Skip to main content
Log in

Nitrite oxidoreductase from Nitrobacter hamburgensis: redox centers and their catalytic role

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Nitrite oxidoreductase was isolated from mixotrophically grown cells of Nitrobacter hamburgensis. The enzyme purified from heat treated membranes was homogeneous by the criteria of polyacrylamide gel electrophoresis and size exclusion chromatography. The monomeric form consisted of two subunits with Mr 115000 and 65000, respectively. The dimeric form of the enzyme contained 0.70 molybdenum, 23.0 iron, 1.76 zinc, and 0.89 copper. The catalytically active enzyme was investigated by visible and electron paramagnetic resonance spectroscopy (EPR) under oxidizing (as isolated), reducing (dithionite), and turnover (nitrite) conditions. As isolated the enzyme exhibited a complex set of EPR signals between 5–75 K, originating from several ironsulfur and molybdenum (V) centers. Addition of the substrate nitrite, or the reducing agent dithionite resulted in a set of new resonances. The molybdenum and the iron-sulfur centers of nitrite oxidoreductase from Nitrobacter hamburgensis were involved in the transformation of nitrite to nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EPR:

electron paramagnetic resonance

ICP-AES:

inductively coupled plasma-atomic emission spectrometry

NaPi :

sodium phosphate

PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecyl sulfate

References

  • Beuscher N, Mayer F, Gottschalk G (1974) Citrate lyase from Rhodopseudomonas gelationosa: purification, electron microscopy and subunit structure. Arch Microbiol 100: 307–328

    Article  CAS  Google Scholar 

  • Bock E, Sundermeyer-Klinger H, Stackebrandt E (1983) New facultative lithoautotrophic nitrite-oxidizing bacteria. Arch Microbiol 136: 281–284

    Article  CAS  Google Scholar 

  • Bock E, Koops H-P, Harms H (1989) Nitrifying bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer Berlin Heidelberg New York, pp 81–96

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  CAS  Google Scholar 

  • Cammack R, Weiner JH (1990) Electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli. Biochem 29: 8410–8416

    Article  CAS  Google Scholar 

  • Craig JA, Holm RH (1989) Reduction of nitrate to nitrite by molybdenum-mediated atom transfer: a nitrate reductase analogue reaction system J Am Chem Soc 111: 2111–2115

    Article  CAS  Google Scholar 

  • Fogo JK, Popowsky M (1949) Spectrophotometric determination of hydrogen sulfide. Methylene blue method. Anal Chem 21: 732–734

    Article  CAS  Google Scholar 

  • Fukuoka M, Fukumori Y, Yamanaka T (1987) Nitrobacter winogradskyi cytochrome a 1 c 1 is an iron-sulfur molybdo-enzyme having hemes a and c. J Biochem (Tokyo) 102: 525–530

    Article  CAS  Google Scholar 

  • Holm RH (1990) The biologically relevant oxygen atom transfer chemistry of molybdenum: from synthetic analogue systems to enzymes. Coord Chem Rev 100: 183–221

    Article  CAS  Google Scholar 

  • Hooper AB (1989) Biochemistry of the nitrifying lithoautotrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer Berlin Heidelberg New York, pp 239–265

    Google Scholar 

  • Ingledew WJ, Halling PJ (1976) Paramagnetic centers of the nitrite oxidizing bacterium Nitrobacter. FEBS Lett 67: 90–93

    Article  CAS  Google Scholar 

  • Johnson MK, Benett DE; Morningstar JE, Adams MWW, Mortenson LE (1985) The iron-sulfur cluster composition of Escherichia coli nitrate reductase. J Biol Chem 260: 5456–5463

    CAS  PubMed  Google Scholar 

  • Kay CJ, Solomonson LP, Barber MJ (1990) Oxidation-reduction potentials of flavin and Mo-pterin centers in assimilatory nitrate reductase: variation with pH. Biochem 29: 10823–10828

    Article  CAS  Google Scholar 

  • Kessler DL, Rajagopalan KV (1972) Purification and properties of sulfite oxidase from chicken liver. J Biol Chem 247: 6566–6573

    CAS  PubMed  Google Scholar 

  • Krüger B, Meyer O, Nagel M, Andreesen JR, Meincke M, Bock E, Blümle S, Zumft WG (1987) Evidence for the presence of bactopterin in the eubacterial molybdoenzymes nicotinic acid dehydrogenase, nitrite oxidoreductase, and respiratory nitrate reductase. FEMS Microbiol Lett 48: 225–227

    Article  Google Scholar 

  • Meincke M (1990) Untersuchungen zur Struktur und Funktion von Redoxzentren im Enzym Nitrit-Oxidoreduktase. Dissertation Universität Hamburg

  • Milde K, Bock E (1984) Isolation and partial characterization of inner and outer membrane fractions of Nitrobacter hamburgensis. FEMS Microbiol Lett 21: 137–141

    Article  CAS  Google Scholar 

  • Renosto F, Ornitz DM, Peterson D, Segel IH (1981) Nitrate reductase from Penicillium chrysogenum. Purification and kinetic mechanism J Biol Chem 256: 8616–8625

    CAS  PubMed  Google Scholar 

  • Riester J, Zumft WG, Kroneck PMH (1989) Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme. Eur J Biochem 178: 751–762

    Article  CAS  Google Scholar 

  • Solomonson LP, Barber MJ, Howard WD, Johnson JL, Rajagopalan KV (1984) Electron paramagnetic resonance studies on the molybdenum center of assimilatory NADH: nitrate reductase from Chlorella vulgaris. J Biol Chem 259: 849–853

    CAS  PubMed  Google Scholar 

  • Sundermeyer-Klinger H, Meyer W, Warninghoff B, Bock E (1984) Membrane-bound nitrite oxidoreductase of Nitrobacter: evidence for a nitrate reductase system. Arch Microbiol 140: 153–158

    Article  CAS  Google Scholar 

  • Tanaka Y, Fukumori Y, Yamanaka T (1983) Purification of cytochrome a 1 c 1 from Nitrobacter agilis and characterization of nitrite oxidation system of the bacterium. Arch Microbiol 135: 265–271

    Article  CAS  Google Scholar 

  • Vincent SP, Bray RC (1978) Electron-paramagnetic-resonance studies on nitrate reductase from Escherichia coli K12. Biochem J 171: 639–647

    Article  CAS  Google Scholar 

  • Yamanaka T, Kamita Y, Fukumori Y (1981) Molecular and enzymatic propertics of “cytochrome aa 3”-type terminal oxidase from Nitrobacter agilis. J Biochem (Tokyo) 89: 265–273

    Article  CAS  Google Scholar 

  • Yamanaka T, Fukumori Y (1988) The nitrite oxidizing system of Nitrobacter winogradskyi. FEMS Microbiol Rev 54: 259–270

    Article  CAS  Google Scholar 

  • Yamazaki T, Fukumori Y, Yamanaka T (1985) Cytochrome a 1 of Nitrosomonas europaea resembles aa 3-type cytochrome c oxidase in many respects. Biochim Biophys Acta 810: 174–183

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meincke, M., Bock, E., Kastrau, D. et al. Nitrite oxidoreductase from Nitrobacter hamburgensis: redox centers and their catalytic role. Arch. Microbiol. 158, 127–131 (1992). https://doi.org/10.1007/BF00245215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245215

Key words

Navigation