Skip to main content

Advertisement

Log in

Exploiting Bursting Oscillations to Improve Energy Capture from Slowly Changing Excitation

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

Energy harvesting has been extensively developed to scavenge energy from mechanical oscillations. Many investigations focus on the resonant issues which can activate large-amplitude responses in the region of the fundamental frequency. Hence, there are many ultra-low slowly changing excitation sources in the actual environment. To adapt to the slowly changing vibrational excitations, in this paper, we explore a novel bursting oscillations to collect energy induced by the low-frequency excitations.

Methods

The slowly changing ambience excitation is proposed by a cosinoidal voltage source, and the nonlinear restoring force is realized using a nonlinear capacitor. A novel harvester of electromechanical device is developed, the electromechanical coupling equations are presented, and the bursting response is observed via numerical integration.

Results

The superiority of the presented bursting energy harvester is contrasted with the resonance and nonresonance frequencies. Based on the method of fast–slow dynamical analysis method, the dynamical mechanism of bursting oscillations is revealed via the transformed phase diagram. Furthermore, the effects of system parameters on the bursting motion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Perc M, Marhl M (2003) Different types of bursting calcium oscillations in non-excitable cells. Chaos Soliton Fract 18:759–773

    Article  MathSciNet  MATH  Google Scholar 

  2. Gu HG, Xiao WW (2014) Difference between intermittent chaotic bursting and spiking of neural firing patterns. Int J Bifurcat Chaos 24:1450082

    Article  MathSciNet  Google Scholar 

  3. Duan LX, Chen X, Tang XH, Su JZ (2016) Bursting transition dynamics within the pre-bötzinger complex. Int J Bifurcat Chaos 26:1650162

    Article  MATH  Google Scholar 

  4. Duan LX, Liang WJ, Ji WC, Xi HG (2020) Bifurcation patterns of bursting within pre-bötzinger complex and their control. Int J Bifurcat Chaos 30:2050192

    Article  MATH  Google Scholar 

  5. Mao WH, Chen ZY, Zhang ZD, Lim CW, Yu Y (2020) Nonlinear vibrations by periodic perturbation in a Murali-Lakshmanan-Chua electronic circuit combined with multiple frequency signal. J Vib Eng Technol 8:567–578

    Article  Google Scholar 

  6. Wu HG, Bao BC, Liu Z, Xu Q, Jiang P (2016) Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn 83:893–903

    Article  MathSciNet  Google Scholar 

  7. Kingston SL, Thamilmaran K (2017) Bursting oscillations and mixed-mode oscillations in driven Liénard system. Int J Bifurcat Chaos 27:1730025

    Article  MATH  Google Scholar 

  8. Han XJ, Bi QS (2012) Slow passage through canard explosion and mixed-mode oscillations in the forced Van der Pol’s equation. Nonlinear Dyn 68:275–283

  9. Han XJ, Bi QS, Zhang C, Yu Y (2014) Delayed bifurcations to repetitive spiking and classification of delay-induced bursting. Int J Bifurcat Chaos 24:1450098

    Article  MathSciNet  MATH  Google Scholar 

  10. Han XJ, Zhang C, Yu Y, Bi QS (2017) Boundary-crisis-induced complex bursting patterns in a forced cubic map. Int J Bifurcat Chaos 27:1750051

    Article  MathSciNet  MATH  Google Scholar 

  11. Makouo L, Woafo P (2017) Experimental observation of bursting patterns in Van der Pol oscillators. Chaos Solitons Fract 94:95–101

    Article  Google Scholar 

  12. Siewe RT, Domguia US, Woafo P (2019) Generation of pulse-like and bursting-like oscillations from nonlinear systems using embed technologies and applications to excite mechanical arms. Commun Nonlinear Sci Numer Simulat 69:343–359

    Article  MATH  Google Scholar 

  13. Zhang ZD, Liu BB, Bi QS (2015) Non-smooth bifurcations on the bursting oscillations in a dynamic system with two timescales. Nonlinear Dyn 79:195–203

    Article  MathSciNet  Google Scholar 

  14. Bi QS, Li SL, Kurths J, Zhang ZD (2016) The mechanism of bursting oscillations with different codimensional bifurcations and nonlinear structures. Nonlinear Dyn 85:993–1005

    Article  MathSciNet  Google Scholar 

  15. Han XJ, Yu Y, Zhang C, Xia FB, Bi QS (2017) Turnover of hysteresis determines novel bursting in Duffing system with multiple-frequency external forcings. Int J Non-Linear Mech 89:69–74

    Article  Google Scholar 

  16. Han XJ, Xia FB, Zhang C, Yu Y (2017) Origin of mixed-mode oscillations through speed escape of attractors in a Rayleigh equation with multiple-frequency excitations. Nonlinear Dyn 88:2693–2703

    Article  Google Scholar 

  17. Han XJ, Zhang Y, Bi QS, Kurths J (2018) Two novel bursting patterns in the Duffing system with multiple-frequency slow parametric excitations. Chaos 28:043111

    Article  MathSciNet  MATH  Google Scholar 

  18. Han XJ, Liu Y, Bi QS, Kurths J (2019) Frequency-truncation fast-slow analysis for parametrically and externally excited systems with two slow incommensurate excitation frequencies. Commun Nonlinear Sci Numer Simulat 72:16–25

    Article  MathSciNet  MATH  Google Scholar 

  19. Simo H, Woafo P (2011) Bursting oscillations in electromechanical systems. Mech Res Commun 38:537–541

    Article  MATH  Google Scholar 

  20. Kwuimy CAK, Woafo P (2010) Experimental realization and simulations a self-sustained macro electromechanical system. Mech Res Commun 37:106–110

    Article  Google Scholar 

  21. Domguia US, Abobda LT, Woafo P (2016) Dynamical behavior of a capacitive microelectromechanical system powered by a hindmarsh-rose electronic oscillator. J Comput Nonlin Dyn 11:051006

    Article  Google Scholar 

  22. Domguia US, Tchakui MV, Simo H, Woafo P (2017) Theoretical and Experimental study of an electromechanical system actuated by a brusselator electronic circuit simulator. J Vib Acoust 139:061017

    Article  Google Scholar 

  23. Shahruz SM (2006) Design of mechanical band-pass filters for energy scavenging. J Sound Vib 292:987–998

    Article  Google Scholar 

  24. Challa V, Prasad M, Shi Y, Fisher F (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 75:015035

    Article  Google Scholar 

  25. Cao DX, Gao YH, Hu WH (2019) Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta Mech Sin 35:894–911

    Article  MathSciNet  MATH  Google Scholar 

  26. Yan ZM, Taha H, Tan T (2017) Nonlinear characteristics of an autoparametric vibration system. J Sound Vib 390:1–22

    Article  Google Scholar 

  27. Nie XC, Tan T, Yan ZM et al (2019) Broadband and high-efficient L-shaped piezoelectric energy harvester based on internal resonance. Int J Mech Sci 159:287–305

    Article  Google Scholar 

  28. Dai HL, Yang YW, Abdelkefic A, Wang L (2018) Nonlinear analysis and characteristics of inductive galloping energy harvesters. Commun Nonlinear Sci Numer Simulat 59:580–591

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang ZY, Feng HR, Ding H, Chen LQ (2019) Parametric influence on energy harvesting of magnetic levitation using harmonic balance method. J Vib Eng Technol 7:543–549

    Article  Google Scholar 

  30. Jiang WA, Shi HT, Han XJ, Chen LQ, Bi QS (2020) Double jump broadband energy harvesting in a Helmholtz-Duffing oscillator. J Vib Eng Technol 8:893–908

    Article  Google Scholar 

  31. Cottone F, Vocca H, Gammaitoni L (2009) Nonlinear energy harvesting. Phys Rev Lett 102:080601

    Article  Google Scholar 

  32. Erturk A, Inman DJ (2011) Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J Sound Vib 330:2339–2353

    Article  Google Scholar 

  33. Harne R, Wang KC (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 24:023001

  34. Zhou SX, Cao JY, Lin J, Wang ZZ (2014) Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting. Eur Phys J Appl Phys 67:30902

    Article  Google Scholar 

  35. Cao JY, Zhou SX, Wang W, Lin J (2015) Influence of potential well depth on nonlinear tristable energy harvesting. Appl Phys Lett 106:173903

    Article  Google Scholar 

  36. Panyamn M, Daqaq MF (2017) Characterizing the effective bandwidth of tristable energy harvesters. J Sound Vib 386:336–358

    Article  Google Scholar 

  37. Zhou SX, Zuo L (2018) Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun Nonlinear Sci Numer Simulat 61:271–284

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang C, Zhang QC, Wang W, Feng JJ (2018) A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mech Syst Signal Pr 112:305–318

    Article  Google Scholar 

  39. Yang T, Cao QJ (2019) Novel multi-stable energy harvester by exploring the benefits of geometric nonlinearity. J Stat Mech-Theory E 033405

  40. Huang DM, Zhou SX, Litak G (2019) Theoretical analysis of multi-stable energy harvesters with high-order stiffness terms. Commun Nonlinear Sci Numer Simulat 69:270–286

    Article  MathSciNet  MATH  Google Scholar 

  41. Li HT, Qin WY (2015) Dynamics and coherence resonance of a laminated piezoelectric beam for energy harvesting. Nonlinear Dyn 81:1751–1757

    Article  MathSciNet  Google Scholar 

  42. Li HT, Qin WY, Lan CB, Deng WZ, Zhou ZY (2016) Dynamics and coherence resonance of tristable energy harvesting system. Smart Mater Struct 25:015001

    Article  Google Scholar 

  43. Chen LQ, Jiang WA (2015) Internal resonance energy harvesting. J Appl Mech 82:031004

    Article  Google Scholar 

  44. Cao DX, Leadenham S, Erturk A (2015) Internal resonance for nonlinear vibration energy harvesting. Eur Phys J Special Topics 224:2867–2880

    Article  Google Scholar 

  45. Jiang WA, Chen LQ, Ding H (2016) Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dyn 85:2507–2520

    Article  Google Scholar 

  46. Chen LQ, Jiang WA, Panyam M, Daqaq MF (2016) A broadband internally-resonant vibratory energy harvester. J Acoust Vib 138:061007

    Article  Google Scholar 

  47. Xiong LY, Tang LY, Mace BR (2018) A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting. Nonlinear Dyn 91:1817–1834

    Article  Google Scholar 

  48. Yang W, Towfighian S (2017) Internal resonance and low frequency vibration energy harvesting. Smart Mater Struct 26:095008

    Article  Google Scholar 

  49. Liu HJ, Gao XM (2019) Vibration energy harvesting under concurrent base and flow excitations with internal resonance. Nonlinear Dyn 96:1067–1081

    Article  MATH  Google Scholar 

  50. Jiang WA, Han XJ, Chen LQ, Bi QS (2020) Improving energy harvesting by internal resonance in a spring-pendulum system. Acta Mech Sin 36:618–623

    Article  MathSciNet  Google Scholar 

  51. Jiang WA, Ma XD, Han XJ, Chen LQ, Bi QS (2020) Broadband energy harvesting based on one-to-one internal resonance. Chin Phys B 29:100503

  52. Jiang WA, Han XJ, Chen LQ, Bi QS (2020) Bursting vibration-based energy harvesting. Nonlinear Dyn 100:3043–3060

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Nos.11632008, 11872188 and 12072165), China Postdoctoral Science Foundation (Grant No. 2020M671353), and Jiangsu Planned Projects for Postdoctoral Research Funds (No. 2020Z376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-An Jiang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, WA., Ma, XD., Liu, M. et al. Exploiting Bursting Oscillations to Improve Energy Capture from Slowly Changing Excitation . J. Vib. Eng. Technol. 9, 1923–1939 (2021). https://doi.org/10.1007/s42417-021-00340-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00340-8

Keywords

Navigation