Skip to main content

Advertisement

Log in

The bursting phenomenon for a parametric excited energy harvesting system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Parametric resonance can induce an instability at half the excitation frequency, which has been comprehensively utilized in energy harvesting. However, the vibration energy harvesting with parametric excitation frequency far away from the natural frequency has received less report. To implement this issue, this paper considers a novel bursting energy harvesting under parametric excitation, the harvester is realized by employing a parametrically excited buckled beam, and the bursting phenomenon of the system is discussed. Based on the method of fast-slow dynamics analysis, the behaviors of bursting response under monostable and bistable configurations are presented, the multiple-frequency oscillation is devoted to observing the complex bursting patterns, and then the jump multi-value phenomena are evaluated. Furthermore, the bursting harvesting performances of the monostable and the bistable configurations are compared, and it is found that the bistable configuration generates more average voltage in a period, so the bistable configuration is much superior to the monostable case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. B Zaghari, E Rustighi and M G Tehrani J. Vib. Control 25 497 (2019)

    Article  MathSciNet  Google Scholar 

  2. A H Nayfeh and J F Nayfeh Phys. Fluids 2 1635 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  3. J C Ji and Y S Chen Appl. Math. Mech.-Engl. 20 350 (1999)

    Article  Google Scholar 

  4. M F Daqaq, C Stabler, Y Qaroush and T Seuaciuc-Osorio J. Intell. Mater. Syst. Struct. 20 545 (2009)

    Article  Google Scholar 

  5. M A Karami, J R Farmer and D J Inman Renew. Energy 50 977 (2013)

    Article  Google Scholar 

  6. Y Jia, J Yan, K Soga and A A Seshia J. Intell. Mater. Syst. Struct. 25 278 (2014)

    Article  Google Scholar 

  7. Y Jia, J Yan and K Soga Smart Mater. Struct. 23 065011 (2014)

    Article  ADS  Google Scholar 

  8. Y Jia and A A Seshia Sensor Actuat. A-Phys. 220 69 (2014)

    Article  Google Scholar 

  9. M Panyam and M F Daqaq Meccanica 53 3545 (2018)

    Article  Google Scholar 

  10. Y Jia J. Intell. Mater. Syst. Struct. 31 921 (2020)

    Article  Google Scholar 

  11. S K Thampi and J M Niedzwecki J. Eng. Mech. 118 942 (1992)

    Article  Google Scholar 

  12. A H an der Burgha and A K Abramian Int. J. Non-Linear Mech. 41 345 (2006)

    Article  Google Scholar 

  13. L Mokni and I Kirrou J. Vib. Acoust. 136 024503 (2014)

    Article  Google Scholar 

  14. H Simo and P Woafo Mech. Res. Commun. 38 537 (2011)

    Article  Google Scholar 

  15. H Simo, U S Domguia, J K Dutt and P Woafo Pramana - J. Phys. 92 3 (2019)

    Article  ADS  Google Scholar 

  16. U S Domguia, M V Tchakui, H Simo and P Woafo J. Vib. Acoust. 139 061017 (2017)

    Article  Google Scholar 

  17. L Makouo and P Woafo Chaos Solitons Fract. 94 95 (2017)

    Article  ADS  Google Scholar 

  18. R T Siewe, U S Domguia and P Woafo Commun. Nonlinear Sci. Numer. Simul. 69 343 (2019)

    Article  ADS  Google Scholar 

  19. B C Bao, P Y Wu, H Bao, Q Xu and M Chen Chaos Solitons Fract. 106 161 (2018)

    Article  ADS  Google Scholar 

  20. Q Xu, X Tan, D Zhu, H Bao, Y Hu and B C Bao Chaos Solitons Fract. 141 110353 (2020)

    Article  Google Scholar 

  21. J Hou, X H Li, D Zuo and Y Li Eur. Phys. J. Plus 132 283 (2017)

    Article  Google Scholar 

  22. C Y Zhou, Z J Li, F Xie et al Nonlinear Dyn. 97 2799 (2019)

    Article  Google Scholar 

  23. X D Ma, W Hou, X F Zhang, X J Han and Q S Bi Eur. Phys. J. Plus 136 998 (2021)

    Article  Google Scholar 

  24. X Zhang, L Chen, F Zhao, X Cui and S Wang Eur. Phys. J. Plus 137 627 (2022)

    Article  Google Scholar 

  25. X D Ma, L F Wang and Q S Bi Indian J. Phys. 96 4269 (2022)

    Article  ADS  Google Scholar 

  26. M K Wei, W A Jiang, X D Ma, X J Han and Q S Bi Nonlinear Dyn. 104 4493 (2021)

    Article  Google Scholar 

  27. X D Ma, L F Wang and Q S Bi J. Nonlinear Sci. 32 25 (2022)

    Article  ADS  Google Scholar 

  28. Y X Hao, M X Wang, W Zhang, S W Yang, L T Liu and Y H Qian J. Sound Vib. 495 115904 (2021)

    Article  Google Scholar 

  29. Y T Zhang, Q J Cao and W H Huang Mech. Syst. Signal Process. 161 107916 (2021)

    Article  Google Scholar 

  30. Y T Zhang, Q J Cao and W H Huang Physica D 445 133643 (2023)

    Article  Google Scholar 

  31. W A Jiang, X J Han, L Q Chen and Q S Bi Nonlinear Dyn. 100 3043 (2020)

    Article  Google Scholar 

  32. W A Jiang, X D Ma, M Liu, Y Wang and L Q Chen J. Vib. Eng. Technol. 9 1923 (2021)

    Article  Google Scholar 

  33. X D Ma, W A Jiang, X F Zhang, X J Han and Q S Bi Phys. Scr. 96 015213 (2021)

    Article  ADS  Google Scholar 

  34. B W Lin, Y H Wang and Y H Qian Eur. Phys. J. Plus 137 459 (2022)

    Article  Google Scholar 

  35. Y H Qian and Y N Chen Eur. Phys. J. Plus 137 588 (2022)

    Article  Google Scholar 

  36. A M Abou-Rayan, A H Nayfeh, D T Mook and M A Nayfeh Nonlinear Dyn. 4 499 (1993)

    Article  Google Scholar 

  37. J C Ji and C H Hansen J. Sound Vib. 237 303 (2000)

    Article  ADS  Google Scholar 

  38. R Masana and M F Daqaq J. Sound Vib. 332 6755 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are supported by the National Natural Science Foundation of China (Nos. 11972177 and 12232009), and General Scientific Research Project of Liaoning Province (No. LJKZ0089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-An Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Jiang, WA. & Chen, LQ. The bursting phenomenon for a parametric excited energy harvesting system. Indian J Phys 98, 275–289 (2024). https://doi.org/10.1007/s12648-023-02882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02882-x

Keywords

Navigation