Skip to main content

Advertisement

Log in

Bursting oscillation and its mechanism of the flow-induced vibration piezoelectric energy harvester with magnets by low-frequency excitation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study the bursting oscillation and its mechanism of the flow-induced vibration piezoelectric energy harvester with magnets (PEHM) by low-frequency excitation. Through the slow-fast analysis method, the external excitation term is considered as the slow variable, which is the control parameter to regulate the nonlinear dynamic behavior of the fast subsystem. The time history, phase and transformed phase diagrams of the PEHM system in three cases when the bursting oscillation occurs are obtained. The motion law and bifurcation mechanism are then revealed. Next, the chaotic motion of the system is observed by the maximum Lyapunov exponent graphs, and the influence of the excitation frequency on the periodic motion is studied via \(\omega \)x bifurcation diagrams. Afterwards, the influence of the excitation amplitude and cantilever beam equivalent damping ratio on the output voltage in bursting state is analyzed. Taking the average output voltage value as a measurement index, in consideration of the variations of the output power with load resistance, we also evaluate the influences of external excitation amplitude and frequency on the energy harvesting efficiency. The results show that the increase of the excitation amplitude can widen the frequency band of high energy harvesting efficiency; The excitation frequency close to bursting frequency leads to large output power in an instant. Finally, the influence of the potential energy function and the barrier height on bursting oscillation are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. X.H. Zhang, Design Theory and Application of Piezoelectric Energy Harvesters with Muti-field Coupling Conditions (Huazhong University of Science and Technology Press, Wuhan, 2020)

    Google Scholar 

  2. F.R. Fan, Z.Q. Tian, Z.L. Wang, Nano Energy 1, 328–334 (2012)

    Article  Google Scholar 

  3. H.X. Deng, Y. Du, Z.M. Wang et al., Commun. Phys. (2019). https://doi.org/10.1038/s42005-019-0117-9

    Article  Google Scholar 

  4. F.C. Moon, P.J. Holmes, J. Sound Vib. 65, 275–296 (1979)

    Article  ADS  Google Scholar 

  5. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)

    Article  ADS  Google Scholar 

  6. Z.S. Chen, Y.M. Yang, Acta Physica Sinica 60, 437–443 (2011)

    Google Scholar 

  7. D.X. Cao, S. Leadenham, A. Erturk, Eur. Phys. J. Spec. Top. 224, 2867–2880 (2015)

    Article  Google Scholar 

  8. S.A. Emam, D.J. Inman, Appl. Mech. Rev. (2015). https://doi.org/10.1115/1.4032037

    Article  Google Scholar 

  9. W. Yang, S. Towfighian, Smart Mater Syruct 26, 095008 (2017)

    Article  ADS  Google Scholar 

  10. Wang T., Cao D. X., Yao M. H., et al., The 24th Annual Conference of Beijing Society of Physical Mechanics (Beijing, 2018)

  11. D.X. Cao, H.B. Ma, W. Zhang, Chin. J. Theor. Appl. Mech. 51, 1148–1155 (2019)

    Google Scholar 

  12. H.J. Liu, X.M. Gao, Nonlinear Dyn. 96, 1067–1081 (2019)

    Article  Google Scholar 

  13. X.T. Mei, S.X. Zhou, Z.C. Yang et al., J. Sound Vib. 469, 115142 (2020)

    Article  Google Scholar 

  14. W.A. Jiang, X.J. Han, L.Q. Chen et al., Acta. Mech. Sin. 36, 618–623 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. W.A. Jiang, X.J. Han, L.Q. Chen et al., Nonlinear Dyn. 100, 3043–3060 (2020)

    Article  Google Scholar 

  16. J. Rinzel, Ordinary Partial Differ. Equ. 1151, 304–316 (1985)

    Article  Google Scholar 

  17. H.L. Xiang, Y.J. Shen, J.Q. Sun et al., Sci. Rep. 9, 1–11 (2019)

    Article  Google Scholar 

  18. M.K. Wei, X.J. Han, X.F. Zhang et al., Chin. J. Theor. Appl. Mech. 51, 904–911 (2019)

    Google Scholar 

  19. Z.D. Zhang, J. Li, Y.N. Liu et al., Chin. J. Sci. Sin. Tech. 49, 1031–1039 (2019)

    Article  Google Scholar 

  20. X.F. Gou, L.B. Han, L.Y. Zhu et al., J. Vib. Shock 39, 123–131 (2020)

    Google Scholar 

  21. Z.Y. Chen, F.Q. Chen, Nonlinear Dyn. 100, 659–677 (2020)

    Article  Google Scholar 

  22. S.H. Zhang, C. Wang, H.L. Zhang, Acta Physica Sinica 69, 210501 (2020)

    Article  Google Scholar 

  23. M.L. Ma, Y.J. Fang, Z.J. Li et al., Eur. Phys. J. Spec. Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00128-7

    Article  Google Scholar 

  24. W.A. Jiang, X.D. Ma, M. Liu et al., J. Vib. Eng. Technol. (2021). https://doi.org/10.1007/s42417-021-00340-8

    Article  Google Scholar 

  25. Y.H. Qian, D.J. Zhang, B.W. Lin, Complexity (2021). https://doi.org/10.1155/2021/5556021

    Article  Google Scholar 

  26. D. Tang, M. Zhao, E.H. Dowell, J. Appl. Mech. 81, 061009 (2014)

    Article  ADS  Google Scholar 

  27. Y.H. Huang, H.T. Hsu, Sens. Actuators A Phys. 238, 177–195 (2016)

    Article  Google Scholar 

  28. S. Basak, A. Raman, S.V. Garimella, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2202232

    Article  Google Scholar 

  29. A. Abdelkefi, N. Barsallo, Nonlinear Dyn. 83, 1–16 (2016)

    Article  Google Scholar 

  30. E.M. Izhikevich, Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  Google Scholar 

  31. J.Q. Zhang, Y.F. Ling, Z.Q. Yi et al., Mach. Design Manuf. 1, 58–61 (2019)

    Google Scholar 

  32. G. Litak, M.I. Friswell, C.A.K. Kwuimy et al., Theor. Appl. Mech. Lett. 4, 55–59 (2012)

    Google Scholar 

  33. C. Wang, J. Xie, G. Ma et al., Piezoelectr. Acoustoopt. 41, 700–705 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through Grant nos. 12172333, 12171435 and the Natural Science Foundation of Zhejiang through Grant no. LY20A020003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhua Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, B., Wang, Y. & Qian, Y. Bursting oscillation and its mechanism of the flow-induced vibration piezoelectric energy harvester with magnets by low-frequency excitation. Eur. Phys. J. Spec. Top. 231, 2237–2248 (2022). https://doi.org/10.1140/epjs/s11734-022-00481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00481-1

Navigation