea by altering pH to affect NH3 availability Appl. Environ. Microbiol. 63 4588–4592

    PubMed  CAS  Google Scholar 

  • Stein, L. Y., and D. J. Arp. 1998aAmmonium limitation results in the loss of ammonia oxidizing activity in Nitrosmonas europaea Appl. Environ. Microbiol. 64 1514–1521

    PubMed  CAS  Google Scholar 

  • Stein, L. Y., and D. J. Arp. 1998bLoss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite Appl. Environ. Microbiol. 64 4098–4102

    PubMed  CAS  Google Scholar 

  • Stein, L. Y., L. A. Sayavedra-Soto, N. G. Hommes, and D. J. Arp. 2000 Differential regulation of amoA and amoB gene copies in Nitrosomonas europaea FEMS Microbiol. Lett. 192 163–168

    Article  PubMed  CAS  Google Scholar 

  • Steinmüller, W., and E. Bock. 1976 Growth of Nitrobacter in the presence of organic matter. I. Mixotrophic growth Arch Microbiol. 108 299–304

    Article  PubMed  Google Scholar 

  • Stephen, J. R., A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley. 1996 Molecular diversity of soil and marine 16S rRNA gene sequences related to β-subgroup ammonia-oxidizing bacteria Appl. Environ. Microbiol. 62 4147–4154

    PubMed  CAS  Google Scholar 

  • Stephen, J. R., G. A. Kowalchuk, M. A. V. Bruns, A. E. McCaig, C. J. Phillips, T. M. Embley, and J. I. Prosser. 1998 Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing Appl. Environ. Microbiol. 64 2958–2965

    PubMed  CAS  Google Scholar 

  • Steudler, P. A., R. D. Jones, M. S. Castro, J. M. Mellilo, and D. L. Lewis. 1996 Microbial controles of methane oxidation in temperate forest and agriculture soils NATO ASI Ser. Ser. I 39 69–84

    CAS  Google Scholar 

  • Strecker, M., E. Sickinger, R. S. English, J. M. Shively, and E. Bock. 1994 Calvin cycle genes in Nitrobacter vulgaris T3 FEMS Microbiol. Lett. 120 45–50

    Article  CAS  Google Scholar 

  • Strous, M., J. A. Fuerst, E. H. M. Kramer, S. Logemann, V. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuenen, and M. S. M. Jetten. 1999 Missing lithotroph identified as new planctomycete Nature 400 446–449

    Article  PubMed  CAS  Google Scholar 

  • Stüven, R., M. Vollmer, and E. Bock. 1992 The impact of organic matter on NO formation by Nitrosomonas europaea Arch. Microbiol. 158 439–443

    Article  Google Scholar 

  • Stüven, R., and E. Bock. 2001 Nitrification and denitrification as a source for NO and NO2 production in high-strength wastewater Water Res. 35(8) 1905–1914

    Article  Google Scholar 

  • Sundermeyer, H., and E. Bock. 1981 Energy metabolism of autotrophically and heterotrophically grown cells of Nitrobacter winogradskyi Arch. Microbiol. 130 250–254

    Article  CAS  Google Scholar 

  • Sundermeyer-Klinger, H., V. Meyer, B. Warninghoff, and E. Bock. 1984 Membrane-bound nitrite oxidoreductase of Nitrobacter: Evidence for a nitrate reductase system Arch. Microbiol. 140 153–158

    Article  CAS  Google Scholar 

  • Suwa, Y., T. Sumino, and K. Noto. 1997 Phylogenetic relationships of activated sluge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate J. Gen. Appl. Microbiol. 43 373–379

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, I., U. Dular, and S.-C. Kwok. 1970 Cell-free ammonia oxidation by Nitrosomonas europaea extracts: Effects of polyamines, Mg2+ and albumin Biochem. Biophys. Res. Commun. 39 950–955

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, I., U. Dular, and S.-C. Kwok. 1974 Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas cells and extracts J. Bacteriol. 120 556–558

    PubMed  CAS  Google Scholar 

  • Suzuki, I., S.-C. Kwok, and U. Dular. 1976 Competitive inhibition of ammonia oxidation in Nitrosomonas europaea by methane, carbon monoxide or methanol FEBS Lett. 72 117–120

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, I., and S.-C. Kwok. 1981aA partial resolution and reconstitution of the ammonia-oxidizing system of Nitrosomonas europaea: Rrole of cytochrome c554 Can. J. Biochem. 59 484–488

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, I., S.-C. Kwok, U. Dular, and D. C. Y. Tsang. 1981bCell-free ammonia oxidizing system of Nitrosomonas europaea: General conditions and properties Can. J. Biochem. 59 477–483

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, R., T. Ohmori, K. Watanabe, and T. Tokuyama. 1993 Phosphoenolpyruvate carboxylase of ammonia oxidizing chemoautotrophic bacterium Nitrosomonas europaea ATCC 25978 J. Ferm. Bioeng. 76 232–234

    Article  CAS  Google Scholar 

  • Tanaka, Y., Y. Fukumori, and T. Yamanaka. 1982 The complete amino acid sequence of Nitrobacter agilis cytochrome c550 Biochim. Biophys. Acta 707 14–20

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, Y., Y. Fukumori, and T. Yamanaka. 1983 Purification of cytochrome a1c1 from Nitrobacter agilis and characterization of nitrite oxidation system of the bacterium Arch. Microbiol. 135 265–271

    Article  CAS  Google Scholar 

  • Tappe, W., C. Tomaschewski, S. Rittershaus, and J. Groeneweg. 1996 Cultivation of nitrifying bacteria in the retentostat, a simple fermenter with internal biomass retention FEMS Microbiol. Ecol. 19 47–52

    Article  CAS  Google Scholar 

  • Teske, A., E. Alm, J. M. Regan, S. Toze, B. E. Rittmann, and D. A. Stahl. 1994 Evolutionary relationship among ammonia-and nitrite oxidizing bacteria J. Bacteriol. 176 6623–6630

    PubMed  CAS  Google Scholar 

  • Teske, A., C. Wawer, G. Muyzer, and N. B. Ramsing. 1996 Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments Appl. Environ. Microbiol. 62 1405–1415

    PubMed  CAS  Google Scholar 

  • Tomlinson, T. G., A. G. Boon, and C. N. A. Trotman. 1966 Inhibition of nitrification in the activated sludge process of sewage disposal J. Appl. Bacteriol. 29 266–291

    Article  PubMed  CAS  Google Scholar 

  • Tronson, D. A., G. A. F. Ritchie, and D. J. D. Nicholas. 1973 Purification of c-type cytochromes from Nitrosomonas europaea Biochim. Biophys. Acta 310 331–343

    Article  PubMed  CAS  Google Scholar 

  • Tsang, D. C. Y., and I. Suzuki. 1982 Cytochrome c554 as a possible electron donor in the hydroxylation of ammonia and carbon monoxide in Nitrosomonas europaea Can. J. Biochem. 60 1018–1024

    Article  PubMed  CAS  Google Scholar 

  • Tsong, T. Y., and R. D. Astumian. 1987 Electroconformational coupling Progr. Biophys. Molec. Biol. 50 1–45

    Article  CAS  Google Scholar 

  • Tubulekas, I., and D. Hughes. 1993 Growth and translation elongation rate are sensitive to the concentration of EF-Tu Molec. Microbiol. 8 761–770

    Article  CAS  Google Scholar 

  • Utåker, J. B., L. Bakken, Q. Q. Jiang, and I. F. Nes. 1995 Phylogenetic analysis of seven new isolates of ammonia-oxidizing bacteria based on 16S rRNA gene sequences Syst. Appl. Microbiol. 18 549–559

    Article  Google Scholar 

  • Utåker, J. B., and I. F. Nes. 1998 A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of the ammonia-oxidizing bacteria Syst. Appl. Microbiol. 21 72–88

    Article  PubMed  Google Scholar 

  • Van de Dijk, S. J., and S. R. Troelstra. 1980 Heterotrophic nitrification in a heath soil demonstrated by an in-situ method Plant Soil 57 11–21

    Article  Google Scholar 

  • Van de Graaf, A. A., A. Mulder, P. De Bruijn, M. S. M. Jetten, L. A. Robertson, and J. G. Kuenen. 1995 Anaerobic oxidation of ammonium is a biologically mediated process Appl. Environ. Microbiol. 61 1246–1251

    PubMed  Google Scholar 

  • Van de Graaf, A. A., P. De Bruijn, L. A. Robertson, and J. G. Kuenen. 1996 Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor Microbiology 142 2187–2196

    Article  Google Scholar 

  • Van de Graaf, A. A., P. De Bruijn, L. A. Robertson, M. S. M. Jetten, and J. G. Kuenen. 1997 Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor Microbiology 143 2415–2421

    Article  Google Scholar 

  • Vanelli, T., M. Logan, M. Arciero, and A. B. Hooper. 1990 Degradation of halogenated aliphatic compounds by ammonia-oxidizing bacterium Nitrosomonas europaea Appl. Environ. Microbiol. 56 1169–1171

    Google Scholar 

  • Vanelli, T., D. J. Bergmann, D. M. Arciero, and A. B. Hooper. 1996 Mechanism of N-oxidation and electron transfer in the ammonia-oxidizing autotrophs In: M. E. Lidstrom and F. R. Tabita (Eds.) Proceedings of the 8th International Symposium on Microbial Growth on C1 Compounds Kluwer Academic Publishers Dordrecht The Netherlands 80–87

    Chapter  Google Scholar 

  • Van Niel, E. W. J., L. A. Robertson, and J. G. Kuenen. 1987 Heterotrophic nitrification in denitrifying bacteria Proc. 4th Eur. Cong. Biotechnol. 3 363

    Google Scholar 

  • Van Niel, E. W. J., P. A. M. Arts, B. J. Wesselink, L. A. Robertson, and J. G. Kuenen. 1993 Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures FEMS Microbiol. Ecol. 102 109–118

    Article  Google Scholar 

  • Voysey, P. A., and P. M. Wood. 1987 Methanol and formaldehyde oxidation by an autotrophic nitrifying bacterium J. Gen. Microbiol. 133 283–290

    CAS  Google Scholar 

  • Voytek, M. A., and B. B. Ward. 1995 Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR Appl. Environ. Microbiol. 61 1444–1450

    PubMed  CAS  Google Scholar 

  • Wagner, M., G. Rath, R. Amann, H.-P. Koops, and K.-H. Schleifer. 1995 In situ identification of ammonia-oxidizing bacteria Syst. Appl. Microbiol. 18 251–264

    Article  CAS  Google Scholar 

  • Wagner, M., G. Rath, H.-P. Koops, J. Flood, and R. Amann. 1996 In situ analysis of nitrifying bacteria in sewage treatment plants Water Sci. Tech. 34(1–2) 237–244

    Google Scholar 

  • Wang, W. C., Y. L. Yung, A. L. Lacis, T. M. Mo, and J. E. Hanson. 1976 Greenhouse effects due to man-made perturbations of trace gases Science 194 685–689

    Article  PubMed  CAS  Google Scholar 

  • Ward, B. B. 1987 Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus Arch. Microbiol. 147 126–133

    Article  CAS  Google Scholar 

  • Watson, S. W. 1965 Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus sp. n Limnol. Oceanogr. 10(Suppl.) R274–R289

    Google Scholar 

  • Watson, S. W. 1971aTaxonomic considerations of the family Nitrobacteraceae Buchanan: Requests for opinions Int. J. Syst. Bacteriol. 21 254–270

    Article  Google Scholar 

  • Watson, S. W., and J. B. Waterbury. 1971bCharacteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp Arch. Mikrobiol. 77 203–230

    Article  Google Scholar 

  • Watson, S. W., L. B. Graham, C. C. Remsen, and F. W. Valois. 1971cA lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp Arch. Mikrobiol. 76 183–303

    Article  PubMed  CAS  Google Scholar 

  • Watson, S. W., E. Bock, E. W. Valois, J. B. Waterbury, and U. Schlosser. 1986 Nitrospira marina gen. nov. sp. nov.: A chemolithotrophic nitrite-oxidizing bacterium Arch. Microbiol. 144 1–7

    Article  Google Scholar 

  • Watson, S. W., E. Bock, H. Harms, H.-P. Koops, and A. B. Hooper. 1989 Nitrifying bacteria In: R. G. E. Murray, D. J. Brenner, M. P. Bryant, J. G. Holt, N. R. Krieg, J. W. Moulder, N. Pfennig, P. H. A. Sneath, J. T. Staley, and S. Williams (Eds.) [{http://www.cme.msu.edu/bergeys} Bergey’s Manual of Systematic Bacteriology] 3. Williams and Wilkins Baltimore MD 1808–1834

    Google Scholar 

  • Wehrfritz, J.-M., A. Reilly, S. Spiro, and D. J. Richardson. 1993 Purification of hydroxylamine oxidoreductase from Thiosphera pantotropha. Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification FEBS Lett. 335 246–250

    Article  PubMed  CAS  Google Scholar 

  • Wetzstein, H. G., and R. J. Ferguson. 1985 Respiration-dependent proton translocation and the mechanism of proton motive force generation in Nitrobacter winogradskyi FEMS Microbiol. Lett. 30 87–92

    Article  CAS  Google Scholar 

  • Wheelis, M. 1984 Energy conservation and pyridine nucleotide reduction in chemoautotrophic bacteria: A thermodynamic analysis Arch. Microbiol. 138 166–169

    Article  CAS  Google Scholar 

  • Williams, E. J., G. L. Hutchinson, and F. C. Fehsenfeld. 1992 NOx and N2O emissions from soil Global Biogeochem. Cycles 6 351–388

    Article  CAS  Google Scholar 

  • Wink, D. A., K. S. Kasprzak, C. M. Maragos, R. K. Elespuru, M. Misra, T. M. Dunams, T. A. Cebula, W. H. Koch, A. W. Andrews, J. S. Allen, and L. K. Keefer. 1991 DNA deaminating ability and genotoxicity of nitric oxide and its progenitors Science 254 1001–1003

    Article  PubMed  CAS  Google Scholar 

  • Wink, D. A., J. F. Darbyshire, R. W. Nims, J. E. Saavedra, and P. C. Ford. 1993 Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: Determination of kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction Chem. Res. Toxicol. 6 23–27

    Article  PubMed  CAS  Google Scholar 

  • Winogradsky, S. 1892 Archives des Sciences Biologique. Contributions à la morphologie des organismes de la nitrification St. Petersbourg 1 88–137

    Google Scholar 

  • Woese, C. R., W. G. Weisburg, B. J. Paster, C. M. Hahn, R. S. Tanner, N. R. Krieg, H.-P. Koops, H. Harms, and E. Stackebrandt. 1984 The phylogeny of purple bacteria: The beta subdivision Syst. Appl. Microbiol. 5 327–336

    Article  CAS  Google Scholar 

  • Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt. 1985 The phylogeny of purple bacteria: The gamma subdivision Syst. Appl. Microbiol. 6 25–33

    Article  CAS  Google Scholar 

  • Wood, P. M. 1978 Periplasmic location of the terminal reductase in nitrite respiration FEBS Lett. 92 214–218

    Article  PubMed  CAS  Google Scholar 

  • Wood, P. M. 1986 Nitrification as a bacterial energy source In: J. I. Prosser (Ed.) Nitrification IRL Press Oxford UK 63–78

    Google Scholar 

  • Wood, P. M. 1988aChemolithotrophy In: C. Anthony (Ed.) Bacterial Energy Transduction Academic Press London UK 183–230

    Google Scholar 

  • Wood, P. M. 1988bMonooxygenase and free radical mechanism for biological ammonia oxidation In: J. A. Cole and S. Ferguson (Eds.) The nitrogen and Sulfur Cycles: 42nd Symposium of the Society of General Microbiology Cambridge University Press Cambridge UK 219–243

    Google Scholar 

  • Wullenweber, M., H.-P. Koops, and H. Martiny. 1978 Der Einfluß von Nitrit auf den Verlauf des Wachstums von Nitrosomonas Stamm Nm1 Mitt. Inst. Allg. Bot. Hamburg 16 159–164

    CAS  Google Scholar 

  • Xu, B., U. Fortkamp, and S.-O. Enfors. 1995 Continuous measurement of NOaq during denitrification by immobilized Pseudomonas stutzeri Biotechnol. Biotech. 9 659–664

    CAS  Google Scholar 

  • Yamagata, A., J. Kato, R. Hirota, A. Kuroda, T. Ikeda, N. Takiguchi, and H. Ohtake. 1999 Isolation and characterization of two cryptic plasmids in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11 J. Bacteriol. 181 3375–3381

    PubMed  CAS  Google Scholar 

  • Yamanaka, T., and M. Shinra. 1974 Cytochrome c552 and cytochrome c554 derived from Nitrosomonas europaea: Purification, properties, and their function in hydroxylamine oxidation J. Biochem. 75 1265–1273

    PubMed  CAS  Google Scholar 

  • Yamanaka, T., K. Fugii, and Y. Kamita. 1979 Subunits of cytochrome a-type terminal oxidase derived from Thiobacillus novellus and Nitrobacter agilis J. Biochem. 86 821–824

    PubMed  CAS  Google Scholar 

  • Yamanaka, T., Y. Kamita, and Y. Fukumori. 1981 Molecular and enzymatic properties of “cytochrome aa3 type” terminal oxidase derived from Nitrobacter agilis J. Biochem. 89 265–273

    PubMed  CAS  Google Scholar 

  • Yamanaka, T., Y. Tanaka, and Y. Fukumori. 1982 Nitrobacter agilis cytochrome c550: Isolation, physicochemical and enzymatic properties and primary structure Plant Cell Physiol. 23 441–449

    CAS  Google Scholar 

  • Yamanaka, T., and Y. Fukumori. 1988 The nitrite oxidizing system of Nitrobacter winogradskyi FEMS Microbiol. Rev. 54 259–270

    Article  CAS  Google Scholar 

  • Yoshida, T., and M. Alexander. 1964 Hydroxylamine formation by Nitrosomonas europaea Can. J. Microbiol. 10 923–926

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari, T. 1985 Nitrite and nitrous oxide production by Methylosinus trichosporium Can. J. Microbiol. 31 139–144

    Article  PubMed  CAS  Google Scholar 

  • Zahn, J. A., C. Duncan, and A. A. DiSpirito. 1994 Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath. J. Bacteriol. 176 5879–5887

    CAS  Google Scholar 

  • Zart, D., I. Schmidt, and E. Bock. 1996 Neue Wege vom Ammonium zum Stickstoff In: H. Lemmer, T. Griebe, and H.-K. Flemming (Eds.) Ökologie der Abwasserorganismen Springer-Verlag Berlin Germany 183–192

    Chapter  Google Scholar 

  • Zart, D., and E. Bock. 1998 High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO Arch. Microbiol. 169 282–286

    Article  PubMed  CAS  Google Scholar 

  • Zart, D., R. Stüven, and E. Bock. 1999 Nitrification and denitrification—microbial fundamentals and consequences for application In: H.-J. Rehm, G. Reed, A. Pühler, and P. J. W. Stadler (Eds.) Biotechnology: A Multi-volume Comprehensive Treatise, 2nd revised ed 11a Wiley-VCH Weinheim Germany New York NY 55–64

    Google Scholar 

  • Zart, D., I. Schmidt, and E. Bock. 2000 Significance of gaseous NO for ammonia oxidation by Nitrosomonas eutropha Ant. v. Leeuwenhoek 77 49–55

    Article  CAS  Google Scholar 

  • Zumft, W. G. 1993 The biological role of nitric oxide in bacteria Arch. Microbiol. 160 253–264

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Bock, E., Wagner, M. (2006). Oxidation of Inorganic Nitrogen Compounds as an Energy Source. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_16

Download citation

Publish with us

Policies and ethics