Skip to main content

Advertisement

Log in

Vibration energy harvesting under concurrent base and flow excitations with internal resonance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, internal resonance is investigated to further explore the potential of energy harvesting under concurrent base and flow excitations. The effects of system parameters on the performance of energy harvester with three-to-one internal resonance are analyzed analytically. At first, a lumped-parameter model for the energy harvester, which consists of a two-degree-of-freedom airfoil with the piezoelectric coupling introduced to the plunging motion, is established by using a nonlinear quasi-steady aerodynamic model. Subsequently, the method of multiple scales is implemented to derive the approximate analytic solution of the energy harvesting system under three-to-one internal resonance. Then, the bifurcation characteristics of the energy harvester with respect to various system parameters are analyzed. Finally, the numerical solutions are presented to validate the accuracy of the approximate analytic solutions. The study shows that the harvested voltage and power of the energy harvester can be significantly improved in the presence of internal resonance. In addition, the analytic solutions of internal resonance and the bifurcation analysis can provide an essential reference for design of such a kind of energy harvester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Priya, S., Inman, D.J.: Energy Harvesting Technologies. Springer, New York (2009)

    Book  Google Scholar 

  2. Wei, C., Jing, X.: A comprehensive review on vibration energy harvesting: modelling and realization. Renew. Sustain. Energy Rev. 74, 1–18 (2017)

    Article  Google Scholar 

  3. Huang, R., Hu, H.Y., Zhao, Y.H.: Designing active flutter suppression for high-dimensional aeroelastic systems involving a control delay. J. Fluids Struct. 34, 33–50 (2012)

    Article  Google Scholar 

  4. Huang, R., Hu, H.Y., Zhao, Y.H.: Single-input/single-output adaptive flutter suppression of a three-dimensional aeroelastic system. J. Guid. Control Dyn. 35(2), 659–665 (2012)

    Article  Google Scholar 

  5. Huang, R., Qian, W.M., Hu, H.Y., Zhao, Y.H.: Design of active flutter suppression and wind-tunnel tests of a wing model involving a control delay. J. Fluids Struct. 55, 409–427 (2015)

    Article  Google Scholar 

  6. Huang, R., Zhao, Y.H., Hu, H.Y.: Wind-tunnel tests for active flutter control and closed-loop flutter identification. AIAA J. 54(7), 2089–2099 (2016)

    Article  Google Scholar 

  7. Liu, H.J., Hu, H.Y., Zhao, Y.H., Huang, R.: Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations. J. Fluids Struct. 49, 728–741 (2014)

    Article  Google Scholar 

  8. Liu, H.J., Zhao, Y.H., Hu, H.Y.: Adaptive flutter suppression for a fighter wing via recurrent neural networks over a wide transonic range. Int. J. Aerosp. Eng. 2016, 1–9 (2016)

    Google Scholar 

  9. Abdelkefi, A.: Aeroelastic energy harvesting: a review. Int. J. Eng. Sci. 100, 112–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, D., Wu, Y., Da, Ronch A., et al.: Energy harvesting by means of flow-induced vibrations on aerospace vehicles. Prog. Aerosp. Sci. 86, 28–62 (2016)

    Article  Google Scholar 

  11. Zhao, L., Yang, Y.: Toward small-scale wind energy harvesting: design, enhancement, performance comparison, and applicability. Shock Vib. 2017, 1–31 (2017)

  12. Mehmood, A., Abdelkefi, A., Hajj, M.R., et al.: Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 332(19), 4656–4667 (2013)

    Article  Google Scholar 

  13. Zhang, L.B., Abdelkefi, A., Dai, H.L., et al.: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. J. Sound Vib. 408, 210–219 (2017)

    Article  Google Scholar 

  14. Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329(14), 2873–2883 (2010)

    Article  Google Scholar 

  15. Yang, Y., Zhao, L., Tang, L.: Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102(6), 064105 (2013)

    Article  Google Scholar 

  16. Erturk, A., Vieira, W.G.R., De Marqui Jr., C., et al.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96(18), 184103 (2010)

    Article  Google Scholar 

  17. De Marqui, C., Vieira, W.G.R., Erturk, A., et al.: Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method. J. Vib. Acoust. 133(1), 011003 (2011)

    Article  Google Scholar 

  18. Bryant, M., Garcia, E.: Modeling and testing of a novel aeroelastic flutter energy harvester. J. Vib. Acoust. 133(1), 011010 (2011)

    Article  Google Scholar 

  19. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. 67(2), 925–939 (2012)

    Article  MathSciNet  Google Scholar 

  20. Bibo, A., Daqaq, M.F.: Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. 332(20), 5086–5102 (2013)

    Article  Google Scholar 

  21. Bibo, A., Daqaq, M.F.: Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator. Appl. Phys. Lett. 102(24), 243904 (2013)

    Article  Google Scholar 

  22. Yan, Z., Abdelkefi, A.: Nonlinear characterization of concurrent energy harvesting from galloping and base excitations. Nonlinear Dyn. 77(4), 1171–1189 (2014)

    Article  Google Scholar 

  23. Dai, H.L., Abdelkefi, A., Wang, L.: Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. 77(3), 967–981 (2014)

    Article  Google Scholar 

  24. Zhao, L., Yang, Y.: An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Appl. Energy. 212, 233–243 (2018)

    Article  Google Scholar 

  25. Rocha, R.T., Balthazar, J.M., Tusset, A.M., et al.: Nonlinear piezoelectric vibration energy harvesting from a portal frame with two-to-one internal resonance. Meccanica. 52(11–12), 2583–2602 (2017)

    Article  MathSciNet  Google Scholar 

  26. Chen, L.Q., Jiang, W.A., Panyam, M., et al.: A broadband internally resonant vibratory energy harvester. J. Vib. Acoust. 138(6), 061007 (2016)

    Article  Google Scholar 

  27. Xiong, L., Tang, L., Mace, B.R.: A comprehensive study of 2: 1 internal-resonance-based piezoelectric vibration energy harvesting. Nonlinear Dyn. 91(3), 1817–1834 (2018)

    Article  Google Scholar 

  28. Cao, D.X., Leadenham, S., Erturk, A.: Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224(14–15), 2867–2880 (2015)

    Article  Google Scholar 

  29. Yang, W., Towfighian, S.: Internal resonance and low frequency vibration energy harvesting. Smart Mater. Struct. 26(9), 095008 (2017)

    Article  Google Scholar 

  30. Gilliatt, H.C., Strganac, T.W., Kurdila, A.J.: An investigation of internal resonance in aeroelastic systems. Nonlinear Dyn. 31(1), 1–22 (2003)

    Article  MATH  Google Scholar 

  31. Chen, L.Q., Jiang, W.A.: Internal resonance energy harvesting. J. Appl. Mech-T. ASME. 82(3), 031004 (2015)

    Article  Google Scholar 

  32. Chen, L.Q., Jiang, W.A.: A piezoelectric energy harvester based on internal resonance. Acta Mech. Sin. 31(2), 223–228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Starting Research Foundation of Nanjing Tech University under grant 3827400225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumin Gao.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The details of \(a_{ij} \) in Eqs. (17) and (18) read

$$\begin{aligned} a_{11}= & {} 3\mathbf{p}_{12}^3 +6U_\infty \omega _1^2 b_0 \mathbf{p}_{11} \mathbf{p}_{12}^2 +3b_0^2 \omega _1^2 \mathbf{p}_{12}^3 \\&+\,3U_\infty ^2 \omega _1^2 \mathbf{p}_{11}^2 \mathbf{p}_{12} +\mathrm{i}(3\mathbf{p}_{12}^2 U_\infty \omega _1 \mathbf{p}_{11} +3b_0^3 \omega _1^3 \mathbf{p}_{12}^3 \\&+\,3U_\infty ^3 \omega _1^3 \mathbf{p}_{11}^3 +9U_\infty b_0^2 \omega _1^3 \mathbf{p}_{11} \mathbf{p}_{12}^2 \\&+\,9U_\infty ^2 \omega _1^3 b_0 \mathbf{p}_{11}^2 \mathbf{p}_{12} +3b_0 \omega _1 \mathbf{p}_{12}^3 ) \\= & {} \;a_{110} +\mathrm{i}a_{111} \\ a_{12}= & {} 6\mathbf{p}_{12} \mathbf{p}_{22}^2 +12U_\infty b_0 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{21} \mathbf{p}_{22} \\&+\,6U_\infty ^2 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{21}^2 +6b_0^2 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{22}^2 \\&+\,\mathrm{i}(6U_\infty \omega _1 \mathbf{p}_{11} \mathbf{p}_{22}^2+12U_\infty ^2 \omega _1 \omega _2^2 b_0 \mathbf{p}_{11} \mathbf{p}_{21} \mathbf{p}_{22} \\&+\,12U_\infty b_0^2 \omega _1 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{21} \mathbf{p}_{22} \\&+\,6U_\infty b_0^2 \omega _1 \omega _2^2 \mathbf{p}_{11} \mathbf{p}_{22}^2 \\&+\,6U_\infty ^3 \omega _1 \omega _2^2 \mathbf{p}_{11} \mathbf{p}_{21}^2 +6b_0 \omega _1 \mathbf{p}_{12} \mathbf{p}_{22}^2\\&+6b_0^3 \omega _1 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{22}^2 \\&+\,6U_\infty ^2 b_0 \omega _1 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{21}^2 ) \\= & {} a_{120} +\mathrm{i}a_{121} \\ a_{13}= & {} 6b_0^2 \omega _1 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{22} +6U_\infty ^2 \omega _1 \omega _2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{21} \\&-\,3U_\infty ^2 \omega _1^2 \mathbf{p}_{11}^2 \mathbf{p}_{22} -6U_\infty \omega _1^2 b_0 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} \\&-\,3b_0^2 \omega _1^2 \mathbf{p}_{12}^2 \mathbf{p}_{22} +6U_\infty b_0 \omega _1 \omega _2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22}\\&+\,6U_\infty b_0 \omega _1 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{21} +3\mathbf{p}_{12}^2 \mathbf{p}_{22} \\&+\,\mathrm{i}(-6U_\infty \omega _1 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} +3b_0 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{22} \\&-\,6U_\infty ^2 b_0 \omega _1^2 \omega _2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{21} +3U_\infty \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{21} \\&-\,6U_\infty \omega _1^2 \omega _2 b_0^2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} -6b_0 \omega _1 \mathbf{p}_{12}^2 \mathbf{p}_{22} \\&-\,3U_\infty ^2 b_0 \omega _1^2 \omega _2 \mathbf{p}_{11}^2 \mathbf{p}_{22} -3b_0^3 \omega _1^2 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{22} \\&-\,3U_\infty ^3 \omega _1^2 \omega _2 \mathbf{p}_{21} \mathbf{p}_{11}^2 -3U_\infty b_0^2 \omega _1^2 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{21} )\\= & {} a_{130} +\mathrm{i}a_{131} \\ a_{21}= & {} 6b_0^2 \omega _1^2 \mathbf{p}_{12}^2 \mathbf{p}_{22} +12U_\infty b_0 \omega _1^2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} \\&+\,6U_\infty ^2 \omega _1^2 \mathbf{p}_{11}^2 \mathbf{p}_{22} +6\mathbf{p}_{12}^2 \mathbf{p}_{22} +\mathrm{i}(6b_0^3 \omega _1^2 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{22} \\&+\,12U_\infty \omega _1^2 \omega _2 b_0^2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} +6b_0 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{22} \\&+\,6U_\infty b_0^2 \omega _1^2 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{21} \;+6U_\infty \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{21} \\&+\,6U_\infty ^3 \omega _1^2 \omega _2 \mathbf{p}_{11}^2 \mathbf{p}_{21} +12U_\infty ^2 b_0 \omega _1^2 \omega _2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{21} \\&+\,6U_\infty ^2 b_0 \omega _1^2 \omega _2 \mathbf{p}_{11}^2 \mathbf{p}_{22} ) \\&=a_{210} +\mathrm{i}a_{211} \\ a_{22}= & {} 3b_0^2 \omega _2^2 \mathbf{p}_{22}^3 +3\mathbf{p}_{22}^3 +3U_\infty ^2 \omega _2^2 \mathbf{p}_{22} \mathbf{p}_{21}^2 \\&+\,6U_\infty b_0 \omega _2^2 \mathbf{p}_{21} \mathbf{p}_{22}^2 +\mathrm{i}(3U_\infty ^3 \omega _2^3 \mathbf{p}_{21}^3 +3b_0 \omega _2 \mathbf{p}_{22}^3 \\&+\,9U_\infty b_0^2 \omega _2^3 \mathbf{p}_{21} \mathbf{p}_{22}^2 +3U_\infty \omega _2 \mathbf{p}_{21} \mathbf{p}_{22}^2 \\&+\,3b_0^3 \omega _2^3 \mathbf{p}_{22}^3 +9U_\infty ^2 b_0 \omega _2^3 \mathbf{p}_{22} \mathbf{p}_{21}^2 ) \\&=a_{220} +\mathrm{i}a_{221} \\ a_{31}= & {} 3b_0^2 \omega _1^2 \mathbf{p}_{12}^3 +6U_\infty b_0 \omega _1^2 \mathbf{p}_{12}^2 \mathbf{p}_{11} +3U_\infty ^2 \omega _1^2 \mathbf{p}_{12} \mathbf{p}_{11}^2 \\&-\,\mathbf{p}_{12}^3 +\mathrm{i}(U_\infty ^3 \omega _1^3 \mathbf{p}_{11}^3 -3b_0 \omega _1 \mathbf{p}_{12}^3 \\&+\,3U_\infty ^2 b_0 \omega _1^3 \mathbf{p}_{11}^2 \mathbf{p}_{12} -3U_\infty \omega _1 \mathbf{p}_{12}^2 \mathbf{p}_{11} +b_0^3 \omega _1^3 \mathbf{p}_{12}^3 \\&+\,3U_\infty \omega _1^3 b_0^2 \mathbf{p}_{12}^2 \mathbf{p}_{11} ) \\= & {} a_{310} +\mathrm{i}a_{311} \\ \end{aligned}$$

Appendix B

The details of \(\alpha _i \) and \(\gamma _i \) in Eqs. (2225) read

$$\begin{aligned} \alpha _2= & {} \mathbf{z}_1^\mathrm{T} \left( \mathbf{C}\omega _1 \mathbf{p}_1 +\mathbf{P}\frac{\chi _p \omega _1 R_0 }{\omega _1^2 +R_0^2 }{} \mathbf{p}_{11} \right) \\= & {} \frac{1}{N_{10} }\left( \Lambda _1 ^{\prime }\left( \omega _1 \Lambda _1 \left( {c_h -\frac{L_s }{U_\infty }} \right) -\omega _1 L_s b_0 \right. \right. \\&\quad \left. +\theta \Lambda _1 \frac{\chi _p \omega _1 R_0 }{\omega _1^2 +R_0^2 } \right) -\frac{T_s }{U_\infty }\omega _1 \Lambda _1 +\omega _1 c_\alpha \\&\quad \left. -\omega _1 T_s b_0 \right) \\ \alpha _3= & {} -\mathbf{z}_1^\mathrm{T} \mathbf{P}\frac{\chi _p \omega _1^2 }{\omega _1^2 +R_0^2 }{} \mathbf{p}_{11} =-\frac{1}{N_{10} }\Lambda _1 ^{\prime }\theta \Lambda _1 \\&\quad \frac{\omega _1^2 \chi _p }{\omega _1^2 +R_0^2 }\\ \alpha _4= & {} -\mathbf{z}_1^\mathrm{T} \mathbf{Q}a_{111} \\= & {} -\frac{1}{N_{10} }\left( {-\Lambda _1 ^{\prime }c_s L_s -c_s T_s } \right) (3\mathbf{p}_{12}^2 U_\infty \omega _1 \mathbf{p}_{11} \\&+\,3b_0^3 \omega _1^3 \mathbf{p}_{12}^3 +3U_\infty ^3 \omega _1^3 \mathbf{p}_{11}^3 +9U_\infty b_0^2 \omega _1^3 \mathbf{p}_{11} \mathbf{p}_{12}^2 \\&+\,9U_\infty ^2 \omega _1^3 b_0 \mathbf{p}_{11}^2 \mathbf{p}_{12} +3b_0 \omega _1 \mathbf{p}_{12}^3 ) \\ \alpha _5= & {} \mathbf{z}_1^\mathrm{T} \mathbf{Q}a_{110} \\= & {} \frac{1}{N_{10} }\left( {-\Lambda _1 ^{\prime }c_s L_s -c_s T_s } \right) \\&\quad \left( 3\mathbf{p}_{12}^3 +6U_\infty \omega _1^2 b_0 \mathbf{p}_{11} \mathbf{p}_{12}^2 +3b_0^2 \omega _1^2 \mathbf{p}_{12}^3\right. \\&\quad \left. +3U_\infty ^2 \omega _1^2 \mathbf{p}_{11}^2 \mathbf{p}_{12} \right) \\ \alpha _6= & {} -\mathbf{z}_1^\mathrm{T} \mathbf{Q}a_{121} \\= & {} -\frac{1}{N_{10} }\left( {-\Lambda _1 ^{\prime }c_s L_s -c_s T_s } \right) (12U_\infty ^2 \omega _1 \omega _2^2 b_0 \\&\quad \mathbf{p}_{11} \mathbf{p}_{21} \mathbf{p}_{22} +6b_0^3 \omega _1 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{22}^2 \\&+\,12U_\infty b_0^2 \omega _1 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{21} \mathbf{p}_{22} +6U_\infty ^3 \omega _1 \omega _2^2 \mathbf{p}_{11} \mathbf{p}_{21}^2\\&+6U_\infty b_0^2 \omega _1 \omega _2^2 \mathbf{p}_{11} \mathbf{p}_{22}^2 \\&+\,6U_\infty \omega _1 \mathbf{p}_{11} \mathbf{p}_{22}^2 +6U_\infty ^2 b_0 \omega _1 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{21}^2 \\&+\,6b_0 \omega _1 \mathbf{p}_{12} \mathbf{p}_{22}^2 ) \\ \alpha _7= & {} \mathbf{z}_1^\mathrm{T} \mathbf{Q}a_{120} \\= & {} \frac{1}{N_{10} }\left( {-\Lambda _1 ^{\prime }c_s L_s -c_s T_s } \right) \\&\left( 6\mathbf{p}_{12} \mathbf{p}_{22}^2 +12U_\infty b_0 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{21} \mathbf{p}_{22}\right. \\&\left. +6U_\infty ^2 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{21}^2 +6b_0^2 \omega _2^2 \mathbf{p}_{12} \mathbf{p}_{22}^2 \right) \\ \alpha _8= & {} -\mathbf{z}_1^\mathrm{T} \mathbf{Q}a_{131} \\= & {} -\frac{1}{N_{10} }\left( {-\Lambda _1 ^{\prime }c_s L_s -c_s T_s } \right) (-6U_\infty \omega _1 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} \\&+\,3b_0 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{22} -6U_\infty ^2 b_0 \omega _1^2 \omega _2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{21} \\&-\,6U_\infty \omega _1^2 \omega _2 b_0^2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} +3U_\infty \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{21}\\&-\,3U_\infty ^3 \omega _1^2 \omega _2 \mathbf{p}_{21} \mathbf{p}_{11}^2 -6b_0 \omega _1 \mathbf{p}_{12}^2 \mathbf{p}_{22} \\&-\,3U_\infty b_0^2 \omega _1^2 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{21} -3U_\infty ^2 b_0 \omega _1^2 \omega _2 \mathbf{p}_{11}^2 \mathbf{p}_{22}\\&-\,3b_0^3 \omega _1^2 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{22}) \\ \alpha _9= & {} \mathbf{z}_1^\mathrm{T} \mathbf{Q}a_{130} \\= & {} \frac{1}{N_{10} }\left( {-\Lambda _1 ^{\prime }c_s L_s -c_s T_s } \right) (6b_0^2 \omega _1 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{22}\\&-\,3b_0^2 \omega _1^2 \mathbf{p}_{12}^2 \mathbf{p}_{22} +6U_\infty ^2 \omega _1 \omega _2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{21} +3\mathbf{p}_{12}^2 \mathbf{p}_{22} \\&-\,6U_\infty \omega _1^2 b_0 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} +6U_\infty b_0 \omega _1 \omega _2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} \\&+\,6U_\infty b_0 \omega _1 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{21} -3U_\infty ^2 \omega _1^2 \mathbf{p}_{11}^2 \mathbf{p}_{22} ) \\ \alpha _{10}= & {} \mathbf{z}_1^\mathrm{T} \mathbf{P}\frac{\chi _p \Omega ^{2}}{\Omega ^{2}+R_0^2 }z_0 =\frac{1}{N_{10} }\Lambda _1 ^{\prime }\theta \frac{\chi _p \Omega ^{2}}{\Omega ^{2}+R_0^2 }z_0\\ \alpha _{11}= & {} \mathbf{z}_1^\mathrm{T} \left( \mathbf{C}_1 \Omega z_0 +\mathbf{P}\frac{\chi _p \Omega R_0 }{\Omega ^{2}+R_0^2 }z_0 \right) \\= & {} \frac{1}{N_{10} }\Lambda _1 ^{\prime }\left( c_h \Omega +\theta \frac{\chi _p \Omega R_0 }{\Omega ^{2}+R_0^2 }\right) z_0\\ \gamma _2= & {} \mathbf{z}_2^\mathrm{T} (\mathbf{C}\omega _2 \mathbf{p}_2 +\mathbf{P}\frac{\chi _p \omega _2 R_0 }{\omega _2^2 +R_0^2 }{} \mathbf{p}_{21} )\\= & {} \frac{1}{N_{20} }\left( \Lambda _2 ^{\prime }\left( \omega _2 \Lambda _2 \left( {c_h -\frac{L_s }{U_\infty }} \right) -\omega _2 L_s b_0 \right. \right. \\&\quad \left. +\theta \Lambda _2 \frac{\chi _p \omega _2 R_0 }{\omega _2^2 +R_0^2 } \right) -\frac{T_s }{U_\infty }\omega _2 \Lambda _2 +\omega _2 c_\alpha \\&\quad \left. -\omega _2 T_s b_0 \right) \\ \gamma _3= & {} -\mathbf{z}_2^\mathrm{T} \mathbf{P}\frac{\chi _p \omega _2^2 }{\omega _2^2 +R_0^2 }{} \mathbf{p}_{21} =-\frac{1}{N_{20} }\Lambda _2 ^{\prime }\theta \Lambda _2 \\&\quad \frac{\omega _2^2 \chi _p }{\omega _2^2 +R_0^2 }\\ \gamma _4= & {} -\mathbf{z}_2^\mathrm{T} \mathbf{Q}a_{221} \\= & {} -\frac{1}{N_{20} }\left( {-\Lambda _2 ^{\prime }c_s L_s -c_s T_s } \right) (3U_\infty ^3 \omega _2^3 \mathbf{p}_{21}^3 \\&+\,3b_0 \omega _2 \mathbf{p}_{22}^3 +9U_\infty b_0^2 \omega _2^3 \mathbf{p}_{21} \mathbf{p}_{22}^2 +3U_\infty \omega _2 \mathbf{p}_{21} \mathbf{p}_{22}^2 \\&+\,9U_\infty ^2 b_0 \omega _2^3 \mathbf{p}_{22} \mathbf{p}_{21}^2 +3b_0^3 \omega _2^3 \mathbf{p}_{22}^3 ) \\ \gamma _5= & {} \mathbf{z}_2^\mathrm{T} \mathbf{Q}a_{220} \\= & {} \frac{1}{N_{20} }\left( {-\Lambda _2 ^{\prime }c_s L_s -c_s T_s } \right) \\&\quad ( 3b_0^2 \omega _2^2 \mathbf{p}_{22}^3 +3\mathbf{p}_{22}^3 +3U_\infty ^2 \omega _2^2 \mathbf{p}_{22} \mathbf{p}_{21}^2 \\&+\,6U_\infty b_0 \omega _2^2 \mathbf{p}_{21} \mathbf{p}_{22}^2 ) \\ \gamma _6= & {} -\mathbf{z}_2^\mathrm{T} \mathbf{Q}a_{211} \\= & {} -\frac{1}{N_{20} }\left( {-\Lambda _2 ^{\prime }c_s L_s -c_s T_s } \right) (12U_\infty \omega _1^2 \omega _2 b_0^2 \\&\mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} +6b_0^3 \omega _1^2 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{22} +6b_0 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{22} \\&+\,6U_\infty ^3 \omega _1^2 \omega _2 \mathbf{p}_{11}^2 \mathbf{p}_{21} +12U_\infty ^2 b_0 \omega _1^2 \omega _2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{21}\\&+6U_\infty ^2 b_0 \omega _1^2 \omega _2 \mathbf{p}_{11}^2 \mathbf{p}_{22} +6U_\infty \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{21} \\&+\,6U_\infty b_0^2 \omega _1^2 \omega _2 \mathbf{p}_{12}^2 \mathbf{p}_{21} ) \\ \gamma _7= & {} \mathbf{z}_2^\mathrm{T} \mathbf{Q}a_{210} \\= & {} \frac{1}{N_{20} }\left( {-\Lambda _2 ^{\prime }c_s L_s -c_s T_s } \right) \left( 6b_0^2 \omega _1^2 \mathbf{p}_{12}^2 \mathbf{p}_{22}\right. \\&+\,12U_\infty b_0 \omega _1^2 \mathbf{p}_{11} \mathbf{p}_{12} \mathbf{p}_{22} +6U_\infty ^2 \omega _1^2 \mathbf{p}_{11}^2 \mathbf{p}_{22} \\&\left. +6\mathbf{p}_{12}^2 \mathbf{p}_{22} \right) \\ \gamma _8= & {} -\mathbf{z}_2^\mathrm{T} \mathbf{Q}a_{311} \\= & {} -\frac{1}{N_{20} }\left( {-\Lambda _2 ^{\prime }c_s L_s -c_s T_s } \right) (U_\infty ^3 \omega _1^3 \mathbf{p}_{11}^3 \\&+\,3U_\infty ^2 b_0 \omega _1^3 \mathbf{p}_{11}^2 \mathbf{p}_{12} -3b_0 \omega _1 \mathbf{p}_{12}^3 +b_0^3 \omega _1^3 \mathbf{p}_{12}^3 \\&-\,3U_\infty \omega _1 \mathbf{p}_{12}^2 \mathbf{p}_{11} +3U_\infty \omega _1^3 b_0^2 \mathbf{p}_{12}^2 \mathbf{p}_{11} ) \\ \gamma _9= & {} \mathbf{z}_2^\mathrm{T} \mathbf{Q}a_{310} \\= & {} \frac{1}{N_{20} }\left( {-\Lambda _2 ^{\prime }c_s L_s -c_s T_s } \right) \\&\quad (3b_0^2 \omega _1^2 \mathbf{p}_{12}^3 +6U_\infty b_0 \omega _1^2 \mathbf{p}_{12}^2 \mathbf{p}_{11} \\&+\,3U_\infty ^2 \omega _1^2 \mathbf{p}_{12} \mathbf{p}_{11}^2 -\mathbf{p}_{12}^3 ) \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Gao, X. Vibration energy harvesting under concurrent base and flow excitations with internal resonance. Nonlinear Dyn 96, 1067–1081 (2019). https://doi.org/10.1007/s11071-019-04839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04839-4

Keywords

Navigation