Skip to main content

Advertisement

Log in

Bursting oscillation phenomenon and efficiency analysis of a piezoelectric energy harvester in rotational motion by low-frequency excitation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, the bursting oscillation and energy harvesting efficiency of a piezoelectric energy harvester (PEH) in rotational motion by low-frequency excitation are investigated. On the basis of the slow-fast analysis method, the periodic external excitation term is taken as a slow variable and the control parameter to regulate the dynamic behavior of the fast subsystem. The time history, phase and transformed phase diagrams of the PEH system in some cases when the bursting oscillation occurs are derived. The bifurcation mechanism and motion law are then revealed. Next, the effect of excitation frequency on periodic motions is studied through \(\omega \)-x bifurcation diagrams. Then, the critical values of the excitation amplitude for bursting oscillations are observed. Afterwards, the influence of cantilever beam equivalent damping ratio on the output voltage when bursting oscillation happens is discussed. Taking the average output voltage value as a measurement index, combining with the variations of the output power with load resistance, the effects of excitation amplitude and frequency on energy harvesting efficiency are analyzed. The results show that the rise of amplitude can widen the frequency band of high energy harvesting efficiency; The frequency near the bursting frequency provides large output power in an instant. Finally, the relationship between the barrier height and bursting oscillation is discussed. It is shown that there exist more than one critical excitation amplitudes for the occurrence of bursting oscillation in some cases of the tristable PEH system. Overall, combining with the external excitation term, potential energy functions and various electromechanical factors, we theoretically analyze the effects on bursting oscillation and energy harvesting efficiency, which provides a reference for the reliability design of multistable piezoelectric energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. D.X. Cao, X.D. Ding, X.Y. Guo et al., Int. J. Precis. Eng. Manuf. Green Technol. 8, 1239–1252 (2021)

    Article  Google Scholar 

  2. X.H. Zhang, Z.H. Wu, Z.P. Lai et al., Measurement & diagnosis. J. Vib. 39, 1–8 (2019)

    Google Scholar 

  3. S.A. Emam, D.J. Inman, Appl. Mech. Rev. (2015). https://doi.org/10.1115/1.4032037

    Article  Google Scholar 

  4. Y. Li, S.X. Zhou, Z.C. Yang et al., Energy 180, 737–750 (2019)

    Article  Google Scholar 

  5. D.X. Cao, S. Leadenham, A. Erturk, Eur. Phys. J. Special Top. 224, 2867–2880 (2015)

    Article  ADS  Google Scholar 

  6. W. Yang, S. Towfighian, Smart Mater. Struct. 26, 095008 (2017)

    Article  ADS  Google Scholar 

  7. X.H. Zhang, Design Theory and Application of Piezoelectric Energy Harvesters with Muti-field Coupling Conditions (Huazhong University of Science and Technology Press, Wuhan, 2020)

    Google Scholar 

  8. F.R. Fan, Z.Q. Tian, Z.L. Wang, Nano Energy 1, 328–334 (2012)

    Article  Google Scholar 

  9. H.X. Deng, Y. Du, Z.M. Wang et al., Commun. Phys. (2019). https://doi.org/10.1038/s42005-019-0117-9

    Article  Google Scholar 

  10. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)

    Article  ADS  Google Scholar 

  11. Z.S. Chen, Y.M. Yang, Acta Physica Sinica 60, 437–443 (2011)

    Google Scholar 

  12. S.X. Zhou, J.Y. Cao, D.J. Inman et al., Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  13. H.X. Zou, L.C. Zhao, Q.H. Gao et al., Appl. Energy 255, 113871 (2019)

    Article  Google Scholar 

  14. Z.Q. Lu, H. Ding, L.Q. Chen, Mech. Syst. Signal Process. 121, 767–776 (2019)

    Article  ADS  Google Scholar 

  15. Z.Y. Zhou, W.Y. Qin, W.F. Du et al., Mech. Syst. Signal Process. 115, 162–172 (2019)

    Article  ADS  Google Scholar 

  16. H.J. Liu, X.M. Gao, Nonlinear Dyn. 96, 1067–1081 (2019)

    Article  Google Scholar 

  17. D.X. Cao, H.B. Ma, W. Zhang, Chin. J. Theor. Appl. Mech. 51, 1148–1155 (2019)

    Google Scholar 

  18. X.T. Mei, S.X. Zhou, Z.C. Yang et al., J. Sound Vib. 469, 115142 (2020)

    Article  Google Scholar 

  19. W.A. Jiang, X.J. Han, L.Q. Chen et al., Acta Mech Sin 36, 618–623 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. W.A. Jiang, X.J. Han, L.Q. Chen et al., Nonlinear Dyn. 100, 3043–3060 (2020)

    Article  Google Scholar 

  21. M. Peng, Z.D. Zhang, Z.F. Qu et al., Pramana - J. Phys. 94, 14 (2020). https://doi.org/10.1007/s12043-019-1871-7

    Article  ADS  Google Scholar 

  22. J. Rinzel, Ordinary Partial Diff. Equ. 1151, 304–316 (1985)

    Article  Google Scholar 

  23. J. Rinzel, Biomath. Relat. Comput. Probl. (1988). https://doi.org/10.1007/978-94-009-2975-3-62

    Article  Google Scholar 

  24. J. Rinzel, Bull. Math. Biol. 52, 5–23 (1990)

    Article  Google Scholar 

  25. Z.D. Zhang, J. Li, Y.N. Liu et al., Chin. J. Sci. Sin. Tech. 49, 1031–1039 (2019)

    Article  Google Scholar 

  26. H.L. Xiang, Y.J. Shen, J.Q. Sun et al., Sci. Rep. 9, 1–11 (2019)

    Google Scholar 

  27. M.K. Wei, X.J. Han, X.F. Zhang et al., Chin. J. Theor. Appl. Mech. 51, 904–911 (2019)

    Google Scholar 

  28. X.F. Gou, L.B. Han, L.Y. Zhu et al., J. Vib. Shock 39, 123–131 (2020)

    Google Scholar 

  29. M.L. Ma, Y.J. Fang, Z.J. Li et al., Eur. Phys. J. Special Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00128-7

    Article  Google Scholar 

  30. Y. Lin, W.B. Liu, H. Bao et al., Chaos Solitons Fractals 131, 109524 (2020)

    Article  MathSciNet  Google Scholar 

  31. Z.X. Wang, Z.D. Zhang, Q.S. Bi, Nonlinear Dyn. 100, (2020)

  32. Z.Y. Chen, F.Q. Chen, Nonlinear Dyn. 100, 659–677 (2020)

    Article  Google Scholar 

  33. Y.H. Qian, D.J. Zhang, B.W. Lin, Complexity (2021). https://doi.org/10.1155/2021/5556021

    Article  Google Scholar 

  34. S.H. Zhang, C. Wang, H.L. Zhang, Acta Physica Sinica 69, 210501 (2020)

    Article  Google Scholar 

  35. W.A. Jiang, X.D. Ma, M. Liu et al., J. Vib. Eng. Technol. (2021). https://doi.org/10.1007/s42417-021-00340-8

    Article  Google Scholar 

  36. Z.Y. Chen, W.A. Jiang, L.Q. Chen et al., Eur. Phys. J. Special Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00377-6

    Article  Google Scholar 

  37. C. Wang, J. Xie, G. Ma et al., Piezoelect. Acoustoopt. 41, 700–705 (2019)

    Google Scholar 

  38. E.M. Izhikevich, Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  Google Scholar 

  39. M. Kountchou, V.R. Folifack Signing, R.L. Tagne Mogue et al., Int. J. Electr. Commun. (AE\(\ddot{\text{U}}\)) 116, (2020) 153072

  40. Y.X. Peng, S.B. He, K.H. Sun, Int. J. Electr. Commun. (AE\(\ddot{\text{ U }}\)) 129, (2021) 153539

  41. C.H. Du, L.C. Liu, Z.P. Zhang, et al., Int. J. Electr. Commun. (AE\(\ddot{\text{ U }}\)) 147, (2022) 154146

  42. Y. Yang, L.L. Huang, J.H. Xiang, et al., Int. J. Electr. Commun. (AE\(\ddot{\text{ U }}\)) 135, (2021) 153710

  43. J.Q. Zhang, Y.F. Ling, Z.Q. Yi, et al., Mach. Des. Manuf. 1, (2019) 58-61,65

  44. G. Litak, M.I. Friswell, C.A.K. Kwuimy et al., Theor. Appl. Mech. Lett. 4, 55–59 (2012)

    Google Scholar 

  45. J.Y. Cao, S.X. Zhou, W. Wang et al., Appl. Phys. Lett. 106, 173903 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through Grant Nos. 12172333, 12171435 and the Natural Science Foundation of Zhejiang through Grant No. LY20A020003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Youhua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bingwen, L., Yuanheng, W. & Youhua, Q. Bursting oscillation phenomenon and efficiency analysis of a piezoelectric energy harvester in rotational motion by low-frequency excitation. Eur. Phys. J. Plus 137, 459 (2022). https://doi.org/10.1140/epjp/s13360-022-02684-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02684-w

Navigation