Skip to main content
Log in

Plasmonic refractive index sensitivity of tetrapod gold nanostars: tuning the branch length and protein layer

  • Regular Article – Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The refractive index sensitivity of the tetrapod nanostars was studied. The extinction spectra and environmental refractive index sensitivity of the tetrapod gold nanostars with different branch lengths were calculated, and it was found that the environmental refractive index sensitivity of the tetrapod gold nanostars with longer branches was higher. The environmental refractive index sensitivity of the tetrapod gold nanostar coated with a protein layer is calculated. The greater the dielectric constant of the protein layer, the smaller the influence of the thickness of the protein layer on the refractive index sensitivity of the tetrapod gold nanostar, but at the same time the tetrapod nanostars can achieve higher environmental refractive index sensitivity. These sensing properties of the tetrapod gold nanostars provide potential for nano-optical biosensing research and provide theoretical guidance for the design of LSPR-based biosensors and SERS applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical paper. This work is an analytical computational and theoretical study of the corresponding model and does not use any relevant data.].

References

  1. E. Hao, G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120(1), 357–366 (2004). https://doi.org/10.1063/1.1629280

    Article  ADS  Google Scholar 

  2. S. Zhu, M. Cortie, I. Blakey, Effect of multimodal plasmon resonances on the optical properties of five-pointed nanostars. Nanomater. Nanotechnol. (2015). https://doi.org/10.5772/60726

    Article  Google Scholar 

  3. M. Li, S.K. Cushing, J. Zhang, J. Lankford, Z.P. Aguilar, D. Ma, N. Wu, Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 23(11), 115501 (2012). https://doi.org/10.1088/0957-4484/23/11/115501

    Article  ADS  Google Scholar 

  4. S. Barbosa, A. Agrawal, L. Rodriguez-Lorenzo, I. Pastoriza-Santos, R.A. Alvarez-Puebla, A. Kornowski, H. Weller, L.M. Liz-Marzan, Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26(18), 14943–14950 (2010). https://doi.org/10.1021/la102559e

    Article  Google Scholar 

  5. J. Zhu, S. Zhang, G.-J. Weng, J.-J. Li, J.-W. Zhao, The morphology regulation and plasmonic spectral properties of Au@AuAg yolk-shell nanorods with controlled interior gap. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. (2020). https://doi.org/10.1016/j.saa.2020.118343

    Article  Google Scholar 

  6. G. Raschke, S. Brogl, A.S. Susha, A.L. Rogach, T.A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, K. Kürzinger, Gold nanoshells improve single nanoparticle molecular sensors. Nano Lett. 4(10), 1853–1857 (2004). https://doi.org/10.1021/nl049038q

    Article  ADS  Google Scholar 

  7. J. Zhu, F. Zhang, J.-J. Li, J.-W. Zhao, Optimization of the refractive index plasmonic sensing of gold nanorods by non-uniform silver coating. Sens. Actuators B Chem. 183, 556–564 (2013). https://doi.org/10.1016/j.snb.2013.04.042

    Article  Google Scholar 

  8. T. Xu, Z. Geng, Strategies to improve performances of LSPR biosensing: Structure, materials, and interface modification. Biosens. Bioelectron. 174, 112850 (2021). https://doi.org/10.1016/j.bios.2020.112850

    Article  Google Scholar 

  9. N. Hooshmand, J.A. Bordley, M.A. El-Sayed, Plasmonic spectroscopy: The electromagnetic field strength and its distribution determine the sensitivity factor of face-to-face Ag nanocube dimers in solution and on a substrate. J. Phys. Chem. C 119(27), 15579–15587 (2015). https://doi.org/10.1021/acs.jpcc.5b05395

    Article  Google Scholar 

  10. J. Zhu, J.K. Chen, J.J. Li, J.W. Zhao, Local dielectric environment-dependent plasmonic optical sensitivity of gold nanocage: from nanobox to nanoframe. Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-018-2353-3

    Article  Google Scholar 

  11. A. Azarian, L. Sheikhy, Dark plasmon with a high figure of merit in a single Au triangular nano frame. J. Clust. Sci. 30(6), 1633–1639 (2019). https://doi.org/10.1007/s10876-019-01608-6

    Article  Google Scholar 

  12. J. Lawless, C. Hrelescu, C. Elliott, L. Peters, N. McEvoy, A.L. Bradley, Influence of gold nano-bipyramid dimensions on strong coupling with excitons of monolayer MoS2. ACS Appl. Mater. Interfaces 12(41), 46406–46415 (2020). https://doi.org/10.1021/acsami.0c09261

    Article  Google Scholar 

  13. Y.-L. Li, J. Zhu, G.-J. Weng, J.-J. Li, T.-Y. Xing, J.-W. Zhao, “Magic mitt”: Morphologically controllable AuAg@AuAg yolk-shell nanostars with better plasmonic optical properties. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156134

    Article  Google Scholar 

  14. J.E. Ortiz-Castillo, R.C. Gallo-Villanueva, M.J. Madou, V.H. Perez-Gonzalez, Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coord. Chem. Rev. (2020). https://doi.org/10.1016/j.ccr.2020.213489

    Article  Google Scholar 

  15. H.R. Hegde, S. Chidangil, R.K. Sinha, Refractive index sensitivity of triangular Ag nanoplates in solution and on glass substrate. Sens. Actuators A Phys. (2020). https://doi.org/10.1016/j.sna.2020.111948

    Article  Google Scholar 

  16. H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10), 5233–5237 (2008). https://doi.org/10.1021/la800305j

    Article  Google Scholar 

  17. C.L. Nehl, H. Liao, J.H. Hafner, Optical properties of star-shaped gold nanoparticles. Nano Lett. 6(4), 683–688 (2006). https://doi.org/10.1021/nl052409y

    Article  ADS  Google Scholar 

  18. Y.I. Park, H. Im, R. Weissleder, H. Lee, Nanostar clustering improves the sensitivity of plasmonic assays. Bioconjug. Chem. 26(8), 1470–1474 (2015). https://doi.org/10.1021/acs.bioconjchem.5b00343

    Article  Google Scholar 

  19. W. Xi, H.T. Phan, A.J. Haes, How to accurately predict solution-phase gold nanostar stability. Anal. Bioanal. Chem. 410(24), 6113–6123 (2018). https://doi.org/10.1007/s00216-018-1115-6

    Article  Google Scholar 

  20. Y. Pu, Y. Zhao, P. Zheng, M. Li, Elucidating the growth mechanism of plasmonic gold nanostars with tunable optical and photothermal properties. Inorg. Chem. 57(14), 8599–8607 (2018). https://doi.org/10.1021/acs.inorgchem.8b01354

    Article  Google Scholar 

  21. J. Zhao, C. Wu, L. Zhai, X. Shi, X. Li, G. Weng, J. Zhu, J. Li, J.-W. Zhao, A SERS-based immunoassay for the detection of α-fetoprotein using AuNS@Ag@SiO2 core–shell nanostars. J. Mater. Chem. C 7(27), 8432–8441 (2019). https://doi.org/10.1039/c9tc01890e

    Article  Google Scholar 

  22. R.M. Pallares, T. Stilson, P. Choo, J. Hu, T.W. Odom, Using good’s buffers to control the anisotropic structure and optical properties of spiky gold nanoparticles for refractive index sensing. ACS Appl. Nano Mater. 2(8), 5266–5271 (2019). https://doi.org/10.1021/acsanm.9b01117

    Article  Google Scholar 

  23. S. Chen, J. Ballato, S.H. Foulger, Z.L. Wang, D.L. Carroll, Monopod, bipod, tripod, and tetrapod gold nanocrystals. J. Am. Chem. Soc. 125(52), 16186–16187 (2003). https://doi.org/10.1021/ja038927x

    Article  Google Scholar 

  24. L. Zhang, X. Sha, Q. Fan, L. Han, Y. Yin, C. Gao, Gold nanoshurikens with uniform sharp tips for chemical sensing by the localized surface plasmon resonance. Nanoscale 9(43), 17037–17043 (2017). https://doi.org/10.1039/c7nr05585d

    Article  Google Scholar 

  25. J. Zhu, X.H. Chen, J.J. Li, J.W. Zhao, The synthesis of Ag-coated tetrapod gold nanostars and the improvement of surface-enhanced Raman scattering. Spectrochim Acta A Mol. Biomol. Spectrosc. 211, 154–165 (2019). https://doi.org/10.1016/j.saa.2018.12.001

    Article  ADS  Google Scholar 

  26. R. Aebersold, M. Mann, Mass-spectrometric exploration of proteome structure and function. Nature 537(7620), 347–355 (2016). https://doi.org/10.1038/nature19949

    Article  ADS  Google Scholar 

  27. R. Aebersold, J.N. Agar, I.J. Amster, M.S. Baker, C.R. Bertozzi, E.S. Boja, C.E. Costello, B.F. Cravatt, C. Fenselau, B.A. Garcia, Y. Ge, J. Gunawardena, R.C. Hendrickson, P.J. Hergenrother, C.G. Huber, A.R. Ivanov, O.N. Jensen, M.C. Jewett, N.L. Kelleher, L.L. Kiessling, N.J. Krogan, M.R. Larsen, J.A. Loo, R.R. Ogorzalek Loo, E. Lundberg, M.J. MacCoss, P. Mallick, V.K. Mootha, M. Mrksich, T.W. Muir, S.M. Patrie, J.J. Pesavento, S.J. Pitteri, H. Rodriguez, A. Saghatelian, W. Sandoval, H. Schluter, S. Sechi, S.A. Slavoff, L.M. Smith, M.P. Snyder, P.M. Thomas, M. Uhlen, J.E. Van Eyk, M. Vidal, D.R. Walt, F.M. White, E.R. Williams, T. Wohlschlager, V.H. Wysocki, N.A. Yates, N.L. Young, B. Zhang, How many human proteoforms are there? Nat. Chem. Biol. 14(3), 206–214 (2018). https://doi.org/10.1038/nchembio.2576

    Article  Google Scholar 

  28. L. Cohen, D.R. Walt, Highly sensitive and multiplexed protein measurements. Chem. Rev. 119(1), 293–321 (2019). https://doi.org/10.1021/acs.chemrev.8b00257

    Article  Google Scholar 

  29. S.K. De, A. Maity, A. Chakraborty, Underlying mechanisms for the modulation of self-assembly and the intrinsic fluorescent properties of amino acid-functionalized gold nanoparticles. Langmuir 37(16), 5022–5033 (2021). https://doi.org/10.1021/acs.langmuir.1c00431

    Article  Google Scholar 

  30. J.-J. Li, X.-H. Chen, G.-J. Weng, J. Zhu, J.-W. Zhao, A highly specific and sensitive fluorescence quenching probe for carcinoembryonic antigen detection based on tetrapod Au nanostars with Ag coating. Mater. Today Commun. (2020). https://doi.org/10.1016/j.mtcomm.2020.101373

    Article  Google Scholar 

  31. J.S. Sekhon, S.S. Verma, Optimal dimensions of gold nanorod for plasmonic nanosensors. Plasmonics 6(1), 163–169 (2011). https://doi.org/10.1007/s11468-010-9182-3

    Article  Google Scholar 

  32. L.-N. Meng, J. Zhu, G.-J. Weng, J.-J. Li, J.-W. Zhao, Optimization of the ultra-narrow plasmonic bandwidth of Pt-coated Au nanorod: The application in refractive index sensing. Physica E Low-dimens. Syst. Nanostruct. (2022). https://doi.org/10.1016/j.physe.2021.114996

    Article  Google Scholar 

  33. J.-J. Li, Q.-X. Qin, G.-J. Weng, J. Zhu, J.-W. Zhao, Improve the hole size-dependent refractive index sensitivity of Au–Ag nanocages by tuning the alloy composition. Plasmonics (2021). https://doi.org/10.1007/s11468-021-01536-0

    Article  Google Scholar 

  34. C. Boukouvala, E. Ringe, Wulff-based approach to modeling the plasmonic response of single crystal, twinned, and core-shell nanoparticles. J. Phys. Chem. C 123(41), 25501–25508 (2019). https://doi.org/10.1021/acs.jpcc.9b07584

    Article  Google Scholar 

  35. G. Weng, X. Shen, J. Li, J. Zhu, J. Yang, J. Zhao, Multipole plasmon resonance in gold nanobipyramid: Effects of tip shape and size. Phys. Lett. A 412, 127577 (2021). https://doi.org/10.1016/j.physleta.2021.127577

    Article  Google Scholar 

  36. B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11(4), 1491–1499 (1994). https://doi.org/10.1364/JOSAA.11.001491

    Article  ADS  Google Scholar 

  37. B.T. Draine, P.J. Flatau, Discrete-dipole approximation for periodic targets: theory and tests. J. Opt. Soc. Am. A 25(11), 2693–2703 (2008). https://doi.org/10.1364/JOSAA.25.002693

    Article  ADS  Google Scholar 

  38. I.O. Sosa, C. Noguez, R.G. Barrera, Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107(26), 6269–6275 (2003). https://doi.org/10.1021/jp0274076

    Article  Google Scholar 

  39. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  Google Scholar 

  40. N. Verellen, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V.V. Moshchalkov, F. López-Tejeira, R. Paniagua-Domínguez, J.A. Sánchez-Gil, Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods. Nano Lett. 14(5), 2322–2329 (2014). https://doi.org/10.1021/nl404670x

    Article  ADS  Google Scholar 

  41. M. Amin, J. Küpper, Variations in proteins dielectric constants. ChemistryOpen 9(6), 691–694 (2020). https://doi.org/10.1002/open.202000108

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shaanxi Province (2021JM-024).

Author information

Authors and Affiliations

Authors

Contributions

LL: methodology; investigation; data curation; writing—original draft. JZ: formal analysis; writing—review and editing. G-JW: conceptualization; resources; writing—review and editing; supervision; funding acquisition. J-JL: resources; project administration; supervision. J-WZ: conceptualization; resources; writing—review and editing, supervision.

Corresponding authors

Correspondence to Jian Zhu or Jun-Wu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Ly., Zhu, J., Weng, Gj. et al. Plasmonic refractive index sensitivity of tetrapod gold nanostars: tuning the branch length and protein layer. Eur. Phys. J. D 76, 54 (2022). https://doi.org/10.1140/epjd/s10053-022-00375-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00375-w

Navigation