Skip to main content
Log in

Nitric oxide, a biological effector

Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Nitric oxide has been used for more than 20 years as an electron paramagnetic resonance probe of oxygen binding sites in oxygen-carriers and oxygen-metabolizing metalloenzymes. The high reactivity of NO with oxygen and the superoxide anion and its high affinity for metalloproteins led biochemists to consider NO as a highly toxic compound for a living cell. This assertion has recently been reconsidered following a number of discoveries of great significance: the finding of the activation of guanylate cyclase by NO, the recognition that NO is the precursor of nitrite and nitrate ions released in the activation of macrophages by endotoxin and cytokities, evidence that NO is an Endothelium-Derived Relaxing Factor, and the discovery of NO-biosynthesis from l-arginine, a pathway common in various biological cell-to-cell signalling processes. It is now admitted that NO plays a key bioregulatory role within mammalian cells, between cells of different types and in the host defence response. In the present review we have attempted to give a general picture of what is known of the chemical, physical, biochemical and biophysical properties of NO among the various nitrogen oxides. We have focussed on the structural information that can be obtained by electron paramagnetic resonance spectroscopy of nitrosyl-metalloprotein complexes. Finally we have shown how molecular targets of nitric oxide can be characterized, within whole cells, by electron paramagnetic resonance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCG:

Bacillus Calmette-Guérin

CcO:

cytochrome c oxidase

cGMP:

cyclic GMP

Cyt. cd 1 :

cytochrome cd 1 or nitrite reductase from Pseudomonas aeruginosa

DPG:

2,3-diphosphoglycerate

EDRF:

endothelium-derived relaxing factor

EPR:

electron paramagnetic resonance

GC:

guanylate cyclase

GMN, GDN, GTN:

glyceryl mono-, di-, trinitrate

GSH, GSSG:

reduced and oxidized glutathione

GSH-ST:

glutathione S-transferase

Hb:

hemoglobin

Hb3+ :

ferrihemoglobin

IFN-γ:

interferon gamma

IHP:

inositol hexaphosphate

LPS:

lipopolysaccharide from E. coli

Mb:

myoglobin

NMMA:

NG-monomethyl-l-arginine

P-450:

cytochrome P-450

P-420:

cytochrome P-420

P1, P2, P3, P7:

isoperoxidases from turnip

SHF:

superhyperfine structure

TDO:

tryptophan 2,3-dioxygenase from Pseudomonas fuorescens

TNF:

tumor necrosis factor

References

  • Adams LB, Hibbs JB, Taintor RR, Krahenbuhl JL (1990) Microbiostatic effect of murine-activated macrophages for Toxoplasma gondii. J Immunol 144:2725–2729

    Google Scholar 

  • Addison AW Stephanos JJ (1986) Nitrosyl (III) hemoglobin: autoreduction and spectroscopy. Biochemistry 25:4104–4113

    Google Scholar 

  • Aerssens E, Tiedje JM, Averill BA (1986) Isotope labeling studies on the mechanism of N-N bond formation in denitrification. J Biol Chem 261:9652–9656

    Google Scholar 

  • Antonini E, Brunori M, Wyman J, Noble RW (1966) Preparation and kinetic properties of intermediates in the reaction of hemoglobin with ligands. J Biol Chem 241:3236–3238

    Google Scholar 

  • Arciero DM, Lipscomb JD (1986) Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active Fe2+ of extradiol dioxygenase. J Biol Chem 261:2170–2178

    CAS  PubMed  Google Scholar 

  • Arciero DM, Orville AM, Lipscomb JD (1985) 17O water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase. J Biol Chem 260:14035–14044

    CAS  PubMed  Google Scholar 

  • Arnold WP, Mittel C, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophoshate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207

    Google Scholar 

  • Averill BA, Tiedje JM (1982) The chemical mechanism of microbial denitrification. FEBS Lett 138:8–12

    Google Scholar 

  • Beckman JS, Beckman TW Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    CAS  PubMed  Google Scholar 

  • Beinert H, Kennedy MC (1989) Engineering of protein bound ironsulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. Eur J Biochim 186:5–15

    Google Scholar 

  • Beinert H, Dervartanian DV, Hemmerich P, Veeger C, Van Voorst JDW (1965) On the ligand field of redox active non-heme iron in proteins. Biochim Biophys Acta 96:530–533

    Google Scholar 

  • Bessières P, Henry Y (1980) Etude de la réduction du nitrite par le NADH, catalysée par la nitrite réductase de Pseudomonas aeruginosa. CR Acad Sci 290:1309–1312

    Google Scholar 

  • Bessières P, Henry Y (1984) Stoichiometry of nitrite reduction catalyzed by Pseudomonas aeruginosa nitrite-reductase. Biochimie 66:313–318

    Google Scholar 

  • Billiar TR, Curran RD, Stuehr DJ, West MA, Bentz BG, Simmons RL (1989) An l-arginine-dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro. J Exp Med 169:1467–1472

    Article  CAS  PubMed  Google Scholar 

  • Blokzijl-Roman MFJ, Van Gelder BE (1971) Biochemical and biophysical studies on cytochrome aa3. III. The EPR spectrum of NO-ferrocytochrome a3. Biochim Biophys Acta 234:493–498

    Google Scholar 

  • Blough NV, Zafirion OC (1985) Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline solution. Inorg Chem 24:3502–3504

    Google Scholar 

  • Boelens R, Rademaker H, Pel R, Wever R (1982) EPR studies of the photodissociation reactions of cytochrome c oxidase-nitric oxide complexes. Biochim Biophys Acta 679:84–94

    Google Scholar 

  • Bolscher BGJM, Wever R (1984) The nitrosyl compounds of ferrous animal haloperoxidases. Biochim Biophys Acta 791: 75–81

    Google Scholar 

  • Bonnett R, Chandra S, Charalambides AA, Sales KD, Scourides PA (1980) Nitrosation and nitrosylation of haemoproteins and related compounds. Part 4. Pentacoordinate nitrosylprotohaem as the pigment of cooked curred meat. Direct evidence from ESR spectroscopy. J Chem Soc Perkin I: 1706–1710

    Google Scholar 

  • Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    CAS  PubMed  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    Google Scholar 

  • Brock TD (1979) Biology of microorganisms. Prentice-Hall, Englewood Cliffs, NJ, USA

    Google Scholar 

  • Brudvig GW Stevens TH, Chan ST (1980) Reactions of nitric oxide with cytochrome oxidase. Biochemistry 19:5275–5285

    Google Scholar 

  • Bult H, Boeckxstaens GE, Peickmans PA, Jordaens FJ, Van Maereke YM, Herman AG (1990) Nitric oxide as an inhibitory nonadrenergic non-cholinergic neurotransmitter. Nature 345: 346–347

    Google Scholar 

  • Burns RC, Hardy RWF (1975) Nitrogen fixation in bacteria and higher plants, molecular biology, biochemistry and biophysics, vol 21. Springer Berlin Heidelberg New York

    Google Scholar 

  • Challis BC, Fernandes MHR, Glover BR, Latif F (1987) Formation of diazopeptides by nitrogen oxides. In: Bartsch H, O'Neill IK, Schulte-Hermann R (eds) Relevance of N-nitroso compounds to human cancer: exposures and mechanisms. IARC Scientific Publications No 84, Lyon, France, pp 308–314

  • Chevion M, Peisach J, Blumberg WE (1977) Imidazole, the ligand trans to mercaptide in ferric cytochrome P-450. An EPR Study of proteins and model compounds. J Biol Chem 252:3637–3645

    Google Scholar 

  • Chiang R, Makino R, Spomer WE, Hager LP (1975) Chloroperoxidase: P-450 type absorption in the absence of sulfhydryl groups. Biochemistry 14:4166–4171

    Google Scholar 

  • Chien JCW (1969 a) Reactions of nitric oxide with methemoglobin. J Am Chem Soc 91:2166–2168

    Google Scholar 

  • Chien JCW (1969 b) Electron paramagnetic resonance study of the stereochemistry of nitrosylhemoglobin. J Chem Phys 51:4220–4227

    Google Scholar 

  • Commoner B, Woolum JC, Senturia BH, Ternberg JL (1970) The effects of 2-acetylaminofluorene and nitrite on free radicals and carcinogenesis in rat liver. Cancer Res 30:2091–2097

    Google Scholar 

  • Craven PA, DeRubertis FR (1978) Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide and related activators by heme and hemeproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 253:8433–8443

    Google Scholar 

  • Craven PA, DeRubertis FR, Pratt DW (1979) Electron spin resonance study of the role of NO-catalase in the activation of guanylate cyclase by NaN3 and NH2OH. Modulation of enzyme responses by heme proteins and their nitrosyl derivatives. J Biol Chem 254:8213–8222

    Google Scholar 

  • Curran RD, Billiar TR, Stuehr DJ, Hofmann K, Simmons RL (1989) Hepatocytes produce nitrogen oxides from l-arginine in response to inflammatory products of Kupffer cells. J Exp Med 170:1769–1774

    Article  CAS  PubMed  Google Scholar 

  • Dickinson LC, Chien JCW (1971) An electron paramagnetic resonance study of nitrosylmyoglobin. J Am Chem Soc 93:5036–5040

    Google Scholar 

  • Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412

    Google Scholar 

  • Doyle MP, Mahapatro SN (1984) Nitric oxide dissociation from trioxodinitrate (II) in aqueous solution. J Am Chem Soc 106:3678–3679

    Google Scholar 

  • Doyle MP, Herman JG, Dykstra RL (1985) Autocatalytic oxidation of hemoglobin induced by nitrite: activation and chemical inhibition. J Free Rad Biol Med 1:145–154

    Google Scholar 

  • Doyle MP, Mahapatro N, Broene RD, Guy JK (1988) Oxidation and reduction of hemoproteins by trioxodinitrate (II). The role of nitrosyl hydride and nitrite. J Am Chem Soc 110: 593–599

    Google Scholar 

  • Drapier J-C, Hibbs JB (1986) Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J Clin Invest 78:790–797

    Google Scholar 

  • Drapier J-C, Hibbs JB (1988) Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in l-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J Immunol 140:2829–2838

    CAS  PubMed  Google Scholar 

  • Drapier J-C, Wietzerbin J, Hibbs JB (1988) Interferon gamma and tumor necrosis factor induce the l-arginine-dependent cytotoxic effector mechanism in murine macrophages. Eur J Immunol 18:1587–1592

    Google Scholar 

  • Ducrocq C, Servy C, Lenfant M (1989) Bioconversion of glyceryl trinitrate into mononitrates by Geotrichum candidum. FEMS Microbiol Lett 65:219–222

    Google Scholar 

  • Ducrocq C, Servy C, Lenfant M (1990) Formation of glyceryl 2-mononitrate by regioselective bioconversion of glyceryl trinitrate: efficiency of the filamentous fungus Phanerochaete chrysosporium. Biotechnol Appl Biochem 12:325–330

    Google Scholar 

  • Einarsdottir O, Caughey WS (1988) Interactions of the anesthetic nitrous oxide with bovine heart cytochrome c oxidase. Effects on protein structure, oxidase activity, and other properties. J Biol Chem 263:9199–9206

    Google Scholar 

  • Enemark JH, Feltham RD (1972) Stereochemical control of valence and its application to the reduction of coordinated NO and N2. Proc Natl Acad Sci USA 69:3534–3536

    Google Scholar 

  • Ferguson SS (1987) Denitrification: a question of the control and organisation of electron and ion transport. Trends Biol Sci 12:354–357

    Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    CAS  PubMed  Google Scholar 

  • Gally JA, Montague PR, Reeke GN, Edelman GM (1990) The NO hypothesis: Possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system Proc Natl Acad Sci USA 87:3547–3551.

    Google Scholar 

  • Galpin SR, Veldink GA, Vliegenthart JFG, Boldingh J (1978) The interaction of nitric oxide with soybean lipoxygenase-1. Biochim. Biophys Acta 536:356–362

    Google Scholar 

  • Gans P (1967) Reaction of nitric oxide with cobalt (II) ammine complexes and other reducing agents. J Chem Soc 1967 A: 943–946

    Google Scholar 

  • Granger DL, Hibbs JB, Perfect JR, Durack DT (1990) Specific amino acid (l-arginine) requirement for the microbiostatic activity of murine macrophages. J Clin Invest 81:1129–1136

    Google Scholar 

  • Granger DL, Hibbs JB, Perfect JR, Durack DT (1990) Metabolic fate of l-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest 85:264–273

    Google Scholar 

  • Gray RD, Gibson QH (1971) The effect of inositol hexaphosphate on the kinetics of CO and O2 binding by human hemoglobin. J Biol Chem 246:7168–7174

    Google Scholar 

  • Green LC, Ruiz de Luzuriaja K, Wagner DA, Rand W, Istfan N, Young VR, Tannenbaum SR (1981) Nitrate biosynthesis in man. Proc Natl Acad Sci USA 78:7764–7768

    Google Scholar 

  • Green SJ, Meltzer MS, Hibbs JB, Nacy CA (1990) Activated macrophages destroy intracellular Leishmania major amastigotes by an l-arginine-dependent killing mechanism. J Immunol 144:278–283

    CAS  PubMed  Google Scholar 

  • Guerrero MG, Vega JM, Losada M (1981) The assimilatory nitrate-reducing system and its regulation. Annu Rev Plant Physiol 32:169–204

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Hata F, Ishii T, Kanada A, Yamano N, Kataoka T, Takeuchi T, Yagasaki O (1990) Essential role of nitric oxide in descending inhibition in the rat proximal colon. Biochem Biophys Res Comun 172:1400–1406

    CAS  Google Scholar 

  • Hegesh E, Shiloah J (1982) Blood nitrates and infantile methemoglobinemia. Clin Chim Acta 125:107–115

    Google Scholar 

  • Henry Y, Banerjee R (1973) Electron paramagnetic studies of nitric oxide haemoglobin derivatives: isolated subunits and nitric oxide hybrids. J Mol Biol 73:469–482

    Google Scholar 

  • Henry Y, Bessières P (1984) Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite reductase. Biochimie 66:259–289

    Google Scholar 

  • Henry Y, Cassoly R (1974) Chain non-equivalence in nitric oxide binding to hemoglobin. Biochem Biophys Res Commun 51:659–665

    Google Scholar 

  • Henry Y, Mazza G (1974) EPR studies of nitric oxide complexes of turnip and horse-radish peroxidases. Biochim Biophys Acta 371:14–19

    Google Scholar 

  • Henry Y, Ishimura Y, Peisach J (1976) Binding of nitric oxide to reduced l-tryptophan-2,3-dioxygenase as studied by electron paramagnetic resonance. J Biol Chem 251:1578–1581

    Google Scholar 

  • Hibbs JB, Taintor RR, Vavrin Z (1987 a) Macrophage cytotoxicity: role for l-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473–476

    Google Scholar 

  • Hibbs JB, Vavrin Z, Taintor RR (1987b) l-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolism inhibition in target cells. J Immunol 138:550–565

    Google Scholar 

  • Hibbs JB, Taintor RR, Vavrin Z, Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157:87–94

    Google Scholar 

  • Hibbs JB, Taintor RR, Vavrin Z, Granger DL, Drapier J-C, Amber IJ, Lancaster JR (1990) Synthesis of nitric oxide from a terminal guanidino nitrogen atom of l-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. In: Moncada S, Higgs EA (eds) Nitric oxide from l-arginine: a bioregulatory system. Elsevier Science, Amsterdam, pp 189–223

    Google Scholar 

  • Hong K, Trudell JR, O'Neil JR, Cohen EN (1980) Metabolism of nitrous oxide by human and rat intestinal contents. Anesthesiology 52:16–19

    Google Scholar 

  • Hutcheson IR, Whittle BJR, Boughton-Smith NK (1990) Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat. Br J Pharmacol 101:815–820

    CAS  PubMed  Google Scholar 

  • Ignarro LJ (1989) Endothelium-derived nitric oxide: pharmacology and relationship to the actions of organic nitrate esters. Pharm Res 6:651–659

    Google Scholar 

  • Ignarro LJ (1990) Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling. Pharmacol Toxicol 67:1–7

    Google Scholar 

  • Ignarro LJ, Edwards JC, Gruetter DY, Barry BK, Gruetter CA (1980) Possible involvement of S-nitrosothiols in the activation of guanylate cycease by nitroso compounds. FEBS Lett 110:275–278

    Google Scholar 

  • Ignarro LJ, Barry BK, Gruetter DY, Ohlstein EH, Gruetter CA, Kadowitz PJ, Baricos WH (1981) Selective alteration in responsiveness of guanylate cyclase to activation by nitroso compounds during enzyme purification. Biochim Biophys Acta 673:394–407

    Google Scholar 

  • Ignarro LJ, Wood KS, Wolin MS (1982) Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proc Natl Acad Sci USA 79:2870–2873

    Google Scholar 

  • Ignarro LJ, Adams JB, Horwitz PM, Wood KS (1986) Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. J Biol Chem 261:4997–5002

    Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released form artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    CAS  PubMed  Google Scholar 

  • Iqbal ZM, Dahl K, Epstein SS (1980) Role of nitrogen dioxide in the biosynthesis of nitrosamines in mice. Science 207:1475–1477

    Google Scholar 

  • Iyengar R, Stuehr DJ, Marletta MA (1987) Macrophages synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 84:6369–6373

    Google Scholar 

  • Keilin D, Hartree EF (1937) Reaction of nitric oxide with haemoglobin and methaemoglobin. Nature 139:548

    Google Scholar 

  • Kilbourn RG, Jubran A, Gross SS, Griffith OW, Levi R, Adams J, Lodato R (1990) Reversal of endotoxin-mediated shock by NG-methyl-l-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophys Res Commun 172:1132–1138

    Google Scholar 

  • Knowles RG, Palacios M, Palmer RMJ, Moncada S (1989) Formation of nitric oxide from l-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 86:5159–5162

    Google Scholar 

  • Knowles RG, Salter M, Brooks SL, Moncada S (1990) Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem Biophys Res Commun 172:1042–1048

    Google Scholar 

  • Kon H (1968) Paramagnetic resonance study of nitric oxide hemoglobin. J Biol Chem 243:4350–4357

    Google Scholar 

  • Kon H (1969) Electron paramagnetic resonance of nitric oxide cytochrome c. Biochem Biophys Res Commun 35:423–427

    Google Scholar 

  • Kon H (1975) An interpretation of the three line EPR spectrum of nitric oxide hemeproteins and related model systems: the effect of the heme environment. Biochim Biophys Acta 379:103–113

    Google Scholar 

  • Kon H, Kataoka N (1969) Electron paramagnetic resonance of nitric oxide-protoheme complexes with some nitrogenous base. Model systems of nitric oxide hemoproteins. Biochemistry 8:4757–4762

    Google Scholar 

  • Kosaka H, Uozumi M, Tyuma I (1989) The interaction between nitrogen oxides and hemoglobin and endothelium-derived relaxing factor. Free Rad Biol Med 7:653–658

    Google Scholar 

  • Kwon NS, Nathan CF, Stuehr DJ (1989) Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem 264:20496–20501

    Google Scholar 

  • Lancaster JR, Hibbs JB (1990) EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci USA 87:1223–1227

    Google Scholar 

  • Lepoivre M, Chenais B, Yapo A, Lemaire G, Thelander L, Tenu JP (1990) Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells. J Biol Chem 265:14143–14149

    Google Scholar 

  • Liew FY, Millot S, Parkinson C, Palmer RMJ, Moncada S (1990) Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from l-arginine. J Immunol 144:4794–4797

    Google Scholar 

  • LoBrutto R, Wei YH, Mascarenhas R, Scholes CP, King TE (1983) Electron nuclear double resonance and electron paramagnetic resonance study on the structure of the NO-ligated heme a3 in cytochrome c oxidase. J Biol Chem 258:7437–7448

    Google Scholar 

  • Lockskin A, Burris RH (1965) Inhibitors of nitrogen fixation in extracts from Clostridium pasteurianum. Biochim Biophys Acta 111:1–10

    Google Scholar 

  • Marletta MA (1988) Mammalian synthesis of nitrite, nitrate, nitric oxide, and N-nitrosating agents. Chem Res Toxicol 1:249–257

    Google Scholar 

  • Marletta MA (1989) Nitric oxide: biological significance. Trends Biol Sci 14:488–492

    Google Scholar 

  • Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of l-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27:8706–8711

    Google Scholar 

  • Martin CT, Morse RH, Kanne RM, Gray HB, Malmstrom BG, Chan SI (1981) Reactions of nitric oxide with tree and fungal laccase. Biochemistry 20:5147–5155

    Google Scholar 

  • Maxwell JC, Caughey WS (1976) An infrared study of NO bonding to heme B and hemoglobin A. Evidence for inositol hexaphosphate induced cleavage of proximal histidine to iron bonds. Biochemistry 15:388–396

    Google Scholar 

  • McCleverty JA (1979) Reactions of nitric oxide coordinated to transition metals. Chem Rev 79:53–76

    Google Scholar 

  • McDonald CC, Phillips WD, Mower HF (1965) An electron resonance study of some complexes of iron, nitric oxide, and anionic ligands. J Am Chem Soc 87:3319–3326

    CAS  Google Scholar 

  • McNeil DAC, Raynor JB, Symons MCR (1965) Structure and reactivity of transition-metal complexes with polyatomic ligands. Part I. Electron spin resonance spectra of [Mn (CN)5NO]2− and [Fe(CN)5NO]3−. J Chem Soc 1965:410–415

    Google Scholar 

  • Meyer J (1981) Comparison of carbon monoxide, nitric oxide, and nitrite as inhibitors of the nitrogenase from Clostridium pasteurianum. Arch Biocbem Biophys 210:246–256

    Google Scholar 

  • Michalski WP, Nicholas DJD (1987) Inhibition of nitrogenase by nitrite and nitric oxide in Rhodopseudomonas sphaeroides f. sp. denitrificans. Arch Microbiol 147:304–308.

    Google Scholar 

  • Mirvish SS, Ramm MD, Babcook DM, Sams JP, Panigot M (1987) Lipidic nitrosating agents produced from atmospheric nitrogen dioxide and a nitrosamine produced in vivo from amyl nitrite. In: Bartsche H, O'Neill IK, Schulte-Hermann R (eds) Relevance of N-nitroso compounds to human cancer: exposures and mechanisms. IARC Scientific Publications No 84, Lyon, France, pp 315–318

  • Moncada S, Radomski MW, Palmer RMJ (1988) Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol 37:2495–2501

    Google Scholar 

  • Moncada M, Palmer RMJ, Higgs EA (1989) Biosynthesis of nitric oxide from l-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 38:1709–1715

    Google Scholar 

  • Nelson MJ (1987) The nitric oxide complex of ferrous soybean lipoxygenase-1. Substrate, pH and ethanol effects on the active site iron. J Biol Chem 262:12137–12142

    CAS  PubMed  Google Scholar 

  • Nocek JM, Kurtz DM, Sage JT, Xia YM, Debrunner P, Shiemke AK, Sanders-Loehr J, Loehr TM (1988) Nitric oxide adducts of the binuclear iron site of hemerythrin: spectroscopy and reactivity. Biochemistry 27:1014–1024

    Google Scholar 

  • O'Keeffe DH, Ebel RE, Peterson JA (1979) Studies of the oxygen binding site of cytochrome P-450. Nitric oxide as a spin-label probe. J Biol Chem 253:3509–3516

    Google Scholar 

  • Oda H, Kusumoto S, Nakajima T (1975) Nitrosyl-hemoglobin formation in the blood of animals exposed to nitric oxide. Arch Environ Health 30:453–456

    Google Scholar 

  • Oda, H, Nogami H, Nakajima T (1980) Reaction of hemoglobin with nitric oxide and nitrogen dioxide in mice. J Toxicol Environ Health 6:673–678

    Google Scholar 

  • Ohlstein EH, Wood KS, Ignarro LJ (1982) Purification and properties of heme-deficient hepatic soluble guanylate cyclase: effects of heme and other factors on enzyme activation by NO, NO-heme and protoporphyrin IX. Arch Biochem Biophys 218:187–198

    Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S (1988 a) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666

    Article  CAS  PubMed  Google Scholar 

  • Palmer RMJ, Rees DD, Ashton DS, Moncada S (1988 b) l-arginine is the physiological precursor for the formation of nitric oxide in endothelium dependent relaxation. Biochem Biophys Res Commun 153:1251–1256

    Google Scholar 

  • Payne WJ (1981) Denitrification, Wiley, New York

    Google Scholar 

  • Pellat C, Henry Y, Drapier J-C (1990a) IFN-γ-activated macrophages: detection by electron paramagnetic resonance of complexes between l-arginine-derived nitric oxide and non-heme iron proteins. Biochem Biophys Res Commun 166:119–125

    Google Scholar 

  • Pellat C, Henry Y, Drapier J-C (1990 b) Detection by electron paramagnetic resonance of a nitrosyl-iron-type signal in interferon-γ-activated macrophages. In: Moncada S, Higgs EA (eds) Nitric oxide from l-arginine: a bioregulatory system. Elsevier, Amsterdam pp 281–289

    Google Scholar 

  • Petrouleas V, Diner BA (1990) Formation by NO of nitrosyl adducts of redox components of the photosystem II reaction center. I. NO binds to the acceptor-side nonheme iron. Biochim Biophys Acta 1015:131–140

    Google Scholar 

  • Pryor WA, Tamura M, Dooley MM, Premovic P, Hales BJ, Church DF (1983) Reactive oxy-radicals from cigarette smoke and their physiological effects. In: Greenwald RA, Cohen G (eds) Oxy radicals and their scavenger systems. Vol II: cellular and medical aspects. Elsevier Biomedical, Amsterdam, pp 185–211

    Google Scholar 

  • Quispel A (1974) The biology of nitrogen fixation. North-Holland, Amsterdam

    Google Scholar 

  • Radomski MW Palmer RJM, Moncada S (1990) An l-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193–5197

    CAS  PubMed  Google Scholar 

  • Reddy D, Lancaster JR, Cornforth DP (1983) Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science 221:769–770

    Google Scholar 

  • Rein H, Ristau O, Scheler W (1972) On the influence of allosteric effectors on the electron paramagnetic spectrum of nitric oxide hemoglobin. FEBS Lett 24:24–26

    Google Scholar 

  • Rich PR, Salerno JC, Leigh JS, Bonner WD (1978) A spin 3/2 ferrous-nitric oxide derivative of an iron-containing moiety associated with Neurospora crassa and higher plant mitochondria. FEBS Lett 93:323–326

    Google Scholar 

  • Riester J, Zumft WG, Kroneck PHM (1989) Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme. Eur J Biochem 178:751–762

    Google Scholar 

  • Rotilio G, Morpurgo L, Graziani MT, Brunori M (1975) The reaction of nitric oxide with Rhus vernicifera laccase. FEBS Lett 54:163–166

    Google Scholar 

  • Rousseau DL, Sing S, Ching YC, Sassaroli M (1988) Nitrosyl cytochrome c oxidase. Formation and properties of mixed valence enzyme. J Biol Chem 263:5681–5685

    Google Scholar 

  • Salerno JC, Siedow JN (1979) The nature of the nitric oxide complexes of lipoxygenase. Biochim Biophys Acta 579:246–251

    Google Scholar 

  • Salerno JC, Ohnishi T, Lim J, King TE (1976) Tetranuclear and binuclear iron-sulfur clusters in succinate dehydrogenase: a method of iron quantitation by formation of paramagnetic complexes. Biochem Biophys Res Commun 73:833–840

    Google Scholar 

  • Sancier K, Freeman G, Mills I (1962) Electron spin resonance of nitric oxide-hemoglobin complexes in solution. Science 137:752–754

    Google Scholar 

  • Scholler DM, Wang MYR, Hoffman BM (1979) Resonance Raman and EPR of nitrosyl human hemoglobin and chains, carp hemoglobin, and model compounds. Implications for the nitrosyl heme coordination state. J Biol Chem 254:4072–4078

    Google Scholar 

  • Schoot-Uiterkamp AIM, Mason HS (1973) Magnetic dipole-dipole coupled Cu (II) pairs in nitric-oxide-treated tyrosinase: a structural relationship between the active sites of tyrosinase and hemocyanin. Proc Natl Acad Sci USA 70:993–996

    Google Scholar 

  • Schoot-Uiterkamp AIM, Van Der Deen H, Berendsen HCJ, Boas JF (1974) Computer simulation of the EPR spectra of mononuclear and dipolar coupled Cu (II) ions in nitric oxide- and nitritetreated hemocyanins and tyrosinase. Biochim Biophys Acta 372:407–425

    Google Scholar 

  • Servent D, Delaforge M, Ducrocq C, Mansuy D, Lenfant M (1989) Nitric oxide formation during microsomal hepatic denitration of glyceryl trinitrate: involvement of cytochrome P-450. Biochem Biophys Res Commun 163:1210–1216

    Google Scholar 

  • Sharma VS, Ranney HM (1978) The dissociation of NO from nitrosylhemoglobin. J Biol Chem 253:6467–6472

    Google Scholar 

  • Shiga T, Hwang K-J, Tyuma I (1969) Electron paramagnetic resonance studies of nitric oxide hemoglobin derivatives. I. Human hemoglobin subunits. Biochemistry 8:378–383

    Google Scholar 

  • Sievers G, Peterson J, Gadsby PMA, Thomson AJ (1984) The nitrosyl compound of ferrous lactoperoxidase. Biochim Biophys Acta 785:7–13

    Google Scholar 

  • Sneddon JM, Vane JR (1988) Endothelium-derived relaxing factor reduces platelet adhesion to bovine endothelial cells. Proc Natl Acad Sci USA 85:2800–2804

    Google Scholar 

  • Solomon El (1981) Binuclear copper active site: hemocyanin, tyrosinase, and type 3 copper oxidases. In: Spiro TG (ed) Copper proteins. Wiley, New York, pp 41–108

    Google Scholar 

  • Sowa S, Dong A, Roos EE, Caughey WS (1987) The anesthetic nitrous oxide affects dioxygen utilization by bovine heart and bean seed mitochondrial particles. Biochem Biophys Res Commun 144:643–648

    Google Scholar 

  • Spagnuolo C, Rinelli P, Coletta M, Chiancone E, Ascoli F, (1987) Oxidation reaction of human oxyhemoglobin with nitrite: a reexamination. Biochim Biophys Acta 911:59–65

    Google Scholar 

  • Stevens TH, Brudvig GW, Bocian DF, Chan SI (1979) Structure of cytochrome a3-Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies. Proc Natl Acad Sci USA 76:3320–3324

    Google Scholar 

  • Stuehr DJ, Marletta MA (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to E. coli lipopolysaccharide. Proc Natl Acad Sci USA 82:7738–7742

    CAS  PubMed  Google Scholar 

  • Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555

    Article  CAS  PubMed  Google Scholar 

  • Stuehr DJ, Gross SS, Sakuma I, Levi R, Nathan CF (1989) Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med 169:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Swinehart JH (1967) The nitroprusside ion. Coordin Chem Rev 2:385–402

    Google Scholar 

  • Szabo A, Perutz MF (1976) Equilibrium between six- and five-coordinated hemes in nitrosylhemoglobin: interpretation of electron spin resonance spectra. Biochemistry 15:4427–4428

    Google Scholar 

  • Taketa F, Antholine WE, Chen JY (1978) Chain nonequivalence in binding of nitric oxide to hemoglobin. J Biol Chem 253: 5448–5451

    Google Scholar 

  • Tannenbaum SR (1987) Endogenous formation of N-nitroso compounds: a current perspective. In: Bartsch H, O'Neill IK, Schulte-Hermann R (eds). Relevance of N-nitroso compounds to human cancer: exposures and mechanisms. IARC Scientific Publications No 84, Lyon, France, pp 292–296

  • Tayeh MA, Marletta MA (1989) Macrophage oxidation of l-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem 264:19654–19658

    Google Scholar 

  • Trinchant JC, Rigaud J (1980) Nitrite inhibition of nitrogenase from soybean bacteroids. Arch Microbiol 124:49–54

    Google Scholar 

  • Trittelvitz E, Sick H, Gersonde K (1972) Conformational isomers of nitrosyl-haemoglobin. An electron-spin-resonance study. Eur J Biochem 31:578–584

    Google Scholar 

  • Tsubaki M, Hiwatashi A, Ichikawa Y, Hori H (1987) Electron paramagnetic resonance study of ferrous cytochrome P-450scc-nitric oxide complexes: effects of cholesterol and its analogues. Biochemistry 26:4527–4534

    Google Scholar 

  • Van Leeuwen FXR, Van Gelder BF (1978) A spectroscopic study of nitric-oxide-treated ceruloplasmin. Eur J Biochem 87:305–312

    Google Scholar 

  • Van Leeuwen FXR, Wever R, Van Gelder BF, Avigliano L, Mondovi B (1975) The interaction of nitric oxide with ascorbate oxidase. Biochim Biophys Acta 403:285–291

    Google Scholar 

  • Van Voorst JDW, Hemmerich P (1966) Electron spin resonance of Fe (CN)5NO3− and Fe (CN)5NOH2−. J Chem Phys 45:3914–3918

    Google Scholar 

  • Vanin AF (1967) Identification of divalent iron complexes with cysteine in biological systems by the EPR method. Biokhimia 32:277–282 (Biochemistry (english translation) 32:228–232)

    Google Scholar 

  • Vanin AF, Nalbandyan RM (1965) Free radicals of a new type in yeast cells. Biofizika 10:167–168 (Biophysics (english translation) 10:184–186)

    Google Scholar 

  • Vanin AF, Vakhnina LV, Chetverikov AG (1970) Nature of the EPR signals of a new type found in cancer tissues. Biofizika 15:1044–1051 (Biophysics (english translation) 15:1082–1089)

    Google Scholar 

  • Vanin AF, Kalamkarov GR, Kiladze SV, Ostrovskii MA (1977) Presence of two closely arranged SH groups in the rhodopsin molecule. Biofizika 22:397–402 (Biophysics (english translation) 22:407–413)

    Google Scholar 

  • Vanin AF, Kiladze SV, Kubrina LN (1978) Incorporation of non-haeme iron into the dinitrosyl complexes in the mouse liver in vivo. Biofizika 22:474–478 (Biophysics (english translation) 23:479–485)

    Google Scholar 

  • Verplaetse J, Van Tornout P, Defreyn G, Witters R, Lontie R (1979) The reaction of nitrogen monoxide and of nitrite with deoxyhaemocyanin and methaemocyanin of Helix pomatia. Eur J Biochem 95:327–331

    Google Scholar 

  • Vincent WF, Downes MT, Vincient CL (1981) Nitrous oxide cycling in Lake Vade, Antarctica. Nature 292:618–620

    Google Scholar 

  • Wade RS, Castro CE (1990) Redox reactivity of iron (III) porphyrins and heme proteins with nitric oxide. Nitrosyl transfer to carbon, nitrogen, and sulfur. Chem Res Toxicol 3:289–291

    Google Scholar 

  • Wagner DA, Young VR, Tannenbaum SR (1983) Mammalian nitrate biosynthesis: incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Acad Sci USA 80:4518–4531

    Google Scholar 

  • Weeg-Aerssens E, Tiedje JM, Averill BA (1988) Evidence from isotope labeling studies for a sequential mechanism for dissimilatory nitrite reduction. J Biol Chem 110:6851–6856

    Google Scholar 

  • Woolum JC, Commoner B (1970) Isolation and identification of a paramagnetic complex from the livers of carcinogen-treated rats. Biochim Biophys Acta 201:131–140

    Google Scholar 

  • Woolum JC, Tiezzi E, Commoner B (1968) Electron spin resonance of iron-nitric oxide complexes with amino acids, peptides and proteins. Biochim Biophys Acta 160:311–320

    Article  CAS  PubMed  Google Scholar 

  • Yonetani T, Yamamoto H, Erman JE, Leigh JS, Reed GH (1972) Electron properties of hemoproteins. V. Optical and electron paramagnetic resonance characteristics of nitric oxide derivatives of metalloporphyrin-apo-hemoprotein complexes. J Biol Chem 247:2447–2455

    Google Scholar 

  • Yoshida K, Kasama K (1987) Biotransformation of nitric oxide. Environ Health Perspect 73:201–206

    Google Scholar 

  • Yoshimura T, Suzuki S, Iwasaki H, Takakuwa S (1987) Spectral properties of nitric oxide complex of cytochrome c′ from Rhodopseudomonas capsulata B100. Biochem Biophys Res Commun 145:868–875

    Google Scholar 

  • Yoshimura T, Iwasaki H, Shidara S, Suzuki S, Nakahara A, Matsubara T (1988) Nitric oxide complex of cytochrome c′ in cells of denitrifying bacteria. J Biochem 103:1016–1019

    Google Scholar 

  • Zumft WG, Cardenas J (1979) The inorganic biochemistry of nitrogen bioenergetic processes. Naturwissenschaften 66:81–88

    Google Scholar 

  • Zumft WG, Matsubara T (1982) A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus. FEBS Lett 148:107–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review is based on a talk given by YH at the first European Meeting of Groupe d'Application de la Résonance Paramagnétique Electronique in Lyon, 10–11 January 1990. It has been up-dated to December 1990

Offprint requests to: Y. Henry

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, Y., Ducrocq, C., Drapier, JC. et al. Nitric oxide, a biological effector. Eur Biophys J 20, 1–15 (1991). https://doi.org/10.1007/BF00183275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00183275

Key words

Navigation